| Index: fusl/src/math/jnf.c
|
| diff --git a/fusl/src/math/jnf.c b/fusl/src/math/jnf.c
|
| index f63c062f32caf74b724f11e0ac97ece8da4d75b9..6ee472abb751f9a1d36eed20f6edf957f545ad46 100644
|
| --- a/fusl/src/math/jnf.c
|
| +++ b/fusl/src/math/jnf.c
|
| @@ -16,187 +16,185 @@
|
| #define _GNU_SOURCE
|
| #include "libm.h"
|
|
|
| -float jnf(int n, float x)
|
| -{
|
| - uint32_t ix;
|
| - int nm1, sign, i;
|
| - float a, b, temp;
|
| +float jnf(int n, float x) {
|
| + uint32_t ix;
|
| + int nm1, sign, i;
|
| + float a, b, temp;
|
|
|
| - GET_FLOAT_WORD(ix, x);
|
| - sign = ix>>31;
|
| - ix &= 0x7fffffff;
|
| - if (ix > 0x7f800000) /* nan */
|
| - return x;
|
| + GET_FLOAT_WORD(ix, x);
|
| + sign = ix >> 31;
|
| + ix &= 0x7fffffff;
|
| + if (ix > 0x7f800000) /* nan */
|
| + return x;
|
|
|
| - /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
|
| - if (n == 0)
|
| - return j0f(x);
|
| - if (n < 0) {
|
| - nm1 = -(n+1);
|
| - x = -x;
|
| - sign ^= 1;
|
| - } else
|
| - nm1 = n-1;
|
| - if (nm1 == 0)
|
| - return j1f(x);
|
| + /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
|
| + if (n == 0)
|
| + return j0f(x);
|
| + if (n < 0) {
|
| + nm1 = -(n + 1);
|
| + x = -x;
|
| + sign ^= 1;
|
| + } else
|
| + nm1 = n - 1;
|
| + if (nm1 == 0)
|
| + return j1f(x);
|
|
|
| - sign &= n; /* even n: 0, odd n: signbit(x) */
|
| - x = fabsf(x);
|
| - if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
|
| - b = 0.0f;
|
| - else if (nm1 < x) {
|
| - /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
| - a = j0f(x);
|
| - b = j1f(x);
|
| - for (i=0; i<nm1; ){
|
| - i++;
|
| - temp = b;
|
| - b = b*(2.0f*i/x) - a;
|
| - a = temp;
|
| - }
|
| - } else {
|
| - if (ix < 0x35800000) { /* x < 2**-20 */
|
| - /* x is tiny, return the first Taylor expansion of J(n,x)
|
| - * J(n,x) = 1/n!*(x/2)^n - ...
|
| - */
|
| - if (nm1 > 8) /* underflow */
|
| - nm1 = 8;
|
| - temp = 0.5f * x;
|
| - b = temp;
|
| - a = 1.0f;
|
| - for (i=2; i<=nm1+1; i++) {
|
| - a *= (float)i; /* a = n! */
|
| - b *= temp; /* b = (x/2)^n */
|
| - }
|
| - b = b/a;
|
| - } else {
|
| - /* use backward recurrence */
|
| - /* x x^2 x^2
|
| - * J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
| - * 2n - 2(n+1) - 2(n+2)
|
| - *
|
| - * 1 1 1
|
| - * (for large x) = ---- ------ ------ .....
|
| - * 2n 2(n+1) 2(n+2)
|
| - * -- - ------ - ------ -
|
| - * x x x
|
| - *
|
| - * Let w = 2n/x and h=2/x, then the above quotient
|
| - * is equal to the continued fraction:
|
| - * 1
|
| - * = -----------------------
|
| - * 1
|
| - * w - -----------------
|
| - * 1
|
| - * w+h - ---------
|
| - * w+2h - ...
|
| - *
|
| - * To determine how many terms needed, let
|
| - * Q(0) = w, Q(1) = w(w+h) - 1,
|
| - * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
| - * When Q(k) > 1e4 good for single
|
| - * When Q(k) > 1e9 good for double
|
| - * When Q(k) > 1e17 good for quadruple
|
| - */
|
| - /* determine k */
|
| - float t,q0,q1,w,h,z,tmp,nf;
|
| - int k;
|
| + sign &= n; /* even n: 0, odd n: signbit(x) */
|
| + x = fabsf(x);
|
| + if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
|
| + b = 0.0f;
|
| + else if (nm1 < x) {
|
| + /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
| + a = j0f(x);
|
| + b = j1f(x);
|
| + for (i = 0; i < nm1;) {
|
| + i++;
|
| + temp = b;
|
| + b = b * (2.0f * i / x) - a;
|
| + a = temp;
|
| + }
|
| + } else {
|
| + if (ix < 0x35800000) { /* x < 2**-20 */
|
| + /* x is tiny, return the first Taylor expansion of J(n,x)
|
| + * J(n,x) = 1/n!*(x/2)^n - ...
|
| + */
|
| + if (nm1 > 8) /* underflow */
|
| + nm1 = 8;
|
| + temp = 0.5f * x;
|
| + b = temp;
|
| + a = 1.0f;
|
| + for (i = 2; i <= nm1 + 1; i++) {
|
| + a *= (float)i; /* a = n! */
|
| + b *= temp; /* b = (x/2)^n */
|
| + }
|
| + b = b / a;
|
| + } else {
|
| + /* use backward recurrence */
|
| + /* x x^2 x^2
|
| + * J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
| + * 2n - 2(n+1) - 2(n+2)
|
| + *
|
| + * 1 1 1
|
| + * (for large x) = ---- ------ ------ .....
|
| + * 2n 2(n+1) 2(n+2)
|
| + * -- - ------ - ------ -
|
| + * x x x
|
| + *
|
| + * Let w = 2n/x and h=2/x, then the above quotient
|
| + * is equal to the continued fraction:
|
| + * 1
|
| + * = -----------------------
|
| + * 1
|
| + * w - -----------------
|
| + * 1
|
| + * w+h - ---------
|
| + * w+2h - ...
|
| + *
|
| + * To determine how many terms needed, let
|
| + * Q(0) = w, Q(1) = w(w+h) - 1,
|
| + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
| + * When Q(k) > 1e4 good for single
|
| + * When Q(k) > 1e9 good for double
|
| + * When Q(k) > 1e17 good for quadruple
|
| + */
|
| + /* determine k */
|
| + float t, q0, q1, w, h, z, tmp, nf;
|
| + int k;
|
|
|
| - nf = nm1+1.0f;
|
| - w = 2*nf/x;
|
| - h = 2/x;
|
| - z = w+h;
|
| - q0 = w;
|
| - q1 = w*z - 1.0f;
|
| - k = 1;
|
| - while (q1 < 1.0e4f) {
|
| - k += 1;
|
| - z += h;
|
| - tmp = z*q1 - q0;
|
| - q0 = q1;
|
| - q1 = tmp;
|
| - }
|
| - for (t=0.0f, i=k; i>=0; i--)
|
| - t = 1.0f/(2*(i+nf)/x-t);
|
| - a = t;
|
| - b = 1.0f;
|
| - /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
| - * Hence, if n*(log(2n/x)) > ...
|
| - * single 8.8722839355e+01
|
| - * double 7.09782712893383973096e+02
|
| - * long double 1.1356523406294143949491931077970765006170e+04
|
| - * then recurrent value may overflow and the result is
|
| - * likely underflow to zero
|
| - */
|
| - tmp = nf*logf(fabsf(w));
|
| - if (tmp < 88.721679688f) {
|
| - for (i=nm1; i>0; i--) {
|
| - temp = b;
|
| - b = 2.0f*i*b/x - a;
|
| - a = temp;
|
| - }
|
| - } else {
|
| - for (i=nm1; i>0; i--){
|
| - temp = b;
|
| - b = 2.0f*i*b/x - a;
|
| - a = temp;
|
| - /* scale b to avoid spurious overflow */
|
| - if (b > 0x1p60f) {
|
| - a /= b;
|
| - t /= b;
|
| - b = 1.0f;
|
| - }
|
| - }
|
| - }
|
| - z = j0f(x);
|
| - w = j1f(x);
|
| - if (fabsf(z) >= fabsf(w))
|
| - b = t*z/b;
|
| - else
|
| - b = t*w/a;
|
| - }
|
| - }
|
| - return sign ? -b : b;
|
| + nf = nm1 + 1.0f;
|
| + w = 2 * nf / x;
|
| + h = 2 / x;
|
| + z = w + h;
|
| + q0 = w;
|
| + q1 = w * z - 1.0f;
|
| + k = 1;
|
| + while (q1 < 1.0e4f) {
|
| + k += 1;
|
| + z += h;
|
| + tmp = z * q1 - q0;
|
| + q0 = q1;
|
| + q1 = tmp;
|
| + }
|
| + for (t = 0.0f, i = k; i >= 0; i--)
|
| + t = 1.0f / (2 * (i + nf) / x - t);
|
| + a = t;
|
| + b = 1.0f;
|
| + /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
| + * Hence, if n*(log(2n/x)) > ...
|
| + * single 8.8722839355e+01
|
| + * double 7.09782712893383973096e+02
|
| + * long double 1.1356523406294143949491931077970765006170e+04
|
| + * then recurrent value may overflow and the result is
|
| + * likely underflow to zero
|
| + */
|
| + tmp = nf * logf(fabsf(w));
|
| + if (tmp < 88.721679688f) {
|
| + for (i = nm1; i > 0; i--) {
|
| + temp = b;
|
| + b = 2.0f * i * b / x - a;
|
| + a = temp;
|
| + }
|
| + } else {
|
| + for (i = nm1; i > 0; i--) {
|
| + temp = b;
|
| + b = 2.0f * i * b / x - a;
|
| + a = temp;
|
| + /* scale b to avoid spurious overflow */
|
| + if (b > 0x1p60f) {
|
| + a /= b;
|
| + t /= b;
|
| + b = 1.0f;
|
| + }
|
| + }
|
| + }
|
| + z = j0f(x);
|
| + w = j1f(x);
|
| + if (fabsf(z) >= fabsf(w))
|
| + b = t * z / b;
|
| + else
|
| + b = t * w / a;
|
| + }
|
| + }
|
| + return sign ? -b : b;
|
| }
|
|
|
| -float ynf(int n, float x)
|
| -{
|
| - uint32_t ix, ib;
|
| - int nm1, sign, i;
|
| - float a, b, temp;
|
| +float ynf(int n, float x) {
|
| + uint32_t ix, ib;
|
| + int nm1, sign, i;
|
| + float a, b, temp;
|
|
|
| - GET_FLOAT_WORD(ix, x);
|
| - sign = ix>>31;
|
| - ix &= 0x7fffffff;
|
| - if (ix > 0x7f800000) /* nan */
|
| - return x;
|
| - if (sign && ix != 0) /* x < 0 */
|
| - return 0/0.0f;
|
| - if (ix == 0x7f800000)
|
| - return 0.0f;
|
| + GET_FLOAT_WORD(ix, x);
|
| + sign = ix >> 31;
|
| + ix &= 0x7fffffff;
|
| + if (ix > 0x7f800000) /* nan */
|
| + return x;
|
| + if (sign && ix != 0) /* x < 0 */
|
| + return 0 / 0.0f;
|
| + if (ix == 0x7f800000)
|
| + return 0.0f;
|
|
|
| - if (n == 0)
|
| - return y0f(x);
|
| - if (n < 0) {
|
| - nm1 = -(n+1);
|
| - sign = n&1;
|
| - } else {
|
| - nm1 = n-1;
|
| - sign = 0;
|
| - }
|
| - if (nm1 == 0)
|
| - return sign ? -y1f(x) : y1f(x);
|
| + if (n == 0)
|
| + return y0f(x);
|
| + if (n < 0) {
|
| + nm1 = -(n + 1);
|
| + sign = n & 1;
|
| + } else {
|
| + nm1 = n - 1;
|
| + sign = 0;
|
| + }
|
| + if (nm1 == 0)
|
| + return sign ? -y1f(x) : y1f(x);
|
|
|
| - a = y0f(x);
|
| - b = y1f(x);
|
| - /* quit if b is -inf */
|
| - GET_FLOAT_WORD(ib,b);
|
| - for (i = 0; i < nm1 && ib != 0xff800000; ) {
|
| - i++;
|
| - temp = b;
|
| - b = (2.0f*i/x)*b - a;
|
| - GET_FLOAT_WORD(ib, b);
|
| - a = temp;
|
| - }
|
| - return sign ? -b : b;
|
| + a = y0f(x);
|
| + b = y1f(x);
|
| + /* quit if b is -inf */
|
| + GET_FLOAT_WORD(ib, b);
|
| + for (i = 0; i < nm1 && ib != 0xff800000;) {
|
| + i++;
|
| + temp = b;
|
| + b = (2.0f * i / x) * b - a;
|
| + GET_FLOAT_WORD(ib, b);
|
| + a = temp;
|
| + }
|
| + return sign ? -b : b;
|
| }
|
|
|