| Index: fusl/src/math/lgammal.c
|
| diff --git a/fusl/src/math/lgammal.c b/fusl/src/math/lgammal.c
|
| index 2b354a7c13245a4dba257a298581a0fa24bac4cf..dcac5e78d0fb53c00ee416140138de5b364a844e 100644
|
| --- a/fusl/src/math/lgammal.c
|
| +++ b/fusl/src/math/lgammal.c
|
| @@ -90,271 +90,270 @@
|
| #include "libc.h"
|
|
|
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| -double __lgamma_r(double x, int *sg);
|
| +double __lgamma_r(double x, int* sg);
|
|
|
| -long double __lgammal_r(long double x, int *sg)
|
| -{
|
| - return __lgamma_r(x, sg);
|
| +long double __lgammal_r(long double x, int* sg) {
|
| + return __lgamma_r(x, sg);
|
| }
|
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
| static const long double
|
| -pi = 3.14159265358979323846264L,
|
| + pi = 3.14159265358979323846264L,
|
|
|
| -/* lgam(1+x) = 0.5 x + x a(x)/b(x)
|
| - -0.268402099609375 <= x <= 0
|
| - peak relative error 6.6e-22 */
|
| -a0 = -6.343246574721079391729402781192128239938E2L,
|
| -a1 = 1.856560238672465796768677717168371401378E3L,
|
| -a2 = 2.404733102163746263689288466865843408429E3L,
|
| -a3 = 8.804188795790383497379532868917517596322E2L,
|
| -a4 = 1.135361354097447729740103745999661157426E2L,
|
| -a5 = 3.766956539107615557608581581190400021285E0L,
|
| + /* lgam(1+x) = 0.5 x + x a(x)/b(x)
|
| + -0.268402099609375 <= x <= 0
|
| + peak relative error 6.6e-22 */
|
| + a0 = -6.343246574721079391729402781192128239938E2L,
|
| + a1 = 1.856560238672465796768677717168371401378E3L,
|
| + a2 = 2.404733102163746263689288466865843408429E3L,
|
| + a3 = 8.804188795790383497379532868917517596322E2L,
|
| + a4 = 1.135361354097447729740103745999661157426E2L,
|
| + a5 = 3.766956539107615557608581581190400021285E0L,
|
|
|
| -b0 = 8.214973713960928795704317259806842490498E3L,
|
| -b1 = 1.026343508841367384879065363925870888012E4L,
|
| -b2 = 4.553337477045763320522762343132210919277E3L,
|
| -b3 = 8.506975785032585797446253359230031874803E2L,
|
| -b4 = 6.042447899703295436820744186992189445813E1L,
|
| -/* b5 = 1.000000000000000000000000000000000000000E0 */
|
| + b0 = 8.214973713960928795704317259806842490498E3L,
|
| + b1 = 1.026343508841367384879065363925870888012E4L,
|
| + b2 = 4.553337477045763320522762343132210919277E3L,
|
| + b3 = 8.506975785032585797446253359230031874803E2L,
|
| + b4 = 6.042447899703295436820744186992189445813E1L,
|
| + /* b5 = 1.000000000000000000000000000000000000000E0 */
|
|
|
| + tc = 1.4616321449683623412626595423257213284682E0L,
|
| + tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
|
| + /* tt = (tail of tf), i.e. tf + tt has extended precision. */
|
| + tt = 3.3649914684731379602768989080467587736363E-18L,
|
| + /* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
|
| + -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1
|
| + */
|
|
|
| -tc = 1.4616321449683623412626595423257213284682E0L,
|
| -tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
|
| -/* tt = (tail of tf), i.e. tf + tt has extended precision. */
|
| -tt = 3.3649914684731379602768989080467587736363E-18L,
|
| -/* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
|
| --1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
|
| + /* lgam (x + tc) = tf + tt + x g(x)/h(x)
|
| + -0.230003726999612341262659542325721328468 <= x
|
| + <= 0.2699962730003876587373404576742786715318
|
| + peak relative error 2.1e-21 */
|
| + g0 = 3.645529916721223331888305293534095553827E-18L,
|
| + g1 = 5.126654642791082497002594216163574795690E3L,
|
| + g2 = 8.828603575854624811911631336122070070327E3L,
|
| + g3 = 5.464186426932117031234820886525701595203E3L,
|
| + g4 = 1.455427403530884193180776558102868592293E3L,
|
| + g5 = 1.541735456969245924860307497029155838446E2L,
|
| + g6 = 4.335498275274822298341872707453445815118E0L,
|
|
|
| -/* lgam (x + tc) = tf + tt + x g(x)/h(x)
|
| - -0.230003726999612341262659542325721328468 <= x
|
| - <= 0.2699962730003876587373404576742786715318
|
| - peak relative error 2.1e-21 */
|
| -g0 = 3.645529916721223331888305293534095553827E-18L,
|
| -g1 = 5.126654642791082497002594216163574795690E3L,
|
| -g2 = 8.828603575854624811911631336122070070327E3L,
|
| -g3 = 5.464186426932117031234820886525701595203E3L,
|
| -g4 = 1.455427403530884193180776558102868592293E3L,
|
| -g5 = 1.541735456969245924860307497029155838446E2L,
|
| -g6 = 4.335498275274822298341872707453445815118E0L,
|
| + h0 = 1.059584930106085509696730443974495979641E4L,
|
| + h1 = 2.147921653490043010629481226937850618860E4L,
|
| + h2 = 1.643014770044524804175197151958100656728E4L,
|
| + h3 = 5.869021995186925517228323497501767586078E3L,
|
| + h4 = 9.764244777714344488787381271643502742293E2L,
|
| + h5 = 6.442485441570592541741092969581997002349E1L,
|
| + /* h6 = 1.000000000000000000000000000000000000000E0 */
|
|
|
| -h0 = 1.059584930106085509696730443974495979641E4L,
|
| -h1 = 2.147921653490043010629481226937850618860E4L,
|
| -h2 = 1.643014770044524804175197151958100656728E4L,
|
| -h3 = 5.869021995186925517228323497501767586078E3L,
|
| -h4 = 9.764244777714344488787381271643502742293E2L,
|
| -h5 = 6.442485441570592541741092969581997002349E1L,
|
| -/* h6 = 1.000000000000000000000000000000000000000E0 */
|
| + /* lgam (x+1) = -0.5 x + x u(x)/v(x)
|
| + -0.100006103515625 <= x <= 0.231639862060546875
|
| + peak relative error 1.3e-21 */
|
| + u0 = -8.886217500092090678492242071879342025627E1L,
|
| + u1 = 6.840109978129177639438792958320783599310E2L,
|
| + u2 = 2.042626104514127267855588786511809932433E3L,
|
| + u3 = 1.911723903442667422201651063009856064275E3L,
|
| + u4 = 7.447065275665887457628865263491667767695E2L,
|
| + u5 = 1.132256494121790736268471016493103952637E2L,
|
| + u6 = 4.484398885516614191003094714505960972894E0L,
|
|
|
| + v0 = 1.150830924194461522996462401210374632929E3L,
|
| + v1 = 3.399692260848747447377972081399737098610E3L,
|
| + v2 = 3.786631705644460255229513563657226008015E3L,
|
| + v3 = 1.966450123004478374557778781564114347876E3L,
|
| + v4 = 4.741359068914069299837355438370682773122E2L,
|
| + v5 = 4.508989649747184050907206782117647852364E1L,
|
| + /* v6 = 1.000000000000000000000000000000000000000E0 */
|
|
|
| -/* lgam (x+1) = -0.5 x + x u(x)/v(x)
|
| - -0.100006103515625 <= x <= 0.231639862060546875
|
| - peak relative error 1.3e-21 */
|
| -u0 = -8.886217500092090678492242071879342025627E1L,
|
| -u1 = 6.840109978129177639438792958320783599310E2L,
|
| -u2 = 2.042626104514127267855588786511809932433E3L,
|
| -u3 = 1.911723903442667422201651063009856064275E3L,
|
| -u4 = 7.447065275665887457628865263491667767695E2L,
|
| -u5 = 1.132256494121790736268471016493103952637E2L,
|
| -u6 = 4.484398885516614191003094714505960972894E0L,
|
| + /* lgam (x+2) = .5 x + x s(x)/r(x)
|
| + 0 <= x <= 1
|
| + peak relative error 7.2e-22 */
|
| + s0 = 1.454726263410661942989109455292824853344E6L,
|
| + s1 = -3.901428390086348447890408306153378922752E6L,
|
| + s2 = -6.573568698209374121847873064292963089438E6L,
|
| + s3 = -3.319055881485044417245964508099095984643E6L,
|
| + s4 = -7.094891568758439227560184618114707107977E5L,
|
| + s5 = -6.263426646464505837422314539808112478303E4L,
|
| + s6 = -1.684926520999477529949915657519454051529E3L,
|
|
|
| -v0 = 1.150830924194461522996462401210374632929E3L,
|
| -v1 = 3.399692260848747447377972081399737098610E3L,
|
| -v2 = 3.786631705644460255229513563657226008015E3L,
|
| -v3 = 1.966450123004478374557778781564114347876E3L,
|
| -v4 = 4.741359068914069299837355438370682773122E2L,
|
| -v5 = 4.508989649747184050907206782117647852364E1L,
|
| -/* v6 = 1.000000000000000000000000000000000000000E0 */
|
| + r0 = -1.883978160734303518163008696712983134698E7L,
|
| + r1 = -2.815206082812062064902202753264922306830E7L,
|
| + r2 = -1.600245495251915899081846093343626358398E7L,
|
| + r3 = -4.310526301881305003489257052083370058799E6L,
|
| + r4 = -5.563807682263923279438235987186184968542E5L,
|
| + r5 = -3.027734654434169996032905158145259713083E4L,
|
| + r6 = -4.501995652861105629217250715790764371267E2L,
|
| + /* r6 = 1.000000000000000000000000000000000000000E0 */
|
|
|
| -
|
| -/* lgam (x+2) = .5 x + x s(x)/r(x)
|
| - 0 <= x <= 1
|
| - peak relative error 7.2e-22 */
|
| -s0 = 1.454726263410661942989109455292824853344E6L,
|
| -s1 = -3.901428390086348447890408306153378922752E6L,
|
| -s2 = -6.573568698209374121847873064292963089438E6L,
|
| -s3 = -3.319055881485044417245964508099095984643E6L,
|
| -s4 = -7.094891568758439227560184618114707107977E5L,
|
| -s5 = -6.263426646464505837422314539808112478303E4L,
|
| -s6 = -1.684926520999477529949915657519454051529E3L,
|
| -
|
| -r0 = -1.883978160734303518163008696712983134698E7L,
|
| -r1 = -2.815206082812062064902202753264922306830E7L,
|
| -r2 = -1.600245495251915899081846093343626358398E7L,
|
| -r3 = -4.310526301881305003489257052083370058799E6L,
|
| -r4 = -5.563807682263923279438235987186184968542E5L,
|
| -r5 = -3.027734654434169996032905158145259713083E4L,
|
| -r6 = -4.501995652861105629217250715790764371267E2L,
|
| -/* r6 = 1.000000000000000000000000000000000000000E0 */
|
| -
|
| -
|
| -/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
|
| - x >= 8
|
| - Peak relative error 1.51e-21
|
| -w0 = LS2PI - 0.5 */
|
| -w0 = 4.189385332046727417803e-1L,
|
| -w1 = 8.333333333333331447505E-2L,
|
| -w2 = -2.777777777750349603440E-3L,
|
| -w3 = 7.936507795855070755671E-4L,
|
| -w4 = -5.952345851765688514613E-4L,
|
| -w5 = 8.412723297322498080632E-4L,
|
| -w6 = -1.880801938119376907179E-3L,
|
| -w7 = 4.885026142432270781165E-3L;
|
| + /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
|
| + x >= 8
|
| + Peak relative error 1.51e-21
|
| + w0 = LS2PI - 0.5 */
|
| + w0 = 4.189385332046727417803e-1L, w1 = 8.333333333333331447505E-2L,
|
| + w2 = -2.777777777750349603440E-3L, w3 = 7.936507795855070755671E-4L,
|
| + w4 = -5.952345851765688514613E-4L, w5 = 8.412723297322498080632E-4L,
|
| + w6 = -1.880801938119376907179E-3L, w7 = 4.885026142432270781165E-3L;
|
|
|
| /* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */
|
| -static long double sin_pi(long double x)
|
| -{
|
| - int n;
|
| +static long double sin_pi(long double x) {
|
| + int n;
|
|
|
| - /* spurious inexact if odd int */
|
| - x *= 0.5;
|
| - x = 2.0*(x - floorl(x)); /* x mod 2.0 */
|
| + /* spurious inexact if odd int */
|
| + x *= 0.5;
|
| + x = 2.0 * (x - floorl(x)); /* x mod 2.0 */
|
|
|
| - n = (int)(x*4.0);
|
| - n = (n+1)/2;
|
| - x -= n*0.5f;
|
| - x *= pi;
|
| + n = (int)(x * 4.0);
|
| + n = (n + 1) / 2;
|
| + x -= n * 0.5f;
|
| + x *= pi;
|
|
|
| - switch (n) {
|
| - default: /* case 4: */
|
| - case 0: return __sinl(x, 0.0, 0);
|
| - case 1: return __cosl(x, 0.0);
|
| - case 2: return __sinl(-x, 0.0, 0);
|
| - case 3: return -__cosl(x, 0.0);
|
| - }
|
| + switch (n) {
|
| + default: /* case 4: */
|
| + case 0:
|
| + return __sinl(x, 0.0, 0);
|
| + case 1:
|
| + return __cosl(x, 0.0);
|
| + case 2:
|
| + return __sinl(-x, 0.0, 0);
|
| + case 3:
|
| + return -__cosl(x, 0.0);
|
| + }
|
| }
|
|
|
| -long double __lgammal_r(long double x, int *sg) {
|
| - long double t, y, z, nadj, p, p1, p2, q, r, w;
|
| - union ldshape u = {x};
|
| - uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
|
| - int sign = u.i.se >> 15;
|
| - int i;
|
| +long double __lgammal_r(long double x, int* sg) {
|
| + long double t, y, z, nadj, p, p1, p2, q, r, w;
|
| + union ldshape u = {x};
|
| + uint32_t ix = (u.i.se & 0x7fffU) << 16 | u.i.m >> 48;
|
| + int sign = u.i.se >> 15;
|
| + int i;
|
|
|
| - *sg = 1;
|
| + *sg = 1;
|
|
|
| - /* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
| - if (ix >= 0x7fff0000)
|
| - return x * x;
|
| - if (ix < 0x3fc08000) { /* |x|<2**-63, return -log(|x|) */
|
| - if (sign) {
|
| - *sg = -1;
|
| - x = -x;
|
| - }
|
| - return -logl(x);
|
| - }
|
| - if (sign) {
|
| - x = -x;
|
| - t = sin_pi(x);
|
| - if (t == 0.0)
|
| - return 1.0 / (x-x); /* -integer */
|
| - if (t > 0.0)
|
| - *sg = -1;
|
| - else
|
| - t = -t;
|
| - nadj = logl(pi / (t * x));
|
| - }
|
| + /* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
| + if (ix >= 0x7fff0000)
|
| + return x * x;
|
| + if (ix < 0x3fc08000) { /* |x|<2**-63, return -log(|x|) */
|
| + if (sign) {
|
| + *sg = -1;
|
| + x = -x;
|
| + }
|
| + return -logl(x);
|
| + }
|
| + if (sign) {
|
| + x = -x;
|
| + t = sin_pi(x);
|
| + if (t == 0.0)
|
| + return 1.0 / (x - x); /* -integer */
|
| + if (t > 0.0)
|
| + *sg = -1;
|
| + else
|
| + t = -t;
|
| + nadj = logl(pi / (t * x));
|
| + }
|
|
|
| - /* purge off 1 and 2 (so the sign is ok with downward rounding) */
|
| - if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
|
| - r = 0;
|
| - } else if (ix < 0x40008000) { /* x < 2.0 */
|
| - if (ix <= 0x3ffee666) { /* 8.99993896484375e-1 */
|
| - /* lgamma(x) = lgamma(x+1) - log(x) */
|
| - r = -logl(x);
|
| - if (ix >= 0x3ffebb4a) { /* 7.31597900390625e-1 */
|
| - y = x - 1.0;
|
| - i = 0;
|
| - } else if (ix >= 0x3ffced33) { /* 2.31639862060546875e-1 */
|
| - y = x - (tc - 1.0);
|
| - i = 1;
|
| - } else { /* x < 0.23 */
|
| - y = x;
|
| - i = 2;
|
| - }
|
| - } else {
|
| - r = 0.0;
|
| - if (ix >= 0x3fffdda6) { /* 1.73162841796875 */
|
| - /* [1.7316,2] */
|
| - y = x - 2.0;
|
| - i = 0;
|
| - } else if (ix >= 0x3fff9da6) { /* 1.23162841796875 */
|
| - /* [1.23,1.73] */
|
| - y = x - tc;
|
| - i = 1;
|
| - } else {
|
| - /* [0.9, 1.23] */
|
| - y = x - 1.0;
|
| - i = 2;
|
| - }
|
| - }
|
| - switch (i) {
|
| - case 0:
|
| - p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
|
| - p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
|
| - r += 0.5 * y + y * p1/p2;
|
| - break;
|
| - case 1:
|
| - p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
|
| - p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
|
| - p = tt + y * p1/p2;
|
| - r += (tf + p);
|
| - break;
|
| - case 2:
|
| - p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
|
| - p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
|
| - r += (-0.5 * y + p1 / p2);
|
| - }
|
| - } else if (ix < 0x40028000) { /* 8.0 */
|
| - /* x < 8.0 */
|
| - i = (int)x;
|
| - y = x - (double)i;
|
| - p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
|
| - q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
|
| - r = 0.5 * y + p / q;
|
| - z = 1.0;
|
| - /* lgamma(1+s) = log(s) + lgamma(s) */
|
| - switch (i) {
|
| - case 7:
|
| - z *= (y + 6.0); /* FALLTHRU */
|
| - case 6:
|
| - z *= (y + 5.0); /* FALLTHRU */
|
| - case 5:
|
| - z *= (y + 4.0); /* FALLTHRU */
|
| - case 4:
|
| - z *= (y + 3.0); /* FALLTHRU */
|
| - case 3:
|
| - z *= (y + 2.0); /* FALLTHRU */
|
| - r += logl(z);
|
| - break;
|
| - }
|
| - } else if (ix < 0x40418000) { /* 2^66 */
|
| - /* 8.0 <= x < 2**66 */
|
| - t = logl(x);
|
| - z = 1.0 / x;
|
| - y = z * z;
|
| - w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
|
| - r = (x - 0.5) * (t - 1.0) + w;
|
| - } else /* 2**66 <= x <= inf */
|
| - r = x * (logl(x) - 1.0);
|
| - if (sign)
|
| - r = nadj - r;
|
| - return r;
|
| + /* purge off 1 and 2 (so the sign is ok with downward rounding) */
|
| + if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
|
| + r = 0;
|
| + } else if (ix < 0x40008000) { /* x < 2.0 */
|
| + if (ix <= 0x3ffee666) { /* 8.99993896484375e-1 */
|
| + /* lgamma(x) = lgamma(x+1) - log(x) */
|
| + r = -logl(x);
|
| + if (ix >= 0x3ffebb4a) { /* 7.31597900390625e-1 */
|
| + y = x - 1.0;
|
| + i = 0;
|
| + } else if (ix >= 0x3ffced33) { /* 2.31639862060546875e-1 */
|
| + y = x - (tc - 1.0);
|
| + i = 1;
|
| + } else { /* x < 0.23 */
|
| + y = x;
|
| + i = 2;
|
| + }
|
| + } else {
|
| + r = 0.0;
|
| + if (ix >= 0x3fffdda6) { /* 1.73162841796875 */
|
| + /* [1.7316,2] */
|
| + y = x - 2.0;
|
| + i = 0;
|
| + } else if (ix >= 0x3fff9da6) { /* 1.23162841796875 */
|
| + /* [1.23,1.73] */
|
| + y = x - tc;
|
| + i = 1;
|
| + } else {
|
| + /* [0.9, 1.23] */
|
| + y = x - 1.0;
|
| + i = 2;
|
| + }
|
| + }
|
| + switch (i) {
|
| + case 0:
|
| + p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
|
| + p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
|
| + r += 0.5 * y + y * p1 / p2;
|
| + break;
|
| + case 1:
|
| + p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
|
| + p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
|
| + p = tt + y * p1 / p2;
|
| + r += (tf + p);
|
| + break;
|
| + case 2:
|
| + p1 =
|
| + y * (u0 +
|
| + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
|
| + p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
|
| + r += (-0.5 * y + p1 / p2);
|
| + }
|
| + } else if (ix < 0x40028000) { /* 8.0 */
|
| + /* x < 8.0 */
|
| + i = (int)x;
|
| + y = x - (double)i;
|
| + p = y *
|
| + (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
|
| + q = r0 +
|
| + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
|
| + r = 0.5 * y + p / q;
|
| + z = 1.0;
|
| + /* lgamma(1+s) = log(s) + lgamma(s) */
|
| + switch (i) {
|
| + case 7:
|
| + z *= (y + 6.0); /* FALLTHRU */
|
| + case 6:
|
| + z *= (y + 5.0); /* FALLTHRU */
|
| + case 5:
|
| + z *= (y + 4.0); /* FALLTHRU */
|
| + case 4:
|
| + z *= (y + 3.0); /* FALLTHRU */
|
| + case 3:
|
| + z *= (y + 2.0); /* FALLTHRU */
|
| + r += logl(z);
|
| + break;
|
| + }
|
| + } else if (ix < 0x40418000) { /* 2^66 */
|
| + /* 8.0 <= x < 2**66 */
|
| + t = logl(x);
|
| + z = 1.0 / x;
|
| + y = z * z;
|
| + w = w0 +
|
| + z * (w1 +
|
| + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
|
| + r = (x - 0.5) * (t - 1.0) + w;
|
| + } else /* 2**66 <= x <= inf */
|
| + r = x * (logl(x) - 1.0);
|
| + if (sign)
|
| + r = nadj - r;
|
| + return r;
|
| }
|
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| // TODO: broken implementation to make things compile
|
| -double __lgamma_r(double x, int *sg);
|
| +double __lgamma_r(double x, int* sg);
|
|
|
| -long double __lgammal_r(long double x, int *sg)
|
| -{
|
| - return __lgamma_r(x, sg);
|
| +long double __lgammal_r(long double x, int* sg) {
|
| + return __lgamma_r(x, sg);
|
| }
|
| #endif
|
|
|
| extern int __signgam;
|
|
|
| -long double lgammal(long double x)
|
| -{
|
| - return __lgammal_r(x, &__signgam);
|
| +long double lgammal(long double x) {
|
| + return __lgammal_r(x, &__signgam);
|
| }
|
|
|
| weak_alias(__lgammal_r, lgammal_r);
|
|
|