Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(473)

Side by Side Diff: fusl/src/math/lgamma_r.c

Issue 1714623002: [fusl] clang-format fusl (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: headers too Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
2 /* 2 /*
3 * ==================================================== 3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * 5 *
6 * Developed at SunSoft, a Sun Microsystems, Inc. business. 6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this 7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice 8 * software is freely granted, provided that this notice
9 * is preserved. 9 * is preserved.
10 * ==================================================== 10 * ====================================================
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after
74 * lgamma(x) ~ -log(|x|) for tiny x 74 * lgamma(x) ~ -log(|x|) for tiny x
75 * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero 75 * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
76 * lgamma(inf) = inf 76 * lgamma(inf) = inf
77 * lgamma(-inf) = inf (bug for bug compatible with C99!?) 77 * lgamma(-inf) = inf (bug for bug compatible with C99!?)
78 * 78 *
79 */ 79 */
80 80
81 #include "libm.h" 81 #include "libm.h"
82 #include "libc.h" 82 #include "libc.h"
83 83
84 static const double 84 static const double pi =
85 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ 85 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
86 a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ 86 a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
87 a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ 87 a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
88 a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ 88 a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
89 a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ 89 a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
90 a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ 90 a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
91 a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ 91 a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
92 a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ 92 a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
93 a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ 93 a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
94 a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ 94 a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
95 a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ 95 a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
96 a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ 96 a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
97 a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ 97 a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
98 tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ 98 tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
99 tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ 99 tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
100 /* tt = -(tail of tf) */ 100 /* tt = -(tail of tf) */
101 tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ 101 tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
102 t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ 102 t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
103 t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ 103 t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
104 t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ 104 t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
105 t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ 105 t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
106 t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ 106 t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
107 t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ 107 t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
108 t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ 108 t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
109 t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ 109 t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
110 t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ 110 t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
111 t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ 111 t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
112 t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ 112 t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
113 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ 113 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
114 t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ 114 t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
115 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ 115 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
116 t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ 116 t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
117 u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ 117 u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
118 u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ 118 u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
119 u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ 119 u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
120 u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ 120 u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
121 u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ 121 u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
122 u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ 122 u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
123 v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ 123 v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
124 v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ 124 v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
125 v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ 125 v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
126 v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ 126 v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
127 v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ 127 v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
128 s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ 128 s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
129 s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ 129 s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
130 s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ 130 s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
131 s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ 131 s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
132 s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ 132 s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
133 s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ 133 s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
134 s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ 134 s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
135 r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ 135 r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
136 r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ 136 r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
137 r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ 137 r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
138 r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ 138 r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
139 r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ 139 r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
140 r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ 140 r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
141 w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ 141 w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
142 w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ 142 w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
143 w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ 143 w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
144 w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ 144 w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
145 w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ 145 w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
146 w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ 146 w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
147 w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ 147 w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
148 148
149 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ 149 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
150 static double sin_pi(double x) 150 static double sin_pi(double x) {
151 { 151 int n;
152 » int n; 152
153 153 /* spurious inexact if odd int */
154 » /* spurious inexact if odd int */ 154 x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
155 » x = 2.0*(x*0.5 - floor(x*0.5)); /* x mod 2.0 */ 155
156 156 n = (int)(x * 4.0);
157 » n = (int)(x*4.0); 157 n = (n + 1) / 2;
158 » n = (n+1)/2; 158 x -= n * 0.5f;
159 » x -= n*0.5f; 159 x *= pi;
160 » x *= pi; 160
161 161 switch (n) {
162 » switch (n) { 162 default: /* case 4: */
163 » default: /* case 4: */ 163 case 0:
164 » case 0: return __sin(x, 0.0, 0); 164 return __sin(x, 0.0, 0);
165 » case 1: return __cos(x, 0.0); 165 case 1:
166 » case 2: return __sin(-x, 0.0, 0); 166 return __cos(x, 0.0);
167 » case 3: return -__cos(x, 0.0); 167 case 2:
168 » } 168 return __sin(-x, 0.0, 0);
169 case 3:
170 return -__cos(x, 0.0);
171 }
169 } 172 }
170 173
171 double __lgamma_r(double x, int *signgamp) 174 double __lgamma_r(double x, int* signgamp) {
172 { 175 union {
173 » union {double f; uint64_t i;} u = {x}; 176 double f;
174 » double_t t,y,z,nadj,p,p1,p2,p3,q,r,w; 177 uint64_t i;
175 » uint32_t ix; 178 } u = {x};
176 » int sign,i; 179 double_t t, y, z, nadj, p, p1, p2, p3, q, r, w;
177 180 uint32_t ix;
178 » /* purge off +-inf, NaN, +-0, tiny and negative arguments */ 181 int sign, i;
179 » *signgamp = 1; 182
180 » sign = u.i>>63; 183 /* purge off +-inf, NaN, +-0, tiny and negative arguments */
181 » ix = u.i>>32 & 0x7fffffff; 184 *signgamp = 1;
182 » if (ix >= 0x7ff00000) 185 sign = u.i >> 63;
183 » » return x*x; 186 ix = u.i >> 32 & 0x7fffffff;
184 » if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */ 187 if (ix >= 0x7ff00000)
185 » » if(sign) { 188 return x * x;
186 » » » x = -x; 189 if (ix < (0x3ff - 70) << 20) { /* |x|<2**-70, return -log(|x|) */
187 » » » *signgamp = -1; 190 if (sign) {
188 » » } 191 x = -x;
189 » » return -log(x); 192 *signgamp = -1;
190 » } 193 }
191 » if (sign) { 194 return -log(x);
192 » » x = -x; 195 }
193 » » t = sin_pi(x); 196 if (sign) {
194 » » if (t == 0.0) /* -integer */ 197 x = -x;
195 » » » return 1.0/(x-x); 198 t = sin_pi(x);
196 » » if (t > 0.0) 199 if (t == 0.0) /* -integer */
197 » » » *signgamp = -1; 200 return 1.0 / (x - x);
198 » » else 201 if (t > 0.0)
199 » » » t = -t; 202 *signgamp = -1;
200 » » nadj = log(pi/(t*x)); 203 else
201 » } 204 t = -t;
202 205 nadj = log(pi / (t * x));
203 » /* purge off 1 and 2 */ 206 }
204 » if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) 207
205 » » r = 0; 208 /* purge off 1 and 2 */
206 » /* for x < 2.0 */ 209 if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0)
207 » else if (ix < 0x40000000) { 210 r = 0;
208 » » if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ 211 /* for x < 2.0 */
209 » » » r = -log(x); 212 else if (ix < 0x40000000) {
210 » » » if (ix >= 0x3FE76944) { 213 if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
211 » » » » y = 1.0 - x; 214 r = -log(x);
212 » » » » i = 0; 215 if (ix >= 0x3FE76944) {
213 » » » } else if (ix >= 0x3FCDA661) { 216 y = 1.0 - x;
214 » » » » y = x - (tc-1.0); 217 i = 0;
215 » » » » i = 1; 218 } else if (ix >= 0x3FCDA661) {
216 » » » } else { 219 y = x - (tc - 1.0);
217 » » » » y = x; 220 i = 1;
218 » » » » i = 2; 221 } else {
219 » » » } 222 y = x;
220 » » } else { 223 i = 2;
221 » » » r = 0.0; 224 }
222 » » » if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ 225 } else {
223 » » » » y = 2.0 - x; 226 r = 0.0;
224 » » » » i = 0; 227 if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */
225 » » » } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ 228 y = 2.0 - x;
226 » » » » y = x - tc; 229 i = 0;
227 » » » » i = 1; 230 } else if (ix >= 0x3FF3B4C4) { /* [1.23,1.73] */
228 » » » } else { 231 y = x - tc;
229 » » » » y = x - 1.0; 232 i = 1;
230 » » » » i = 2; 233 } else {
231 » » » } 234 y = x - 1.0;
232 » » } 235 i = 2;
233 » » switch (i) { 236 }
234 » » case 0: 237 }
235 » » » z = y*y; 238 switch (i) {
236 » » » p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); 239 case 0:
237 » » » p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); 240 z = y * y;
238 » » » p = y*p1+p2; 241 p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10))));
239 » » » r += (p-0.5*y); 242 p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11)))));
240 » » » break; 243 p = y * p1 + p2;
241 » » case 1: 244 r += (p - 0.5 * y);
242 » » » z = y*y; 245 break;
243 » » » w = z*y; 246 case 1:
244 » » » p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ 247 z = y * y;
245 » » » p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); 248 w = z * y;
246 » » » p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); 249 p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */
247 » » » p = z*p1-(tt-w*(p2+y*p3)); 250 p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13)));
248 » » » r += tf + p; 251 p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14)));
249 » » » break; 252 p = z * p1 - (tt - w * (p2 + y * p3));
250 » » case 2: 253 r += tf + p;
251 » » » p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); 254 break;
252 » » » p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); 255 case 2:
253 » » » r += -0.5*y + p1/p2; 256 p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5)))));
254 » » } 257 p2 = 1.0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5))));
255 » } else if (ix < 0x40200000) { /* x < 8.0 */ 258 r += -0.5 * y + p1 / p2;
256 » » i = (int)x; 259 }
257 » » y = x - (double)i; 260 } else if (ix < 0x40200000) { /* x < 8.0 */
258 » » p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); 261 i = (int)x;
259 » » q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); 262 y = x - (double)i;
260 » » r = 0.5*y+p/q; 263 p = y *
261 » » z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ 264 (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
262 » » switch (i) { 265 q = 1.0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6)))));
263 » » case 7: z *= y + 6.0; /* FALLTHRU */ 266 r = 0.5 * y + p / q;
264 » » case 6: z *= y + 5.0; /* FALLTHRU */ 267 z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
265 » » case 5: z *= y + 4.0; /* FALLTHRU */ 268 switch (i) {
266 » » case 4: z *= y + 3.0; /* FALLTHRU */ 269 case 7:
267 » » case 3: z *= y + 2.0; /* FALLTHRU */ 270 z *= y + 6.0; /* FALLTHRU */
268 » » » r += log(z); 271 case 6:
269 » » » break; 272 z *= y + 5.0; /* FALLTHRU */
270 » » } 273 case 5:
271 » } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ 274 z *= y + 4.0; /* FALLTHRU */
272 » » t = log(x); 275 case 4:
273 » » z = 1.0/x; 276 z *= y + 3.0; /* FALLTHRU */
274 » » y = z*z; 277 case 3:
275 » » w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); 278 z *= y + 2.0; /* FALLTHRU */
276 » » r = (x-0.5)*(t-1.0)+w; 279 r += log(z);
277 » } else /* 2**58 <= x <= inf */ 280 break;
278 » » r = x*(log(x)-1.0); 281 }
279 » if (sign) 282 } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */
280 » » r = nadj - r; 283 t = log(x);
281 » return r; 284 z = 1.0 / x;
285 y = z * z;
286 w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6)))));
287 r = (x - 0.5) * (t - 1.0) + w;
288 } else /* 2**58 <= x <= inf */
289 r = x * (log(x) - 1.0);
290 if (sign)
291 r = nadj - r;
292 return r;
282 } 293 }
283 294
284 weak_alias(__lgamma_r, lgamma_r); 295 weak_alias(__lgamma_r, lgamma_r);
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698