Index: fusl/src/math/lgammaf_r.c |
diff --git a/fusl/src/math/lgammaf_r.c b/fusl/src/math/lgammaf_r.c |
index c5b43db558c2a8ae1fca30847c882157d2e076e9..f0c8f4a96341336b9bf9349221bf3ea595bc747d 100644 |
--- a/fusl/src/math/lgammaf_r.c |
+++ b/fusl/src/math/lgammaf_r.c |
@@ -16,204 +16,214 @@ |
#include "libm.h" |
#include "libc.h" |
-static const float |
-pi = 3.1415927410e+00, /* 0x40490fdb */ |
-a0 = 7.7215664089e-02, /* 0x3d9e233f */ |
-a1 = 3.2246702909e-01, /* 0x3ea51a66 */ |
-a2 = 6.7352302372e-02, /* 0x3d89f001 */ |
-a3 = 2.0580807701e-02, /* 0x3ca89915 */ |
-a4 = 7.3855509982e-03, /* 0x3bf2027e */ |
-a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ |
-a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ |
-a7 = 5.1006977446e-04, /* 0x3a05b634 */ |
-a8 = 2.2086278477e-04, /* 0x39679767 */ |
-a9 = 1.0801156895e-04, /* 0x38e28445 */ |
-a10 = 2.5214456400e-05, /* 0x37d383a2 */ |
-a11 = 4.4864096708e-05, /* 0x383c2c75 */ |
-tc = 1.4616321325e+00, /* 0x3fbb16c3 */ |
-tf = -1.2148628384e-01, /* 0xbdf8cdcd */ |
-/* tt = -(tail of tf) */ |
-tt = 6.6971006518e-09, /* 0x31e61c52 */ |
-t0 = 4.8383611441e-01, /* 0x3ef7b95e */ |
-t1 = -1.4758771658e-01, /* 0xbe17213c */ |
-t2 = 6.4624942839e-02, /* 0x3d845a15 */ |
-t3 = -3.2788541168e-02, /* 0xbd064d47 */ |
-t4 = 1.7970675603e-02, /* 0x3c93373d */ |
-t5 = -1.0314224288e-02, /* 0xbc28fcfe */ |
-t6 = 6.1005386524e-03, /* 0x3bc7e707 */ |
-t7 = -3.6845202558e-03, /* 0xbb7177fe */ |
-t8 = 2.2596477065e-03, /* 0x3b141699 */ |
-t9 = -1.4034647029e-03, /* 0xbab7f476 */ |
-t10 = 8.8108185446e-04, /* 0x3a66f867 */ |
-t11 = -5.3859531181e-04, /* 0xba0d3085 */ |
-t12 = 3.1563205994e-04, /* 0x39a57b6b */ |
-t13 = -3.1275415677e-04, /* 0xb9a3f927 */ |
-t14 = 3.3552918467e-04, /* 0x39afe9f7 */ |
-u0 = -7.7215664089e-02, /* 0xbd9e233f */ |
-u1 = 6.3282704353e-01, /* 0x3f2200f4 */ |
-u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ |
-u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ |
-u4 = 2.2896373272e-01, /* 0x3e6a7578 */ |
-u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ |
-v1 = 2.4559779167e+00, /* 0x401d2ebe */ |
-v2 = 2.1284897327e+00, /* 0x4008392d */ |
-v3 = 7.6928514242e-01, /* 0x3f44efdf */ |
-v4 = 1.0422264785e-01, /* 0x3dd572af */ |
-v5 = 3.2170924824e-03, /* 0x3b52d5db */ |
-s0 = -7.7215664089e-02, /* 0xbd9e233f */ |
-s1 = 2.1498242021e-01, /* 0x3e5c245a */ |
-s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ |
-s3 = 1.4635047317e-01, /* 0x3e15dce6 */ |
-s4 = 2.6642270386e-02, /* 0x3cda40e4 */ |
-s5 = 1.8402845599e-03, /* 0x3af135b4 */ |
-s6 = 3.1947532989e-05, /* 0x3805ff67 */ |
-r1 = 1.3920053244e+00, /* 0x3fb22d3b */ |
-r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ |
-r3 = 1.7193385959e-01, /* 0x3e300f6e */ |
-r4 = 1.8645919859e-02, /* 0x3c98bf54 */ |
-r5 = 7.7794247773e-04, /* 0x3a4beed6 */ |
-r6 = 7.3266842264e-06, /* 0x36f5d7bd */ |
-w0 = 4.1893854737e-01, /* 0x3ed67f1d */ |
-w1 = 8.3333335817e-02, /* 0x3daaaaab */ |
-w2 = -2.7777778450e-03, /* 0xbb360b61 */ |
-w3 = 7.9365057172e-04, /* 0x3a500cfd */ |
-w4 = -5.9518753551e-04, /* 0xba1c065c */ |
-w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ |
-w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ |
+static const float pi = 3.1415927410e+00, /* 0x40490fdb */ |
+ a0 = 7.7215664089e-02, /* 0x3d9e233f */ |
+ a1 = 3.2246702909e-01, /* 0x3ea51a66 */ |
+ a2 = 6.7352302372e-02, /* 0x3d89f001 */ |
+ a3 = 2.0580807701e-02, /* 0x3ca89915 */ |
+ a4 = 7.3855509982e-03, /* 0x3bf2027e */ |
+ a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ |
+ a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ |
+ a7 = 5.1006977446e-04, /* 0x3a05b634 */ |
+ a8 = 2.2086278477e-04, /* 0x39679767 */ |
+ a9 = 1.0801156895e-04, /* 0x38e28445 */ |
+ a10 = 2.5214456400e-05, /* 0x37d383a2 */ |
+ a11 = 4.4864096708e-05, /* 0x383c2c75 */ |
+ tc = 1.4616321325e+00, /* 0x3fbb16c3 */ |
+ tf = -1.2148628384e-01, /* 0xbdf8cdcd */ |
+ /* tt = -(tail of tf) */ |
+ tt = 6.6971006518e-09, /* 0x31e61c52 */ |
+ t0 = 4.8383611441e-01, /* 0x3ef7b95e */ |
+ t1 = -1.4758771658e-01, /* 0xbe17213c */ |
+ t2 = 6.4624942839e-02, /* 0x3d845a15 */ |
+ t3 = -3.2788541168e-02, /* 0xbd064d47 */ |
+ t4 = 1.7970675603e-02, /* 0x3c93373d */ |
+ t5 = -1.0314224288e-02, /* 0xbc28fcfe */ |
+ t6 = 6.1005386524e-03, /* 0x3bc7e707 */ |
+ t7 = -3.6845202558e-03, /* 0xbb7177fe */ |
+ t8 = 2.2596477065e-03, /* 0x3b141699 */ |
+ t9 = -1.4034647029e-03, /* 0xbab7f476 */ |
+ t10 = 8.8108185446e-04, /* 0x3a66f867 */ |
+ t11 = -5.3859531181e-04, /* 0xba0d3085 */ |
+ t12 = 3.1563205994e-04, /* 0x39a57b6b */ |
+ t13 = -3.1275415677e-04, /* 0xb9a3f927 */ |
+ t14 = 3.3552918467e-04, /* 0x39afe9f7 */ |
+ u0 = -7.7215664089e-02, /* 0xbd9e233f */ |
+ u1 = 6.3282704353e-01, /* 0x3f2200f4 */ |
+ u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ |
+ u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ |
+ u4 = 2.2896373272e-01, /* 0x3e6a7578 */ |
+ u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ |
+ v1 = 2.4559779167e+00, /* 0x401d2ebe */ |
+ v2 = 2.1284897327e+00, /* 0x4008392d */ |
+ v3 = 7.6928514242e-01, /* 0x3f44efdf */ |
+ v4 = 1.0422264785e-01, /* 0x3dd572af */ |
+ v5 = 3.2170924824e-03, /* 0x3b52d5db */ |
+ s0 = -7.7215664089e-02, /* 0xbd9e233f */ |
+ s1 = 2.1498242021e-01, /* 0x3e5c245a */ |
+ s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ |
+ s3 = 1.4635047317e-01, /* 0x3e15dce6 */ |
+ s4 = 2.6642270386e-02, /* 0x3cda40e4 */ |
+ s5 = 1.8402845599e-03, /* 0x3af135b4 */ |
+ s6 = 3.1947532989e-05, /* 0x3805ff67 */ |
+ r1 = 1.3920053244e+00, /* 0x3fb22d3b */ |
+ r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ |
+ r3 = 1.7193385959e-01, /* 0x3e300f6e */ |
+ r4 = 1.8645919859e-02, /* 0x3c98bf54 */ |
+ r5 = 7.7794247773e-04, /* 0x3a4beed6 */ |
+ r6 = 7.3266842264e-06, /* 0x36f5d7bd */ |
+ w0 = 4.1893854737e-01, /* 0x3ed67f1d */ |
+ w1 = 8.3333335817e-02, /* 0x3daaaaab */ |
+ w2 = -2.7777778450e-03, /* 0xbb360b61 */ |
+ w3 = 7.9365057172e-04, /* 0x3a500cfd */ |
+ w4 = -5.9518753551e-04, /* 0xba1c065c */ |
+ w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ |
+ w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ |
/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ |
-static float sin_pi(float x) |
-{ |
- double_t y; |
- int n; |
+static float sin_pi(float x) { |
+ double_t y; |
+ int n; |
- /* spurious inexact if odd int */ |
- x = 2*(x*0.5f - floorf(x*0.5f)); /* x mod 2.0 */ |
+ /* spurious inexact if odd int */ |
+ x = 2 * (x * 0.5f - floorf(x * 0.5f)); /* x mod 2.0 */ |
- n = (int)(x*4); |
- n = (n+1)/2; |
- y = x - n*0.5f; |
- y *= 3.14159265358979323846; |
- switch (n) { |
- default: /* case 4: */ |
- case 0: return __sindf(y); |
- case 1: return __cosdf(y); |
- case 2: return __sindf(-y); |
- case 3: return -__cosdf(y); |
- } |
+ n = (int)(x * 4); |
+ n = (n + 1) / 2; |
+ y = x - n * 0.5f; |
+ y *= 3.14159265358979323846; |
+ switch (n) { |
+ default: /* case 4: */ |
+ case 0: |
+ return __sindf(y); |
+ case 1: |
+ return __cosdf(y); |
+ case 2: |
+ return __sindf(-y); |
+ case 3: |
+ return -__cosdf(y); |
+ } |
} |
-float __lgammaf_r(float x, int *signgamp) |
-{ |
- union {float f; uint32_t i;} u = {x}; |
- float t,y,z,nadj,p,p1,p2,p3,q,r,w; |
- uint32_t ix; |
- int i,sign; |
+float __lgammaf_r(float x, int* signgamp) { |
+ union { |
+ float f; |
+ uint32_t i; |
+ } u = {x}; |
+ float t, y, z, nadj, p, p1, p2, p3, q, r, w; |
+ uint32_t ix; |
+ int i, sign; |
- /* purge off +-inf, NaN, +-0, tiny and negative arguments */ |
- *signgamp = 1; |
- sign = u.i>>31; |
- ix = u.i & 0x7fffffff; |
- if (ix >= 0x7f800000) |
- return x*x; |
- if (ix < 0x35000000) { /* |x| < 2**-21, return -log(|x|) */ |
- if (sign) { |
- *signgamp = -1; |
- x = -x; |
- } |
- return -logf(x); |
- } |
- if (sign) { |
- x = -x; |
- t = sin_pi(x); |
- if (t == 0.0f) /* -integer */ |
- return 1.0f/(x-x); |
- if (t > 0.0f) |
- *signgamp = -1; |
- else |
- t = -t; |
- nadj = logf(pi/(t*x)); |
- } |
+ /* purge off +-inf, NaN, +-0, tiny and negative arguments */ |
+ *signgamp = 1; |
+ sign = u.i >> 31; |
+ ix = u.i & 0x7fffffff; |
+ if (ix >= 0x7f800000) |
+ return x * x; |
+ if (ix < 0x35000000) { /* |x| < 2**-21, return -log(|x|) */ |
+ if (sign) { |
+ *signgamp = -1; |
+ x = -x; |
+ } |
+ return -logf(x); |
+ } |
+ if (sign) { |
+ x = -x; |
+ t = sin_pi(x); |
+ if (t == 0.0f) /* -integer */ |
+ return 1.0f / (x - x); |
+ if (t > 0.0f) |
+ *signgamp = -1; |
+ else |
+ t = -t; |
+ nadj = logf(pi / (t * x)); |
+ } |
- /* purge off 1 and 2 */ |
- if (ix == 0x3f800000 || ix == 0x40000000) |
- r = 0; |
- /* for x < 2.0 */ |
- else if (ix < 0x40000000) { |
- if (ix <= 0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
- r = -logf(x); |
- if (ix >= 0x3f3b4a20) { |
- y = 1.0f - x; |
- i = 0; |
- } else if (ix >= 0x3e6d3308) { |
- y = x - (tc-1.0f); |
- i = 1; |
- } else { |
- y = x; |
- i = 2; |
- } |
- } else { |
- r = 0.0f; |
- if (ix >= 0x3fdda618) { /* [1.7316,2] */ |
- y = 2.0f - x; |
- i = 0; |
- } else if (ix >= 0x3F9da620) { /* [1.23,1.73] */ |
- y = x - tc; |
- i = 1; |
- } else { |
- y = x - 1.0f; |
- i = 2; |
- } |
- } |
- switch(i) { |
- case 0: |
- z = y*y; |
- p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
- p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
- p = y*p1+p2; |
- r += p - 0.5f*y; |
- break; |
- case 1: |
- z = y*y; |
- w = z*y; |
- p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
- p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
- p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
- p = z*p1-(tt-w*(p2+y*p3)); |
- r += (tf + p); |
- break; |
- case 2: |
- p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
- p2 = 1.0f+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
- r += -0.5f*y + p1/p2; |
- } |
- } else if (ix < 0x41000000) { /* x < 8.0 */ |
- i = (int)x; |
- y = x - (float)i; |
- p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
- q = 1.0f+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
- r = 0.5f*y+p/q; |
- z = 1.0f; /* lgamma(1+s) = log(s) + lgamma(s) */ |
- switch (i) { |
- case 7: z *= y + 6.0f; /* FALLTHRU */ |
- case 6: z *= y + 5.0f; /* FALLTHRU */ |
- case 5: z *= y + 4.0f; /* FALLTHRU */ |
- case 4: z *= y + 3.0f; /* FALLTHRU */ |
- case 3: z *= y + 2.0f; /* FALLTHRU */ |
- r += logf(z); |
- break; |
- } |
- } else if (ix < 0x5c800000) { /* 8.0 <= x < 2**58 */ |
- t = logf(x); |
- z = 1.0f/x; |
- y = z*z; |
- w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
- r = (x-0.5f)*(t-1.0f)+w; |
- } else /* 2**58 <= x <= inf */ |
- r = x*(logf(x)-1.0f); |
- if (sign) |
- r = nadj - r; |
- return r; |
+ /* purge off 1 and 2 */ |
+ if (ix == 0x3f800000 || ix == 0x40000000) |
+ r = 0; |
+ /* for x < 2.0 */ |
+ else if (ix < 0x40000000) { |
+ if (ix <= 0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
+ r = -logf(x); |
+ if (ix >= 0x3f3b4a20) { |
+ y = 1.0f - x; |
+ i = 0; |
+ } else if (ix >= 0x3e6d3308) { |
+ y = x - (tc - 1.0f); |
+ i = 1; |
+ } else { |
+ y = x; |
+ i = 2; |
+ } |
+ } else { |
+ r = 0.0f; |
+ if (ix >= 0x3fdda618) { /* [1.7316,2] */ |
+ y = 2.0f - x; |
+ i = 0; |
+ } else if (ix >= 0x3F9da620) { /* [1.23,1.73] */ |
+ y = x - tc; |
+ i = 1; |
+ } else { |
+ y = x - 1.0f; |
+ i = 2; |
+ } |
+ } |
+ switch (i) { |
+ case 0: |
+ z = y * y; |
+ p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10)))); |
+ p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11))))); |
+ p = y * p1 + p2; |
+ r += p - 0.5f * y; |
+ break; |
+ case 1: |
+ z = y * y; |
+ w = z * y; |
+ p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */ |
+ p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13))); |
+ p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14))); |
+ p = z * p1 - (tt - w * (p2 + y * p3)); |
+ r += (tf + p); |
+ break; |
+ case 2: |
+ p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5))))); |
+ p2 = 1.0f + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5)))); |
+ r += -0.5f * y + p1 / p2; |
+ } |
+ } else if (ix < 0x41000000) { /* x < 8.0 */ |
+ i = (int)x; |
+ y = x - (float)i; |
+ p = y * |
+ (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); |
+ q = 1.0f + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6))))); |
+ r = 0.5f * y + p / q; |
+ z = 1.0f; /* lgamma(1+s) = log(s) + lgamma(s) */ |
+ switch (i) { |
+ case 7: |
+ z *= y + 6.0f; /* FALLTHRU */ |
+ case 6: |
+ z *= y + 5.0f; /* FALLTHRU */ |
+ case 5: |
+ z *= y + 4.0f; /* FALLTHRU */ |
+ case 4: |
+ z *= y + 3.0f; /* FALLTHRU */ |
+ case 3: |
+ z *= y + 2.0f; /* FALLTHRU */ |
+ r += logf(z); |
+ break; |
+ } |
+ } else if (ix < 0x5c800000) { /* 8.0 <= x < 2**58 */ |
+ t = logf(x); |
+ z = 1.0f / x; |
+ y = z * z; |
+ w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6))))); |
+ r = (x - 0.5f) * (t - 1.0f) + w; |
+ } else /* 2**58 <= x <= inf */ |
+ r = x * (logf(x) - 1.0f); |
+ if (sign) |
+ r = nadj - r; |
+ return r; |
} |
weak_alias(__lgammaf_r, lgammaf_r); |