Index: third_party/libjpeg/jidctflt.c |
diff --git a/third_party/libjpeg/jidctflt.c b/third_party/libjpeg/jidctflt.c |
deleted file mode 100644 |
index 0188ce3dfcd2ce2ebaa57c17da22101de01b6f2a..0000000000000000000000000000000000000000 |
--- a/third_party/libjpeg/jidctflt.c |
+++ /dev/null |
@@ -1,242 +0,0 @@ |
-/* |
- * jidctflt.c |
- * |
- * Copyright (C) 1994-1998, Thomas G. Lane. |
- * This file is part of the Independent JPEG Group's software. |
- * For conditions of distribution and use, see the accompanying README file. |
- * |
- * This file contains a floating-point implementation of the |
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
- * must also perform dequantization of the input coefficients. |
- * |
- * This implementation should be more accurate than either of the integer |
- * IDCT implementations. However, it may not give the same results on all |
- * machines because of differences in roundoff behavior. Speed will depend |
- * on the hardware's floating point capacity. |
- * |
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
- * on each row (or vice versa, but it's more convenient to emit a row at |
- * a time). Direct algorithms are also available, but they are much more |
- * complex and seem not to be any faster when reduced to code. |
- * |
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
- * JPEG textbook (see REFERENCES section in file README). The following code |
- * is based directly on figure 4-8 in P&M. |
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
- * possible to arrange the computation so that many of the multiplies are |
- * simple scalings of the final outputs. These multiplies can then be |
- * folded into the multiplications or divisions by the JPEG quantization |
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
- * to be done in the DCT itself. |
- * The primary disadvantage of this method is that with a fixed-point |
- * implementation, accuracy is lost due to imprecise representation of the |
- * scaled quantization values. However, that problem does not arise if |
- * we use floating point arithmetic. |
- */ |
- |
-#define JPEG_INTERNALS |
-#include "jinclude.h" |
-#include "jpeglib.h" |
-#include "jdct.h" /* Private declarations for DCT subsystem */ |
- |
-#ifdef DCT_FLOAT_SUPPORTED |
- |
- |
-/* |
- * This module is specialized to the case DCTSIZE = 8. |
- */ |
- |
-#if DCTSIZE != 8 |
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
-#endif |
- |
- |
-/* Dequantize a coefficient by multiplying it by the multiplier-table |
- * entry; produce a float result. |
- */ |
- |
-#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
- |
- |
-/* |
- * Perform dequantization and inverse DCT on one block of coefficients. |
- */ |
- |
-GLOBAL(void) |
-jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
- JCOEFPTR coef_block, |
- JSAMPARRAY output_buf, JDIMENSION output_col) |
-{ |
- FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
- FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
- FAST_FLOAT z5, z10, z11, z12, z13; |
- JCOEFPTR inptr; |
- FLOAT_MULT_TYPE * quantptr; |
- FAST_FLOAT * wsptr; |
- JSAMPROW outptr; |
- JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
- int ctr; |
- FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
- SHIFT_TEMPS |
- |
- /* Pass 1: process columns from input, store into work array. */ |
- |
- inptr = coef_block; |
- quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; |
- wsptr = workspace; |
- for (ctr = DCTSIZE; ctr > 0; ctr--) { |
- /* Due to quantization, we will usually find that many of the input |
- * coefficients are zero, especially the AC terms. We can exploit this |
- * by short-circuiting the IDCT calculation for any column in which all |
- * the AC terms are zero. In that case each output is equal to the |
- * DC coefficient (with scale factor as needed). |
- * With typical images and quantization tables, half or more of the |
- * column DCT calculations can be simplified this way. |
- */ |
- |
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
- inptr[DCTSIZE*7] == 0) { |
- /* AC terms all zero */ |
- FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
- |
- wsptr[DCTSIZE*0] = dcval; |
- wsptr[DCTSIZE*1] = dcval; |
- wsptr[DCTSIZE*2] = dcval; |
- wsptr[DCTSIZE*3] = dcval; |
- wsptr[DCTSIZE*4] = dcval; |
- wsptr[DCTSIZE*5] = dcval; |
- wsptr[DCTSIZE*6] = dcval; |
- wsptr[DCTSIZE*7] = dcval; |
- |
- inptr++; /* advance pointers to next column */ |
- quantptr++; |
- wsptr++; |
- continue; |
- } |
- |
- /* Even part */ |
- |
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
- |
- tmp10 = tmp0 + tmp2; /* phase 3 */ |
- tmp11 = tmp0 - tmp2; |
- |
- tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
- tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
- |
- tmp0 = tmp10 + tmp13; /* phase 2 */ |
- tmp3 = tmp10 - tmp13; |
- tmp1 = tmp11 + tmp12; |
- tmp2 = tmp11 - tmp12; |
- |
- /* Odd part */ |
- |
- tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
- tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
- tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
- tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
- |
- z13 = tmp6 + tmp5; /* phase 6 */ |
- z10 = tmp6 - tmp5; |
- z11 = tmp4 + tmp7; |
- z12 = tmp4 - tmp7; |
- |
- tmp7 = z11 + z13; /* phase 5 */ |
- tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
- |
- z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
- tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
- tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
- |
- tmp6 = tmp12 - tmp7; /* phase 2 */ |
- tmp5 = tmp11 - tmp6; |
- tmp4 = tmp10 + tmp5; |
- |
- wsptr[DCTSIZE*0] = tmp0 + tmp7; |
- wsptr[DCTSIZE*7] = tmp0 - tmp7; |
- wsptr[DCTSIZE*1] = tmp1 + tmp6; |
- wsptr[DCTSIZE*6] = tmp1 - tmp6; |
- wsptr[DCTSIZE*2] = tmp2 + tmp5; |
- wsptr[DCTSIZE*5] = tmp2 - tmp5; |
- wsptr[DCTSIZE*4] = tmp3 + tmp4; |
- wsptr[DCTSIZE*3] = tmp3 - tmp4; |
- |
- inptr++; /* advance pointers to next column */ |
- quantptr++; |
- wsptr++; |
- } |
- |
- /* Pass 2: process rows from work array, store into output array. */ |
- /* Note that we must descale the results by a factor of 8 == 2**3. */ |
- |
- wsptr = workspace; |
- for (ctr = 0; ctr < DCTSIZE; ctr++) { |
- outptr = output_buf[ctr] + output_col; |
- /* Rows of zeroes can be exploited in the same way as we did with columns. |
- * However, the column calculation has created many nonzero AC terms, so |
- * the simplification applies less often (typically 5% to 10% of the time). |
- * And testing floats for zero is relatively expensive, so we don't bother. |
- */ |
- |
- /* Even part */ |
- |
- tmp10 = wsptr[0] + wsptr[4]; |
- tmp11 = wsptr[0] - wsptr[4]; |
- |
- tmp13 = wsptr[2] + wsptr[6]; |
- tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
- |
- tmp0 = tmp10 + tmp13; |
- tmp3 = tmp10 - tmp13; |
- tmp1 = tmp11 + tmp12; |
- tmp2 = tmp11 - tmp12; |
- |
- /* Odd part */ |
- |
- z13 = wsptr[5] + wsptr[3]; |
- z10 = wsptr[5] - wsptr[3]; |
- z11 = wsptr[1] + wsptr[7]; |
- z12 = wsptr[1] - wsptr[7]; |
- |
- tmp7 = z11 + z13; |
- tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
- |
- z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
- tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
- tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
- |
- tmp6 = tmp12 - tmp7; |
- tmp5 = tmp11 - tmp6; |
- tmp4 = tmp10 + tmp5; |
- |
- /* Final output stage: scale down by a factor of 8 and range-limit */ |
- |
- outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) |
- & RANGE_MASK]; |
- outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) |
- & RANGE_MASK]; |
- outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) |
- & RANGE_MASK]; |
- outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) |
- & RANGE_MASK]; |
- outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) |
- & RANGE_MASK]; |
- outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) |
- & RANGE_MASK]; |
- outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) |
- & RANGE_MASK]; |
- outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) |
- & RANGE_MASK]; |
- |
- wsptr += DCTSIZE; /* advance pointer to next row */ |
- } |
-} |
- |
-#endif /* DCT_FLOAT_SUPPORTED */ |