Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(362)

Side by Side Diff: fusl/src/math/lgammal.c

Issue 1714623002: [fusl] clang-format fusl (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: headers too Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_lgammal.c */ 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_lgammal.c */
2 /* 2 /*
3 * ==================================================== 3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * 5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business. 6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this 7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice 8 * software is freely granted, provided that this notice
9 * is preserved. 9 * is preserved.
10 * ==================================================== 10 * ====================================================
(...skipping 72 matching lines...) Expand 10 before | Expand all | Expand 10 after
83 * lgamma(0) = lgamma(inf) = inf 83 * lgamma(0) = lgamma(inf) = inf
84 * lgamma(-integer) = +-inf 84 * lgamma(-integer) = +-inf
85 * 85 *
86 */ 86 */
87 87
88 #define _GNU_SOURCE 88 #define _GNU_SOURCE
89 #include "libm.h" 89 #include "libm.h"
90 #include "libc.h" 90 #include "libc.h"
91 91
92 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 92 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
93 double __lgamma_r(double x, int *sg); 93 double __lgamma_r(double x, int* sg);
94 94
95 long double __lgammal_r(long double x, int *sg) 95 long double __lgammal_r(long double x, int* sg) {
96 { 96 return __lgamma_r(x, sg);
97 » return __lgamma_r(x, sg);
98 } 97 }
99 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 98 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
100 static const long double 99 static const long double
101 pi = 3.14159265358979323846264L, 100 pi = 3.14159265358979323846264L,
102 101
103 /* lgam(1+x) = 0.5 x + x a(x)/b(x) 102 /* lgam(1+x) = 0.5 x + x a(x)/b(x)
104 -0.268402099609375 <= x <= 0 103 -0.268402099609375 <= x <= 0
105 peak relative error 6.6e-22 */ 104 peak relative error 6.6e-22 */
106 a0 = -6.343246574721079391729402781192128239938E2L, 105 a0 = -6.343246574721079391729402781192128239938E2L,
107 a1 = 1.856560238672465796768677717168371401378E3L, 106 a1 = 1.856560238672465796768677717168371401378E3L,
108 a2 = 2.404733102163746263689288466865843408429E3L, 107 a2 = 2.404733102163746263689288466865843408429E3L,
109 a3 = 8.804188795790383497379532868917517596322E2L, 108 a3 = 8.804188795790383497379532868917517596322E2L,
110 a4 = 1.135361354097447729740103745999661157426E2L, 109 a4 = 1.135361354097447729740103745999661157426E2L,
111 a5 = 3.766956539107615557608581581190400021285E0L, 110 a5 = 3.766956539107615557608581581190400021285E0L,
112 111
113 b0 = 8.214973713960928795704317259806842490498E3L, 112 b0 = 8.214973713960928795704317259806842490498E3L,
114 b1 = 1.026343508841367384879065363925870888012E4L, 113 b1 = 1.026343508841367384879065363925870888012E4L,
115 b2 = 4.553337477045763320522762343132210919277E3L, 114 b2 = 4.553337477045763320522762343132210919277E3L,
116 b3 = 8.506975785032585797446253359230031874803E2L, 115 b3 = 8.506975785032585797446253359230031874803E2L,
117 b4 = 6.042447899703295436820744186992189445813E1L, 116 b4 = 6.042447899703295436820744186992189445813E1L,
118 /* b5 = 1.000000000000000000000000000000000000000E0 */ 117 /* b5 = 1.000000000000000000000000000000000000000E0 */
119 118
120 119 tc = 1.4616321449683623412626595423257213284682E0L,
121 tc = 1.4616321449683623412626595423257213284682E0L, 120 tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
122 tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */ 121 /* tt = (tail of tf), i.e. tf + tt has extended precision. */
123 /* tt = (tail of tf), i.e. tf + tt has extended precision. */ 122 tt = 3.3649914684731379602768989080467587736363E-18L,
124 tt = 3.3649914684731379602768989080467587736363E-18L, 123 /* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
125 /* lgam ( 1.4616321449683623412626595423257213284682E0 ) = 124 -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1
126 -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */ 125 */
127 126
128 /* lgam (x + tc) = tf + tt + x g(x)/h(x) 127 /* lgam (x + tc) = tf + tt + x g(x)/h(x)
129 -0.230003726999612341262659542325721328468 <= x 128 -0.230003726999612341262659542325721328468 <= x
130 <= 0.2699962730003876587373404576742786715318 129 <= 0.2699962730003876587373404576742786715318
131 peak relative error 2.1e-21 */ 130 peak relative error 2.1e-21 */
132 g0 = 3.645529916721223331888305293534095553827E-18L, 131 g0 = 3.645529916721223331888305293534095553827E-18L,
133 g1 = 5.126654642791082497002594216163574795690E3L, 132 g1 = 5.126654642791082497002594216163574795690E3L,
134 g2 = 8.828603575854624811911631336122070070327E3L, 133 g2 = 8.828603575854624811911631336122070070327E3L,
135 g3 = 5.464186426932117031234820886525701595203E3L, 134 g3 = 5.464186426932117031234820886525701595203E3L,
136 g4 = 1.455427403530884193180776558102868592293E3L, 135 g4 = 1.455427403530884193180776558102868592293E3L,
137 g5 = 1.541735456969245924860307497029155838446E2L, 136 g5 = 1.541735456969245924860307497029155838446E2L,
138 g6 = 4.335498275274822298341872707453445815118E0L, 137 g6 = 4.335498275274822298341872707453445815118E0L,
139 138
140 h0 = 1.059584930106085509696730443974495979641E4L, 139 h0 = 1.059584930106085509696730443974495979641E4L,
141 h1 = 2.147921653490043010629481226937850618860E4L, 140 h1 = 2.147921653490043010629481226937850618860E4L,
142 h2 = 1.643014770044524804175197151958100656728E4L, 141 h2 = 1.643014770044524804175197151958100656728E4L,
143 h3 = 5.869021995186925517228323497501767586078E3L, 142 h3 = 5.869021995186925517228323497501767586078E3L,
144 h4 = 9.764244777714344488787381271643502742293E2L, 143 h4 = 9.764244777714344488787381271643502742293E2L,
145 h5 = 6.442485441570592541741092969581997002349E1L, 144 h5 = 6.442485441570592541741092969581997002349E1L,
146 /* h6 = 1.000000000000000000000000000000000000000E0 */ 145 /* h6 = 1.000000000000000000000000000000000000000E0 */
147 146
148 147 /* lgam (x+1) = -0.5 x + x u(x)/v(x)
149 /* lgam (x+1) = -0.5 x + x u(x)/v(x) 148 -0.100006103515625 <= x <= 0.231639862060546875
150 -0.100006103515625 <= x <= 0.231639862060546875 149 peak relative error 1.3e-21 */
151 peak relative error 1.3e-21 */ 150 u0 = -8.886217500092090678492242071879342025627E1L,
152 u0 = -8.886217500092090678492242071879342025627E1L, 151 u1 = 6.840109978129177639438792958320783599310E2L,
153 u1 = 6.840109978129177639438792958320783599310E2L, 152 u2 = 2.042626104514127267855588786511809932433E3L,
154 u2 = 2.042626104514127267855588786511809932433E3L, 153 u3 = 1.911723903442667422201651063009856064275E3L,
155 u3 = 1.911723903442667422201651063009856064275E3L, 154 u4 = 7.447065275665887457628865263491667767695E2L,
156 u4 = 7.447065275665887457628865263491667767695E2L, 155 u5 = 1.132256494121790736268471016493103952637E2L,
157 u5 = 1.132256494121790736268471016493103952637E2L, 156 u6 = 4.484398885516614191003094714505960972894E0L,
158 u6 = 4.484398885516614191003094714505960972894E0L, 157
159 158 v0 = 1.150830924194461522996462401210374632929E3L,
160 v0 = 1.150830924194461522996462401210374632929E3L, 159 v1 = 3.399692260848747447377972081399737098610E3L,
161 v1 = 3.399692260848747447377972081399737098610E3L, 160 v2 = 3.786631705644460255229513563657226008015E3L,
162 v2 = 3.786631705644460255229513563657226008015E3L, 161 v3 = 1.966450123004478374557778781564114347876E3L,
163 v3 = 1.966450123004478374557778781564114347876E3L, 162 v4 = 4.741359068914069299837355438370682773122E2L,
164 v4 = 4.741359068914069299837355438370682773122E2L, 163 v5 = 4.508989649747184050907206782117647852364E1L,
165 v5 = 4.508989649747184050907206782117647852364E1L, 164 /* v6 = 1.000000000000000000000000000000000000000E0 */
166 /* v6 = 1.000000000000000000000000000000000000000E0 */ 165
167 166 /* lgam (x+2) = .5 x + x s(x)/r(x)
168 167 0 <= x <= 1
169 /* lgam (x+2) = .5 x + x s(x)/r(x) 168 peak relative error 7.2e-22 */
170 0 <= x <= 1 169 s0 = 1.454726263410661942989109455292824853344E6L,
171 peak relative error 7.2e-22 */ 170 s1 = -3.901428390086348447890408306153378922752E6L,
172 s0 = 1.454726263410661942989109455292824853344E6L, 171 s2 = -6.573568698209374121847873064292963089438E6L,
173 s1 = -3.901428390086348447890408306153378922752E6L, 172 s3 = -3.319055881485044417245964508099095984643E6L,
174 s2 = -6.573568698209374121847873064292963089438E6L, 173 s4 = -7.094891568758439227560184618114707107977E5L,
175 s3 = -3.319055881485044417245964508099095984643E6L, 174 s5 = -6.263426646464505837422314539808112478303E4L,
176 s4 = -7.094891568758439227560184618114707107977E5L, 175 s6 = -1.684926520999477529949915657519454051529E3L,
177 s5 = -6.263426646464505837422314539808112478303E4L, 176
178 s6 = -1.684926520999477529949915657519454051529E3L, 177 r0 = -1.883978160734303518163008696712983134698E7L,
179 178 r1 = -2.815206082812062064902202753264922306830E7L,
180 r0 = -1.883978160734303518163008696712983134698E7L, 179 r2 = -1.600245495251915899081846093343626358398E7L,
181 r1 = -2.815206082812062064902202753264922306830E7L, 180 r3 = -4.310526301881305003489257052083370058799E6L,
182 r2 = -1.600245495251915899081846093343626358398E7L, 181 r4 = -5.563807682263923279438235987186184968542E5L,
183 r3 = -4.310526301881305003489257052083370058799E6L, 182 r5 = -3.027734654434169996032905158145259713083E4L,
184 r4 = -5.563807682263923279438235987186184968542E5L, 183 r6 = -4.501995652861105629217250715790764371267E2L,
185 r5 = -3.027734654434169996032905158145259713083E4L, 184 /* r6 = 1.000000000000000000000000000000000000000E0 */
186 r6 = -4.501995652861105629217250715790764371267E2L, 185
187 /* r6 = 1.000000000000000000000000000000000000000E0 */ 186 /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
188 187 x >= 8
189 188 Peak relative error 1.51e-21
190 /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2) 189 w0 = LS2PI - 0.5 */
191 x >= 8 190 w0 = 4.189385332046727417803e-1L, w1 = 8.333333333333331447505E-2L,
192 Peak relative error 1.51e-21 191 w2 = -2.777777777750349603440E-3L, w3 = 7.936507795855070755671E-4L,
193 w0 = LS2PI - 0.5 */ 192 w4 = -5.952345851765688514613E-4L, w5 = 8.412723297322498080632E-4L,
194 w0 = 4.189385332046727417803e-1L, 193 w6 = -1.880801938119376907179E-3L, w7 = 4.885026142432270781165E-3L;
195 w1 = 8.333333333333331447505E-2L,
196 w2 = -2.777777777750349603440E-3L,
197 w3 = 7.936507795855070755671E-4L,
198 w4 = -5.952345851765688514613E-4L,
199 w5 = 8.412723297322498080632E-4L,
200 w6 = -1.880801938119376907179E-3L,
201 w7 = 4.885026142432270781165E-3L;
202 194
203 /* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */ 195 /* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */
204 static long double sin_pi(long double x) 196 static long double sin_pi(long double x) {
205 { 197 int n;
206 » int n; 198
207 199 /* spurious inexact if odd int */
208 » /* spurious inexact if odd int */ 200 x *= 0.5;
209 » x *= 0.5; 201 x = 2.0 * (x - floorl(x)); /* x mod 2.0 */
210 » x = 2.0*(x - floorl(x)); /* x mod 2.0 */ 202
211 203 n = (int)(x * 4.0);
212 » n = (int)(x*4.0); 204 n = (n + 1) / 2;
213 » n = (n+1)/2; 205 x -= n * 0.5f;
214 » x -= n*0.5f; 206 x *= pi;
215 » x *= pi; 207
216 208 switch (n) {
217 » switch (n) { 209 default: /* case 4: */
218 » default: /* case 4: */ 210 case 0:
219 » case 0: return __sinl(x, 0.0, 0); 211 return __sinl(x, 0.0, 0);
220 » case 1: return __cosl(x, 0.0); 212 case 1:
221 » case 2: return __sinl(-x, 0.0, 0); 213 return __cosl(x, 0.0);
222 » case 3: return -__cosl(x, 0.0); 214 case 2:
223 » } 215 return __sinl(-x, 0.0, 0);
224 } 216 case 3:
225 217 return -__cosl(x, 0.0);
226 long double __lgammal_r(long double x, int *sg) { 218 }
227 » long double t, y, z, nadj, p, p1, p2, q, r, w; 219 }
228 » union ldshape u = {x}; 220
229 » uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48; 221 long double __lgammal_r(long double x, int* sg) {
230 » int sign = u.i.se >> 15; 222 long double t, y, z, nadj, p, p1, p2, q, r, w;
231 » int i; 223 union ldshape u = {x};
232 224 uint32_t ix = (u.i.se & 0x7fffU) << 16 | u.i.m >> 48;
233 » *sg = 1; 225 int sign = u.i.se >> 15;
234 226 int i;
235 » /* purge off +-inf, NaN, +-0, tiny and negative arguments */ 227
236 » if (ix >= 0x7fff0000) 228 *sg = 1;
237 » » return x * x; 229
238 » if (ix < 0x3fc08000) { /* |x|<2**-63, return -log(|x|) */ 230 /* purge off +-inf, NaN, +-0, tiny and negative arguments */
239 » » if (sign) { 231 if (ix >= 0x7fff0000)
240 » » » *sg = -1; 232 return x * x;
241 » » » x = -x; 233 if (ix < 0x3fc08000) { /* |x|<2**-63, return -log(|x|) */
242 » » } 234 if (sign) {
243 » » return -logl(x); 235 *sg = -1;
244 » } 236 x = -x;
245 » if (sign) { 237 }
246 » » x = -x; 238 return -logl(x);
247 » » t = sin_pi(x); 239 }
248 » » if (t == 0.0) 240 if (sign) {
249 » » » return 1.0 / (x-x); /* -integer */ 241 x = -x;
250 » » if (t > 0.0) 242 t = sin_pi(x);
251 » » » *sg = -1; 243 if (t == 0.0)
252 » » else 244 return 1.0 / (x - x); /* -integer */
253 » » » t = -t; 245 if (t > 0.0)
254 » » nadj = logl(pi / (t * x)); 246 *sg = -1;
255 » } 247 else
256 248 t = -t;
257 » /* purge off 1 and 2 (so the sign is ok with downward rounding) */ 249 nadj = logl(pi / (t * x));
258 » if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) { 250 }
259 » » r = 0; 251
260 » } else if (ix < 0x40008000) { /* x < 2.0 */ 252 /* purge off 1 and 2 (so the sign is ok with downward rounding) */
261 » » if (ix <= 0x3ffee666) { /* 8.99993896484375e-1 */ 253 if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
262 » » » /* lgamma(x) = lgamma(x+1) - log(x) */ 254 r = 0;
263 » » » r = -logl(x); 255 } else if (ix < 0x40008000) { /* x < 2.0 */
264 » » » if (ix >= 0x3ffebb4a) { /* 7.31597900390625e-1 */ 256 if (ix <= 0x3ffee666) { /* 8.99993896484375e-1 */
265 » » » » y = x - 1.0; 257 /* lgamma(x) = lgamma(x+1) - log(x) */
266 » » » » i = 0; 258 r = -logl(x);
267 » » » } else if (ix >= 0x3ffced33) { /* 2.31639862060546875e- 1 */ 259 if (ix >= 0x3ffebb4a) { /* 7.31597900390625e-1 */
268 » » » » y = x - (tc - 1.0); 260 y = x - 1.0;
269 » » » » i = 1; 261 i = 0;
270 » » » } else { /* x < 0.23 */ 262 } else if (ix >= 0x3ffced33) { /* 2.31639862060546875e-1 */
271 » » » » y = x; 263 y = x - (tc - 1.0);
272 » » » » i = 2; 264 i = 1;
273 » » » } 265 } else { /* x < 0.23 */
274 » » } else { 266 y = x;
275 » » » r = 0.0; 267 i = 2;
276 » » » if (ix >= 0x3fffdda6) { /* 1.73162841796875 */ 268 }
277 » » » » /* [1.7316,2] */ 269 } else {
278 » » » » y = x - 2.0; 270 r = 0.0;
279 » » » » i = 0; 271 if (ix >= 0x3fffdda6) { /* 1.73162841796875 */
280 » » » } else if (ix >= 0x3fff9da6) { /* 1.23162841796875 */ 272 /* [1.7316,2] */
281 » » » » /* [1.23,1.73] */ 273 y = x - 2.0;
282 » » » » y = x - tc; 274 i = 0;
283 » » » » i = 1; 275 } else if (ix >= 0x3fff9da6) { /* 1.23162841796875 */
284 » » » } else { 276 /* [1.23,1.73] */
285 » » » » /* [0.9, 1.23] */ 277 y = x - tc;
286 » » » » y = x - 1.0; 278 i = 1;
287 » » » » i = 2; 279 } else {
288 » » » } 280 /* [0.9, 1.23] */
289 » » } 281 y = x - 1.0;
290 » » switch (i) { 282 i = 2;
291 » » case 0: 283 }
292 » » » p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5 )))); 284 }
293 » » » p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y)))); 285 switch (i) {
294 » » » r += 0.5 * y + y * p1/p2; 286 case 0:
295 » » » break; 287 p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
296 » » case 1: 288 p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
297 » » » p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g 5 + y * g6))))); 289 r += 0.5 * y + y * p1 / p2;
298 » » » p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h 5 + y))))); 290 break;
299 » » » p = tt + y * p1/p2; 291 case 1:
300 » » » r += (tf + p); 292 p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
301 » » » break; 293 p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
302 » » case 2: 294 p = tt + y * p1 / p2;
303 » » » p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6)))))); 295 r += (tf + p);
304 » » » p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v 5 + y))))); 296 break;
305 » » » r += (-0.5 * y + p1 / p2); 297 case 2:
306 » » } 298 p1 =
307 » } else if (ix < 0x40028000) { /* 8.0 */ 299 y * (u0 +
308 » » /* x < 8.0 */ 300 y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
309 » » i = (int)x; 301 p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
310 » » y = x - (double)i; 302 r += (-0.5 * y + p1 / p2);
311 » » p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); 303 }
312 » » q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * ( r6 + y)))))); 304 } else if (ix < 0x40028000) { /* 8.0 */
313 » » r = 0.5 * y + p / q; 305 /* x < 8.0 */
314 » » z = 1.0; 306 i = (int)x;
315 » » /* lgamma(1+s) = log(s) + lgamma(s) */ 307 y = x - (double)i;
316 » » switch (i) { 308 p = y *
317 » » case 7: 309 (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
318 » » » z *= (y + 6.0); /* FALLTHRU */ 310 q = r0 +
319 » » case 6: 311 y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
320 » » » z *= (y + 5.0); /* FALLTHRU */ 312 r = 0.5 * y + p / q;
321 » » case 5: 313 z = 1.0;
322 » » » z *= (y + 4.0); /* FALLTHRU */ 314 /* lgamma(1+s) = log(s) + lgamma(s) */
323 » » case 4: 315 switch (i) {
324 » » » z *= (y + 3.0); /* FALLTHRU */ 316 case 7:
325 » » case 3: 317 z *= (y + 6.0); /* FALLTHRU */
326 » » » z *= (y + 2.0); /* FALLTHRU */ 318 case 6:
327 » » » r += logl(z); 319 z *= (y + 5.0); /* FALLTHRU */
328 » » » break; 320 case 5:
329 » » } 321 z *= (y + 4.0); /* FALLTHRU */
330 » } else if (ix < 0x40418000) { /* 2^66 */ 322 case 4:
331 » » /* 8.0 <= x < 2**66 */ 323 z *= (y + 3.0); /* FALLTHRU */
332 » » t = logl(x); 324 case 3:
333 » » z = 1.0 / x; 325 z *= (y + 2.0); /* FALLTHRU */
334 » » y = z * z; 326 r += logl(z);
335 » » w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * ( w6 + y * w7)))))); 327 break;
336 » » r = (x - 0.5) * (t - 1.0) + w; 328 }
337 » } else /* 2**66 <= x <= inf */ 329 } else if (ix < 0x40418000) { /* 2^66 */
338 » » r = x * (logl(x) - 1.0); 330 /* 8.0 <= x < 2**66 */
339 » if (sign) 331 t = logl(x);
340 » » r = nadj - r; 332 z = 1.0 / x;
341 » return r; 333 y = z * z;
334 w = w0 +
335 z * (w1 +
336 y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
337 r = (x - 0.5) * (t - 1.0) + w;
338 } else /* 2**66 <= x <= inf */
339 r = x * (logl(x) - 1.0);
340 if (sign)
341 r = nadj - r;
342 return r;
342 } 343 }
343 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 344 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
344 // TODO: broken implementation to make things compile 345 // TODO: broken implementation to make things compile
345 double __lgamma_r(double x, int *sg); 346 double __lgamma_r(double x, int* sg);
346 347
347 long double __lgammal_r(long double x, int *sg) 348 long double __lgammal_r(long double x, int* sg) {
348 { 349 return __lgamma_r(x, sg);
349 » return __lgamma_r(x, sg);
350 } 350 }
351 #endif 351 #endif
352 352
353 extern int __signgam; 353 extern int __signgam;
354 354
355 long double lgammal(long double x) 355 long double lgammal(long double x) {
356 { 356 return __lgammal_r(x, &__signgam);
357 » return __lgammal_r(x, &__signgam);
358 } 357 }
359 358
360 weak_alias(__lgammal_r, lgammal_r); 359 weak_alias(__lgammal_r, lgammal_r);
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698