OLD | NEW |
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ | 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ |
2 /* | 2 /* |
3 * ==================================================== | 3 * ==================================================== |
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 * | 5 * |
6 * Developed at SunSoft, a Sun Microsystems, Inc. business. | 6 * Developed at SunSoft, a Sun Microsystems, Inc. business. |
7 * Permission to use, copy, modify, and distribute this | 7 * Permission to use, copy, modify, and distribute this |
8 * software is freely granted, provided that this notice | 8 * software is freely granted, provided that this notice |
9 * is preserved. | 9 * is preserved. |
10 * ==================================================== | 10 * ==================================================== |
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
74 * lgamma(x) ~ -log(|x|) for tiny x | 74 * lgamma(x) ~ -log(|x|) for tiny x |
75 * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero | 75 * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero |
76 * lgamma(inf) = inf | 76 * lgamma(inf) = inf |
77 * lgamma(-inf) = inf (bug for bug compatible with C99!?) | 77 * lgamma(-inf) = inf (bug for bug compatible with C99!?) |
78 * | 78 * |
79 */ | 79 */ |
80 | 80 |
81 #include "libm.h" | 81 #include "libm.h" |
82 #include "libc.h" | 82 #include "libc.h" |
83 | 83 |
84 static const double | 84 static const double pi = |
85 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ | 85 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
86 a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ | 86 a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
87 a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ | 87 a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
88 a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ | 88 a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
89 a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ | 89 a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
90 a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ | 90 a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
91 a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ | 91 a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
92 a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ | 92 a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
93 a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ | 93 a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
94 a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ | 94 a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
95 a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ | 95 a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
96 a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ | 96 a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
97 a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ | 97 a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
98 tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ | 98 tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
99 tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ | 99 tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
100 /* tt = -(tail of tf) */ | 100 /* tt = -(tail of tf) */ |
101 tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ | 101 tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
102 t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ | 102 t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
103 t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ | 103 t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
104 t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ | 104 t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
105 t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ | 105 t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
106 t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ | 106 t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
107 t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ | 107 t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
108 t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ | 108 t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
109 t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ | 109 t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
110 t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ | 110 t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
111 t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ | 111 t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
112 t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ | 112 t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
113 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ | 113 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
114 t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ | 114 t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
115 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ | 115 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
116 t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ | 116 t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
117 u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ | 117 u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
118 u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ | 118 u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
119 u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ | 119 u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
120 u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ | 120 u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
121 u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ | 121 u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
122 u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ | 122 u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
123 v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ | 123 v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
124 v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ | 124 v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
125 v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ | 125 v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
126 v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ | 126 v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
127 v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ | 127 v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
128 s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ | 128 s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
129 s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ | 129 s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
130 s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ | 130 s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
131 s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ | 131 s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
132 s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ | 132 s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
133 s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ | 133 s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
134 s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ | 134 s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
135 r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ | 135 r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
136 r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ | 136 r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
137 r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ | 137 r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
138 r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ | 138 r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
139 r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ | 139 r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
140 r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ | 140 r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
141 w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ | 141 w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
142 w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ | 142 w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
143 w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ | 143 w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
144 w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ | 144 w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
145 w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ | 145 w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
146 w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ | 146 w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
147 w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ | 147 w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
148 | 148 |
149 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ | 149 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ |
150 static double sin_pi(double x) | 150 static double sin_pi(double x) { |
151 { | 151 int n; |
152 » int n; | 152 |
153 | 153 /* spurious inexact if odd int */ |
154 » /* spurious inexact if odd int */ | 154 x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */ |
155 » x = 2.0*(x*0.5 - floor(x*0.5)); /* x mod 2.0 */ | 155 |
156 | 156 n = (int)(x * 4.0); |
157 » n = (int)(x*4.0); | 157 n = (n + 1) / 2; |
158 » n = (n+1)/2; | 158 x -= n * 0.5f; |
159 » x -= n*0.5f; | 159 x *= pi; |
160 » x *= pi; | 160 |
161 | 161 switch (n) { |
162 » switch (n) { | 162 default: /* case 4: */ |
163 » default: /* case 4: */ | 163 case 0: |
164 » case 0: return __sin(x, 0.0, 0); | 164 return __sin(x, 0.0, 0); |
165 » case 1: return __cos(x, 0.0); | 165 case 1: |
166 » case 2: return __sin(-x, 0.0, 0); | 166 return __cos(x, 0.0); |
167 » case 3: return -__cos(x, 0.0); | 167 case 2: |
168 » } | 168 return __sin(-x, 0.0, 0); |
| 169 case 3: |
| 170 return -__cos(x, 0.0); |
| 171 } |
169 } | 172 } |
170 | 173 |
171 double __lgamma_r(double x, int *signgamp) | 174 double __lgamma_r(double x, int* signgamp) { |
172 { | 175 union { |
173 » union {double f; uint64_t i;} u = {x}; | 176 double f; |
174 » double_t t,y,z,nadj,p,p1,p2,p3,q,r,w; | 177 uint64_t i; |
175 » uint32_t ix; | 178 } u = {x}; |
176 » int sign,i; | 179 double_t t, y, z, nadj, p, p1, p2, p3, q, r, w; |
177 | 180 uint32_t ix; |
178 » /* purge off +-inf, NaN, +-0, tiny and negative arguments */ | 181 int sign, i; |
179 » *signgamp = 1; | 182 |
180 » sign = u.i>>63; | 183 /* purge off +-inf, NaN, +-0, tiny and negative arguments */ |
181 » ix = u.i>>32 & 0x7fffffff; | 184 *signgamp = 1; |
182 » if (ix >= 0x7ff00000) | 185 sign = u.i >> 63; |
183 » » return x*x; | 186 ix = u.i >> 32 & 0x7fffffff; |
184 » if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */ | 187 if (ix >= 0x7ff00000) |
185 » » if(sign) { | 188 return x * x; |
186 » » » x = -x; | 189 if (ix < (0x3ff - 70) << 20) { /* |x|<2**-70, return -log(|x|) */ |
187 » » » *signgamp = -1; | 190 if (sign) { |
188 » » } | 191 x = -x; |
189 » » return -log(x); | 192 *signgamp = -1; |
190 » } | 193 } |
191 » if (sign) { | 194 return -log(x); |
192 » » x = -x; | 195 } |
193 » » t = sin_pi(x); | 196 if (sign) { |
194 » » if (t == 0.0) /* -integer */ | 197 x = -x; |
195 » » » return 1.0/(x-x); | 198 t = sin_pi(x); |
196 » » if (t > 0.0) | 199 if (t == 0.0) /* -integer */ |
197 » » » *signgamp = -1; | 200 return 1.0 / (x - x); |
198 » » else | 201 if (t > 0.0) |
199 » » » t = -t; | 202 *signgamp = -1; |
200 » » nadj = log(pi/(t*x)); | 203 else |
201 » } | 204 t = -t; |
202 | 205 nadj = log(pi / (t * x)); |
203 » /* purge off 1 and 2 */ | 206 } |
204 » if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) | 207 |
205 » » r = 0; | 208 /* purge off 1 and 2 */ |
206 » /* for x < 2.0 */ | 209 if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) |
207 » else if (ix < 0x40000000) { | 210 r = 0; |
208 » » if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ | 211 /* for x < 2.0 */ |
209 » » » r = -log(x); | 212 else if (ix < 0x40000000) { |
210 » » » if (ix >= 0x3FE76944) { | 213 if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
211 » » » » y = 1.0 - x; | 214 r = -log(x); |
212 » » » » i = 0; | 215 if (ix >= 0x3FE76944) { |
213 » » » } else if (ix >= 0x3FCDA661) { | 216 y = 1.0 - x; |
214 » » » » y = x - (tc-1.0); | 217 i = 0; |
215 » » » » i = 1; | 218 } else if (ix >= 0x3FCDA661) { |
216 » » » } else { | 219 y = x - (tc - 1.0); |
217 » » » » y = x; | 220 i = 1; |
218 » » » » i = 2; | 221 } else { |
219 » » » } | 222 y = x; |
220 » » } else { | 223 i = 2; |
221 » » » r = 0.0; | 224 } |
222 » » » if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ | 225 } else { |
223 » » » » y = 2.0 - x; | 226 r = 0.0; |
224 » » » » i = 0; | 227 if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ |
225 » » » } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ | 228 y = 2.0 - x; |
226 » » » » y = x - tc; | 229 i = 0; |
227 » » » » i = 1; | 230 } else if (ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ |
228 » » » } else { | 231 y = x - tc; |
229 » » » » y = x - 1.0; | 232 i = 1; |
230 » » » » i = 2; | 233 } else { |
231 » » » } | 234 y = x - 1.0; |
232 » » } | 235 i = 2; |
233 » » switch (i) { | 236 } |
234 » » case 0: | 237 } |
235 » » » z = y*y; | 238 switch (i) { |
236 » » » p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); | 239 case 0: |
237 » » » p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); | 240 z = y * y; |
238 » » » p = y*p1+p2; | 241 p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10)))); |
239 » » » r += (p-0.5*y); | 242 p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11))))); |
240 » » » break; | 243 p = y * p1 + p2; |
241 » » case 1: | 244 r += (p - 0.5 * y); |
242 » » » z = y*y; | 245 break; |
243 » » » w = z*y; | 246 case 1: |
244 » » » p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp
*/ | 247 z = y * y; |
245 » » » p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); | 248 w = z * y; |
246 » » » p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); | 249 p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */ |
247 » » » p = z*p1-(tt-w*(p2+y*p3)); | 250 p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13))); |
248 » » » r += tf + p; | 251 p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14))); |
249 » » » break; | 252 p = z * p1 - (tt - w * (p2 + y * p3)); |
250 » » case 2: | 253 r += tf + p; |
251 » » » p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); | 254 break; |
252 » » » p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); | 255 case 2: |
253 » » » r += -0.5*y + p1/p2; | 256 p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5))))); |
254 » » } | 257 p2 = 1.0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5)))); |
255 » } else if (ix < 0x40200000) { /* x < 8.0 */ | 258 r += -0.5 * y + p1 / p2; |
256 » » i = (int)x; | 259 } |
257 » » y = x - (double)i; | 260 } else if (ix < 0x40200000) { /* x < 8.0 */ |
258 » » p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); | 261 i = (int)x; |
259 » » q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); | 262 y = x - (double)i; |
260 » » r = 0.5*y+p/q; | 263 p = y * |
261 » » z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ | 264 (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); |
262 » » switch (i) { | 265 q = 1.0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6))))); |
263 » » case 7: z *= y + 6.0; /* FALLTHRU */ | 266 r = 0.5 * y + p / q; |
264 » » case 6: z *= y + 5.0; /* FALLTHRU */ | 267 z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ |
265 » » case 5: z *= y + 4.0; /* FALLTHRU */ | 268 switch (i) { |
266 » » case 4: z *= y + 3.0; /* FALLTHRU */ | 269 case 7: |
267 » » case 3: z *= y + 2.0; /* FALLTHRU */ | 270 z *= y + 6.0; /* FALLTHRU */ |
268 » » » r += log(z); | 271 case 6: |
269 » » » break; | 272 z *= y + 5.0; /* FALLTHRU */ |
270 » » } | 273 case 5: |
271 » } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ | 274 z *= y + 4.0; /* FALLTHRU */ |
272 » » t = log(x); | 275 case 4: |
273 » » z = 1.0/x; | 276 z *= y + 3.0; /* FALLTHRU */ |
274 » » y = z*z; | 277 case 3: |
275 » » w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); | 278 z *= y + 2.0; /* FALLTHRU */ |
276 » » r = (x-0.5)*(t-1.0)+w; | 279 r += log(z); |
277 » } else /* 2**58 <= x <= inf */ | 280 break; |
278 » » r = x*(log(x)-1.0); | 281 } |
279 » if (sign) | 282 } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ |
280 » » r = nadj - r; | 283 t = log(x); |
281 » return r; | 284 z = 1.0 / x; |
| 285 y = z * z; |
| 286 w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6))))); |
| 287 r = (x - 0.5) * (t - 1.0) + w; |
| 288 } else /* 2**58 <= x <= inf */ |
| 289 r = x * (log(x) - 1.0); |
| 290 if (sign) |
| 291 r = nadj - r; |
| 292 return r; |
282 } | 293 } |
283 | 294 |
284 weak_alias(__lgamma_r, lgamma_r); | 295 weak_alias(__lgamma_r, lgamma_r); |
OLD | NEW |