Index: fusl/src/math/jn.c |
diff --git a/fusl/src/math/jn.c b/fusl/src/math/jn.c |
index 4878a54fedaebf474d1c3ee5c3993ea28e22998a..a0dcbafcbf8fbc1da96d1a417e3a414e481b5fd8 100644 |
--- a/fusl/src/math/jn.c |
+++ b/fusl/src/math/jn.c |
@@ -36,245 +36,259 @@ |
#include "libm.h" |
-static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */ |
+static const double invsqrtpi = |
+ 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */ |
-double jn(int n, double x) |
-{ |
- uint32_t ix, lx; |
- int nm1, i, sign; |
- double a, b, temp; |
+double jn(int n, double x) { |
+ uint32_t ix, lx; |
+ int nm1, i, sign; |
+ double a, b, temp; |
- EXTRACT_WORDS(ix, lx, x); |
- sign = ix>>31; |
- ix &= 0x7fffffff; |
+ EXTRACT_WORDS(ix, lx, x); |
+ sign = ix >> 31; |
+ ix &= 0x7fffffff; |
- if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */ |
- return x; |
+ if ((ix | (lx | -lx) >> 31) > 0x7ff00000) /* nan */ |
+ return x; |
- /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
- * Thus, J(-n,x) = J(n,-x) |
- */ |
- /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */ |
- if (n == 0) |
- return j0(x); |
- if (n < 0) { |
- nm1 = -(n+1); |
- x = -x; |
- sign ^= 1; |
- } else |
- nm1 = n-1; |
- if (nm1 == 0) |
- return j1(x); |
+ /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
+ * Thus, J(-n,x) = J(n,-x) |
+ */ |
+ /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */ |
+ if (n == 0) |
+ return j0(x); |
+ if (n < 0) { |
+ nm1 = -(n + 1); |
+ x = -x; |
+ sign ^= 1; |
+ } else |
+ nm1 = n - 1; |
+ if (nm1 == 0) |
+ return j1(x); |
- sign &= n; /* even n: 0, odd n: signbit(x) */ |
- x = fabs(x); |
- if ((ix|lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */ |
- b = 0.0; |
- else if (nm1 < x) { |
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
- if (ix >= 0x52d00000) { /* x > 2**302 */ |
- /* (x >> n**2) |
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
- * Let s=sin(x), c=cos(x), |
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
- * |
- * n sin(xn)*sqt2 cos(xn)*sqt2 |
- * ---------------------------------- |
- * 0 s-c c+s |
- * 1 -s-c -c+s |
- * 2 -s+c -c-s |
- * 3 s+c c-s |
- */ |
- switch(nm1&3) { |
- case 0: temp = -cos(x)+sin(x); break; |
- case 1: temp = -cos(x)-sin(x); break; |
- case 2: temp = cos(x)-sin(x); break; |
- default: |
- case 3: temp = cos(x)+sin(x); break; |
- } |
- b = invsqrtpi*temp/sqrt(x); |
- } else { |
- a = j0(x); |
- b = j1(x); |
- for (i=0; i<nm1; ) { |
- i++; |
- temp = b; |
- b = b*(2.0*i/x) - a; /* avoid underflow */ |
- a = temp; |
- } |
- } |
- } else { |
- if (ix < 0x3e100000) { /* x < 2**-29 */ |
- /* x is tiny, return the first Taylor expansion of J(n,x) |
- * J(n,x) = 1/n!*(x/2)^n - ... |
- */ |
- if (nm1 > 32) /* underflow */ |
- b = 0.0; |
- else { |
- temp = x*0.5; |
- b = temp; |
- a = 1.0; |
- for (i=2; i<=nm1+1; i++) { |
- a *= (double)i; /* a = n! */ |
- b *= temp; /* b = (x/2)^n */ |
- } |
- b = b/a; |
- } |
- } else { |
- /* use backward recurrence */ |
- /* x x^2 x^2 |
- * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
- * 2n - 2(n+1) - 2(n+2) |
- * |
- * 1 1 1 |
- * (for large x) = ---- ------ ------ ..... |
- * 2n 2(n+1) 2(n+2) |
- * -- - ------ - ------ - |
- * x x x |
- * |
- * Let w = 2n/x and h=2/x, then the above quotient |
- * is equal to the continued fraction: |
- * 1 |
- * = ----------------------- |
- * 1 |
- * w - ----------------- |
- * 1 |
- * w+h - --------- |
- * w+2h - ... |
- * |
- * To determine how many terms needed, let |
- * Q(0) = w, Q(1) = w(w+h) - 1, |
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
- * When Q(k) > 1e4 good for single |
- * When Q(k) > 1e9 good for double |
- * When Q(k) > 1e17 good for quadruple |
- */ |
- /* determine k */ |
- double t,q0,q1,w,h,z,tmp,nf; |
- int k; |
+ sign &= n; /* even n: 0, odd n: signbit(x) */ |
+ x = fabs(x); |
+ if ((ix | lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */ |
+ b = 0.0; |
+ else if (nm1 < x) { |
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
+ if (ix >= 0x52d00000) { /* x > 2**302 */ |
+ /* (x >> n**2) |
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
+ * Let s=sin(x), c=cos(x), |
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
+ * |
+ * n sin(xn)*sqt2 cos(xn)*sqt2 |
+ * ---------------------------------- |
+ * 0 s-c c+s |
+ * 1 -s-c -c+s |
+ * 2 -s+c -c-s |
+ * 3 s+c c-s |
+ */ |
+ switch (nm1 & 3) { |
+ case 0: |
+ temp = -cos(x) + sin(x); |
+ break; |
+ case 1: |
+ temp = -cos(x) - sin(x); |
+ break; |
+ case 2: |
+ temp = cos(x) - sin(x); |
+ break; |
+ default: |
+ case 3: |
+ temp = cos(x) + sin(x); |
+ break; |
+ } |
+ b = invsqrtpi * temp / sqrt(x); |
+ } else { |
+ a = j0(x); |
+ b = j1(x); |
+ for (i = 0; i < nm1;) { |
+ i++; |
+ temp = b; |
+ b = b * (2.0 * i / x) - a; /* avoid underflow */ |
+ a = temp; |
+ } |
+ } |
+ } else { |
+ if (ix < 0x3e100000) { /* x < 2**-29 */ |
+ /* x is tiny, return the first Taylor expansion of J(n,x) |
+ * J(n,x) = 1/n!*(x/2)^n - ... |
+ */ |
+ if (nm1 > 32) /* underflow */ |
+ b = 0.0; |
+ else { |
+ temp = x * 0.5; |
+ b = temp; |
+ a = 1.0; |
+ for (i = 2; i <= nm1 + 1; i++) { |
+ a *= (double)i; /* a = n! */ |
+ b *= temp; /* b = (x/2)^n */ |
+ } |
+ b = b / a; |
+ } |
+ } else { |
+ /* use backward recurrence */ |
+ /* x x^2 x^2 |
+ * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
+ * 2n - 2(n+1) - 2(n+2) |
+ * |
+ * 1 1 1 |
+ * (for large x) = ---- ------ ------ ..... |
+ * 2n 2(n+1) 2(n+2) |
+ * -- - ------ - ------ - |
+ * x x x |
+ * |
+ * Let w = 2n/x and h=2/x, then the above quotient |
+ * is equal to the continued fraction: |
+ * 1 |
+ * = ----------------------- |
+ * 1 |
+ * w - ----------------- |
+ * 1 |
+ * w+h - --------- |
+ * w+2h - ... |
+ * |
+ * To determine how many terms needed, let |
+ * Q(0) = w, Q(1) = w(w+h) - 1, |
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
+ * When Q(k) > 1e4 good for single |
+ * When Q(k) > 1e9 good for double |
+ * When Q(k) > 1e17 good for quadruple |
+ */ |
+ /* determine k */ |
+ double t, q0, q1, w, h, z, tmp, nf; |
+ int k; |
- nf = nm1 + 1.0; |
- w = 2*nf/x; |
- h = 2/x; |
- z = w+h; |
- q0 = w; |
- q1 = w*z - 1.0; |
- k = 1; |
- while (q1 < 1.0e9) { |
- k += 1; |
- z += h; |
- tmp = z*q1 - q0; |
- q0 = q1; |
- q1 = tmp; |
- } |
- for (t=0.0, i=k; i>=0; i--) |
- t = 1/(2*(i+nf)/x - t); |
- a = t; |
- b = 1.0; |
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
- * Hence, if n*(log(2n/x)) > ... |
- * single 8.8722839355e+01 |
- * double 7.09782712893383973096e+02 |
- * long double 1.1356523406294143949491931077970765006170e+04 |
- * then recurrent value may overflow and the result is |
- * likely underflow to zero |
- */ |
- tmp = nf*log(fabs(w)); |
- if (tmp < 7.09782712893383973096e+02) { |
- for (i=nm1; i>0; i--) { |
- temp = b; |
- b = b*(2.0*i)/x - a; |
- a = temp; |
- } |
- } else { |
- for (i=nm1; i>0; i--) { |
- temp = b; |
- b = b*(2.0*i)/x - a; |
- a = temp; |
- /* scale b to avoid spurious overflow */ |
- if (b > 0x1p500) { |
- a /= b; |
- t /= b; |
- b = 1.0; |
- } |
- } |
- } |
- z = j0(x); |
- w = j1(x); |
- if (fabs(z) >= fabs(w)) |
- b = t*z/b; |
- else |
- b = t*w/a; |
- } |
- } |
- return sign ? -b : b; |
+ nf = nm1 + 1.0; |
+ w = 2 * nf / x; |
+ h = 2 / x; |
+ z = w + h; |
+ q0 = w; |
+ q1 = w * z - 1.0; |
+ k = 1; |
+ while (q1 < 1.0e9) { |
+ k += 1; |
+ z += h; |
+ tmp = z * q1 - q0; |
+ q0 = q1; |
+ q1 = tmp; |
+ } |
+ for (t = 0.0, i = k; i >= 0; i--) |
+ t = 1 / (2 * (i + nf) / x - t); |
+ a = t; |
+ b = 1.0; |
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
+ * Hence, if n*(log(2n/x)) > ... |
+ * single 8.8722839355e+01 |
+ * double 7.09782712893383973096e+02 |
+ * long double 1.1356523406294143949491931077970765006170e+04 |
+ * then recurrent value may overflow and the result is |
+ * likely underflow to zero |
+ */ |
+ tmp = nf * log(fabs(w)); |
+ if (tmp < 7.09782712893383973096e+02) { |
+ for (i = nm1; i > 0; i--) { |
+ temp = b; |
+ b = b * (2.0 * i) / x - a; |
+ a = temp; |
+ } |
+ } else { |
+ for (i = nm1; i > 0; i--) { |
+ temp = b; |
+ b = b * (2.0 * i) / x - a; |
+ a = temp; |
+ /* scale b to avoid spurious overflow */ |
+ if (b > 0x1p500) { |
+ a /= b; |
+ t /= b; |
+ b = 1.0; |
+ } |
+ } |
+ } |
+ z = j0(x); |
+ w = j1(x); |
+ if (fabs(z) >= fabs(w)) |
+ b = t * z / b; |
+ else |
+ b = t * w / a; |
+ } |
+ } |
+ return sign ? -b : b; |
} |
+double yn(int n, double x) { |
+ uint32_t ix, lx, ib; |
+ int nm1, sign, i; |
+ double a, b, temp; |
-double yn(int n, double x) |
-{ |
- uint32_t ix, lx, ib; |
- int nm1, sign, i; |
- double a, b, temp; |
+ EXTRACT_WORDS(ix, lx, x); |
+ sign = ix >> 31; |
+ ix &= 0x7fffffff; |
- EXTRACT_WORDS(ix, lx, x); |
- sign = ix>>31; |
- ix &= 0x7fffffff; |
+ if ((ix | (lx | -lx) >> 31) > 0x7ff00000) /* nan */ |
+ return x; |
+ if (sign && (ix | lx) != 0) /* x < 0 */ |
+ return 0 / 0.0; |
+ if (ix == 0x7ff00000) |
+ return 0.0; |
- if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */ |
- return x; |
- if (sign && (ix|lx)!=0) /* x < 0 */ |
- return 0/0.0; |
- if (ix == 0x7ff00000) |
- return 0.0; |
+ if (n == 0) |
+ return y0(x); |
+ if (n < 0) { |
+ nm1 = -(n + 1); |
+ sign = n & 1; |
+ } else { |
+ nm1 = n - 1; |
+ sign = 0; |
+ } |
+ if (nm1 == 0) |
+ return sign ? -y1(x) : y1(x); |
- if (n == 0) |
- return y0(x); |
- if (n < 0) { |
- nm1 = -(n+1); |
- sign = n&1; |
- } else { |
- nm1 = n-1; |
- sign = 0; |
- } |
- if (nm1 == 0) |
- return sign ? -y1(x) : y1(x); |
- |
- if (ix >= 0x52d00000) { /* x > 2**302 */ |
- /* (x >> n**2) |
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
- * Let s=sin(x), c=cos(x), |
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
- * |
- * n sin(xn)*sqt2 cos(xn)*sqt2 |
- * ---------------------------------- |
- * 0 s-c c+s |
- * 1 -s-c -c+s |
- * 2 -s+c -c-s |
- * 3 s+c c-s |
- */ |
- switch(nm1&3) { |
- case 0: temp = -sin(x)-cos(x); break; |
- case 1: temp = -sin(x)+cos(x); break; |
- case 2: temp = sin(x)+cos(x); break; |
- default: |
- case 3: temp = sin(x)-cos(x); break; |
- } |
- b = invsqrtpi*temp/sqrt(x); |
- } else { |
- a = y0(x); |
- b = y1(x); |
- /* quit if b is -inf */ |
- GET_HIGH_WORD(ib, b); |
- for (i=0; i<nm1 && ib!=0xfff00000; ){ |
- i++; |
- temp = b; |
- b = (2.0*i/x)*b - a; |
- GET_HIGH_WORD(ib, b); |
- a = temp; |
- } |
- } |
- return sign ? -b : b; |
+ if (ix >= 0x52d00000) { /* x > 2**302 */ |
+ /* (x >> n**2) |
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
+ * Let s=sin(x), c=cos(x), |
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
+ * |
+ * n sin(xn)*sqt2 cos(xn)*sqt2 |
+ * ---------------------------------- |
+ * 0 s-c c+s |
+ * 1 -s-c -c+s |
+ * 2 -s+c -c-s |
+ * 3 s+c c-s |
+ */ |
+ switch (nm1 & 3) { |
+ case 0: |
+ temp = -sin(x) - cos(x); |
+ break; |
+ case 1: |
+ temp = -sin(x) + cos(x); |
+ break; |
+ case 2: |
+ temp = sin(x) + cos(x); |
+ break; |
+ default: |
+ case 3: |
+ temp = sin(x) - cos(x); |
+ break; |
+ } |
+ b = invsqrtpi * temp / sqrt(x); |
+ } else { |
+ a = y0(x); |
+ b = y1(x); |
+ /* quit if b is -inf */ |
+ GET_HIGH_WORD(ib, b); |
+ for (i = 0; i < nm1 && ib != 0xfff00000;) { |
+ i++; |
+ temp = b; |
+ b = (2.0 * i / x) * b - a; |
+ GET_HIGH_WORD(ib, b); |
+ a = temp; |
+ } |
+ } |
+ return sign ? -b : b; |
} |