Index: fusl/src/math/lgamma_r.c |
diff --git a/fusl/src/math/lgamma_r.c b/fusl/src/math/lgamma_r.c |
index fff565d228ef626145e9f152f5478e88906f8079..7dd28515b720762c348273ee8b17b91b7c7b4843 100644 |
--- a/fusl/src/math/lgamma_r.c |
+++ b/fusl/src/math/lgamma_r.c |
@@ -81,204 +81,215 @@ |
#include "libm.h" |
#include "libc.h" |
-static const double |
-pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
-a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
-a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
-a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
-a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
-a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
-a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
-a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
-a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
-a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
-a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
-a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
-a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
-tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
-tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
-/* tt = -(tail of tf) */ |
-tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
-t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
-t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
-t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
-t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
-t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
-t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
-t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
-t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
-t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
-t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
-t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
-t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
-t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
-t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
-t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
-u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
-u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
-u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
-u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
-u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
-u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
-v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
-v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
-v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
-v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
-v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
-s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
-s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
-s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
-s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
-s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
-s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
-s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
-r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
-r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
-r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
-r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
-r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
-r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
-w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
-w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
-w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
-w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
-w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
-w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
-w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
+static const double pi = |
+ 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
+ a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
+ a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
+ a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
+ a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
+ a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
+ a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
+ a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
+ a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
+ a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
+ a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
+ a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
+ a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
+ tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
+ tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
+ /* tt = -(tail of tf) */ |
+ tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
+ t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
+ t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
+ t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
+ t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
+ t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
+ t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
+ t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
+ t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
+ t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
+ t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
+ t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
+ t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
+ t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
+ t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
+ t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
+ u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
+ u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
+ u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
+ u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
+ u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
+ u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
+ v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
+ v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
+ v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
+ v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
+ v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
+ s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
+ s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
+ s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
+ s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
+ s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
+ s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
+ s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
+ r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
+ r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
+ r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
+ r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
+ r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
+ r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
+ w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
+ w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
+ w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
+ w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
+ w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
+ w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
+ w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ |
-static double sin_pi(double x) |
-{ |
- int n; |
+static double sin_pi(double x) { |
+ int n; |
- /* spurious inexact if odd int */ |
- x = 2.0*(x*0.5 - floor(x*0.5)); /* x mod 2.0 */ |
+ /* spurious inexact if odd int */ |
+ x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */ |
- n = (int)(x*4.0); |
- n = (n+1)/2; |
- x -= n*0.5f; |
- x *= pi; |
+ n = (int)(x * 4.0); |
+ n = (n + 1) / 2; |
+ x -= n * 0.5f; |
+ x *= pi; |
- switch (n) { |
- default: /* case 4: */ |
- case 0: return __sin(x, 0.0, 0); |
- case 1: return __cos(x, 0.0); |
- case 2: return __sin(-x, 0.0, 0); |
- case 3: return -__cos(x, 0.0); |
- } |
+ switch (n) { |
+ default: /* case 4: */ |
+ case 0: |
+ return __sin(x, 0.0, 0); |
+ case 1: |
+ return __cos(x, 0.0); |
+ case 2: |
+ return __sin(-x, 0.0, 0); |
+ case 3: |
+ return -__cos(x, 0.0); |
+ } |
} |
-double __lgamma_r(double x, int *signgamp) |
-{ |
- union {double f; uint64_t i;} u = {x}; |
- double_t t,y,z,nadj,p,p1,p2,p3,q,r,w; |
- uint32_t ix; |
- int sign,i; |
+double __lgamma_r(double x, int* signgamp) { |
+ union { |
+ double f; |
+ uint64_t i; |
+ } u = {x}; |
+ double_t t, y, z, nadj, p, p1, p2, p3, q, r, w; |
+ uint32_t ix; |
+ int sign, i; |
- /* purge off +-inf, NaN, +-0, tiny and negative arguments */ |
- *signgamp = 1; |
- sign = u.i>>63; |
- ix = u.i>>32 & 0x7fffffff; |
- if (ix >= 0x7ff00000) |
- return x*x; |
- if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */ |
- if(sign) { |
- x = -x; |
- *signgamp = -1; |
- } |
- return -log(x); |
- } |
- if (sign) { |
- x = -x; |
- t = sin_pi(x); |
- if (t == 0.0) /* -integer */ |
- return 1.0/(x-x); |
- if (t > 0.0) |
- *signgamp = -1; |
- else |
- t = -t; |
- nadj = log(pi/(t*x)); |
- } |
+ /* purge off +-inf, NaN, +-0, tiny and negative arguments */ |
+ *signgamp = 1; |
+ sign = u.i >> 63; |
+ ix = u.i >> 32 & 0x7fffffff; |
+ if (ix >= 0x7ff00000) |
+ return x * x; |
+ if (ix < (0x3ff - 70) << 20) { /* |x|<2**-70, return -log(|x|) */ |
+ if (sign) { |
+ x = -x; |
+ *signgamp = -1; |
+ } |
+ return -log(x); |
+ } |
+ if (sign) { |
+ x = -x; |
+ t = sin_pi(x); |
+ if (t == 0.0) /* -integer */ |
+ return 1.0 / (x - x); |
+ if (t > 0.0) |
+ *signgamp = -1; |
+ else |
+ t = -t; |
+ nadj = log(pi / (t * x)); |
+ } |
- /* purge off 1 and 2 */ |
- if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) |
- r = 0; |
- /* for x < 2.0 */ |
- else if (ix < 0x40000000) { |
- if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
- r = -log(x); |
- if (ix >= 0x3FE76944) { |
- y = 1.0 - x; |
- i = 0; |
- } else if (ix >= 0x3FCDA661) { |
- y = x - (tc-1.0); |
- i = 1; |
- } else { |
- y = x; |
- i = 2; |
- } |
- } else { |
- r = 0.0; |
- if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ |
- y = 2.0 - x; |
- i = 0; |
- } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ |
- y = x - tc; |
- i = 1; |
- } else { |
- y = x - 1.0; |
- i = 2; |
- } |
- } |
- switch (i) { |
- case 0: |
- z = y*y; |
- p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
- p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
- p = y*p1+p2; |
- r += (p-0.5*y); |
- break; |
- case 1: |
- z = y*y; |
- w = z*y; |
- p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
- p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
- p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
- p = z*p1-(tt-w*(p2+y*p3)); |
- r += tf + p; |
- break; |
- case 2: |
- p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
- p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
- r += -0.5*y + p1/p2; |
- } |
- } else if (ix < 0x40200000) { /* x < 8.0 */ |
- i = (int)x; |
- y = x - (double)i; |
- p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
- q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
- r = 0.5*y+p/q; |
- z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ |
- switch (i) { |
- case 7: z *= y + 6.0; /* FALLTHRU */ |
- case 6: z *= y + 5.0; /* FALLTHRU */ |
- case 5: z *= y + 4.0; /* FALLTHRU */ |
- case 4: z *= y + 3.0; /* FALLTHRU */ |
- case 3: z *= y + 2.0; /* FALLTHRU */ |
- r += log(z); |
- break; |
- } |
- } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ |
- t = log(x); |
- z = 1.0/x; |
- y = z*z; |
- w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
- r = (x-0.5)*(t-1.0)+w; |
- } else /* 2**58 <= x <= inf */ |
- r = x*(log(x)-1.0); |
- if (sign) |
- r = nadj - r; |
- return r; |
+ /* purge off 1 and 2 */ |
+ if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) |
+ r = 0; |
+ /* for x < 2.0 */ |
+ else if (ix < 0x40000000) { |
+ if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
+ r = -log(x); |
+ if (ix >= 0x3FE76944) { |
+ y = 1.0 - x; |
+ i = 0; |
+ } else if (ix >= 0x3FCDA661) { |
+ y = x - (tc - 1.0); |
+ i = 1; |
+ } else { |
+ y = x; |
+ i = 2; |
+ } |
+ } else { |
+ r = 0.0; |
+ if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ |
+ y = 2.0 - x; |
+ i = 0; |
+ } else if (ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ |
+ y = x - tc; |
+ i = 1; |
+ } else { |
+ y = x - 1.0; |
+ i = 2; |
+ } |
+ } |
+ switch (i) { |
+ case 0: |
+ z = y * y; |
+ p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10)))); |
+ p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11))))); |
+ p = y * p1 + p2; |
+ r += (p - 0.5 * y); |
+ break; |
+ case 1: |
+ z = y * y; |
+ w = z * y; |
+ p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */ |
+ p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13))); |
+ p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14))); |
+ p = z * p1 - (tt - w * (p2 + y * p3)); |
+ r += tf + p; |
+ break; |
+ case 2: |
+ p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5))))); |
+ p2 = 1.0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5)))); |
+ r += -0.5 * y + p1 / p2; |
+ } |
+ } else if (ix < 0x40200000) { /* x < 8.0 */ |
+ i = (int)x; |
+ y = x - (double)i; |
+ p = y * |
+ (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); |
+ q = 1.0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6))))); |
+ r = 0.5 * y + p / q; |
+ z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ |
+ switch (i) { |
+ case 7: |
+ z *= y + 6.0; /* FALLTHRU */ |
+ case 6: |
+ z *= y + 5.0; /* FALLTHRU */ |
+ case 5: |
+ z *= y + 4.0; /* FALLTHRU */ |
+ case 4: |
+ z *= y + 3.0; /* FALLTHRU */ |
+ case 3: |
+ z *= y + 2.0; /* FALLTHRU */ |
+ r += log(z); |
+ break; |
+ } |
+ } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ |
+ t = log(x); |
+ z = 1.0 / x; |
+ y = z * z; |
+ w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6))))); |
+ r = (x - 0.5) * (t - 1.0) + w; |
+ } else /* 2**58 <= x <= inf */ |
+ r = x * (log(x) - 1.0); |
+ if (sign) |
+ r = nadj - r; |
+ return r; |
} |
weak_alias(__lgamma_r, lgamma_r); |