| Index: third_party/libjpeg/jcdctmgr.c
|
| diff --git a/third_party/libjpeg/jcdctmgr.c b/third_party/libjpeg/jcdctmgr.c
|
| deleted file mode 100644
|
| index 61fa79b9e68bcc3e3bfe84b9a50af55a9598214b..0000000000000000000000000000000000000000
|
| --- a/third_party/libjpeg/jcdctmgr.c
|
| +++ /dev/null
|
| @@ -1,387 +0,0 @@
|
| -/*
|
| - * jcdctmgr.c
|
| - *
|
| - * Copyright (C) 1994-1996, Thomas G. Lane.
|
| - * This file is part of the Independent JPEG Group's software.
|
| - * For conditions of distribution and use, see the accompanying README file.
|
| - *
|
| - * This file contains the forward-DCT management logic.
|
| - * This code selects a particular DCT implementation to be used,
|
| - * and it performs related housekeeping chores including coefficient
|
| - * quantization.
|
| - */
|
| -
|
| -#define JPEG_INTERNALS
|
| -#include "jinclude.h"
|
| -#include "jpeglib.h"
|
| -#include "jdct.h" /* Private declarations for DCT subsystem */
|
| -
|
| -
|
| -/* Private subobject for this module */
|
| -
|
| -typedef struct {
|
| - struct jpeg_forward_dct pub; /* public fields */
|
| -
|
| - /* Pointer to the DCT routine actually in use */
|
| - forward_DCT_method_ptr do_dct;
|
| -
|
| - /* The actual post-DCT divisors --- not identical to the quant table
|
| - * entries, because of scaling (especially for an unnormalized DCT).
|
| - * Each table is given in normal array order.
|
| - */
|
| - DCTELEM * divisors[NUM_QUANT_TBLS];
|
| -
|
| -#ifdef DCT_FLOAT_SUPPORTED
|
| - /* Same as above for the floating-point case. */
|
| - float_DCT_method_ptr do_float_dct;
|
| - FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
| -#endif
|
| -} my_fdct_controller;
|
| -
|
| -typedef my_fdct_controller * my_fdct_ptr;
|
| -
|
| -
|
| -/*
|
| - * Initialize for a processing pass.
|
| - * Verify that all referenced Q-tables are present, and set up
|
| - * the divisor table for each one.
|
| - * In the current implementation, DCT of all components is done during
|
| - * the first pass, even if only some components will be output in the
|
| - * first scan. Hence all components should be examined here.
|
| - */
|
| -
|
| -METHODDEF(void)
|
| -start_pass_fdctmgr (j_compress_ptr cinfo)
|
| -{
|
| - my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
| - int ci, qtblno, i;
|
| - jpeg_component_info *compptr;
|
| - JQUANT_TBL * qtbl;
|
| - DCTELEM * dtbl;
|
| -
|
| - for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
| - ci++, compptr++) {
|
| - qtblno = compptr->quant_tbl_no;
|
| - /* Make sure specified quantization table is present */
|
| - if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
| - cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
| - ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
| - qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
| - /* Compute divisors for this quant table */
|
| - /* We may do this more than once for same table, but it's not a big deal */
|
| - switch (cinfo->dct_method) {
|
| -#ifdef DCT_ISLOW_SUPPORTED
|
| - case JDCT_ISLOW:
|
| - /* For LL&M IDCT method, divisors are equal to raw quantization
|
| - * coefficients multiplied by 8 (to counteract scaling).
|
| - */
|
| - if (fdct->divisors[qtblno] == NULL) {
|
| - fdct->divisors[qtblno] = (DCTELEM *)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - DCTSIZE2 * SIZEOF(DCTELEM));
|
| - }
|
| - dtbl = fdct->divisors[qtblno];
|
| - for (i = 0; i < DCTSIZE2; i++) {
|
| - dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
| - }
|
| - break;
|
| -#endif
|
| -#ifdef DCT_IFAST_SUPPORTED
|
| - case JDCT_IFAST:
|
| - {
|
| - /* For AA&N IDCT method, divisors are equal to quantization
|
| - * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
| - * scalefactor[0] = 1
|
| - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
| - * We apply a further scale factor of 8.
|
| - */
|
| -#define CONST_BITS 14
|
| - static const INT16 aanscales[DCTSIZE2] = {
|
| - /* precomputed values scaled up by 14 bits */
|
| - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
| - 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
| - 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
| - 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
| - 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
| - 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
| - 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
| - 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
| - };
|
| - SHIFT_TEMPS
|
| -
|
| - if (fdct->divisors[qtblno] == NULL) {
|
| - fdct->divisors[qtblno] = (DCTELEM *)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - DCTSIZE2 * SIZEOF(DCTELEM));
|
| - }
|
| - dtbl = fdct->divisors[qtblno];
|
| - for (i = 0; i < DCTSIZE2; i++) {
|
| - dtbl[i] = (DCTELEM)
|
| - DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
| - (INT32) aanscales[i]),
|
| - CONST_BITS-3);
|
| - }
|
| - }
|
| - break;
|
| -#endif
|
| -#ifdef DCT_FLOAT_SUPPORTED
|
| - case JDCT_FLOAT:
|
| - {
|
| - /* For float AA&N IDCT method, divisors are equal to quantization
|
| - * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
| - * scalefactor[0] = 1
|
| - * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
| - * We apply a further scale factor of 8.
|
| - * What's actually stored is 1/divisor so that the inner loop can
|
| - * use a multiplication rather than a division.
|
| - */
|
| - FAST_FLOAT * fdtbl;
|
| - int row, col;
|
| - static const double aanscalefactor[DCTSIZE] = {
|
| - 1.0, 1.387039845, 1.306562965, 1.175875602,
|
| - 1.0, 0.785694958, 0.541196100, 0.275899379
|
| - };
|
| -
|
| - if (fdct->float_divisors[qtblno] == NULL) {
|
| - fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
| - }
|
| - fdtbl = fdct->float_divisors[qtblno];
|
| - i = 0;
|
| - for (row = 0; row < DCTSIZE; row++) {
|
| - for (col = 0; col < DCTSIZE; col++) {
|
| - fdtbl[i] = (FAST_FLOAT)
|
| - (1.0 / (((double) qtbl->quantval[i] *
|
| - aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
| - i++;
|
| - }
|
| - }
|
| - }
|
| - break;
|
| -#endif
|
| - default:
|
| - ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| - break;
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Perform forward DCT on one or more blocks of a component.
|
| - *
|
| - * The input samples are taken from the sample_data[] array starting at
|
| - * position start_row/start_col, and moving to the right for any additional
|
| - * blocks. The quantized coefficients are returned in coef_blocks[].
|
| - */
|
| -
|
| -METHODDEF(void)
|
| -forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| - JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
| - JDIMENSION start_row, JDIMENSION start_col,
|
| - JDIMENSION num_blocks)
|
| -/* This version is used for integer DCT implementations. */
|
| -{
|
| - /* This routine is heavily used, so it's worth coding it tightly. */
|
| - my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
| - forward_DCT_method_ptr do_dct = fdct->do_dct;
|
| - DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
| - DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
| - JDIMENSION bi;
|
| -
|
| - sample_data += start_row; /* fold in the vertical offset once */
|
| -
|
| - for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
| - /* Load data into workspace, applying unsigned->signed conversion */
|
| - { register DCTELEM *workspaceptr;
|
| - register JSAMPROW elemptr;
|
| - register int elemr;
|
| -
|
| - workspaceptr = workspace;
|
| - for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
| - elemptr = sample_data[elemr] + start_col;
|
| -#if DCTSIZE == 8 /* unroll the inner loop */
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| -#else
|
| - { register int elemc;
|
| - for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
| - *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| - }
|
| - }
|
| -#endif
|
| - }
|
| - }
|
| -
|
| - /* Perform the DCT */
|
| - (*do_dct) (workspace);
|
| -
|
| - /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
| - { register DCTELEM temp, qval;
|
| - register int i;
|
| - register JCOEFPTR output_ptr = coef_blocks[bi];
|
| -
|
| - for (i = 0; i < DCTSIZE2; i++) {
|
| - qval = divisors[i];
|
| - temp = workspace[i];
|
| - /* Divide the coefficient value by qval, ensuring proper rounding.
|
| - * Since C does not specify the direction of rounding for negative
|
| - * quotients, we have to force the dividend positive for portability.
|
| - *
|
| - * In most files, at least half of the output values will be zero
|
| - * (at default quantization settings, more like three-quarters...)
|
| - * so we should ensure that this case is fast. On many machines,
|
| - * a comparison is enough cheaper than a divide to make a special test
|
| - * a win. Since both inputs will be nonnegative, we need only test
|
| - * for a < b to discover whether a/b is 0.
|
| - * If your machine's division is fast enough, define FAST_DIVIDE.
|
| - */
|
| -#ifdef FAST_DIVIDE
|
| -#define DIVIDE_BY(a,b) a /= b
|
| -#else
|
| -#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
| -#endif
|
| - if (temp < 0) {
|
| - temp = -temp;
|
| - temp += qval>>1; /* for rounding */
|
| - DIVIDE_BY(temp, qval);
|
| - temp = -temp;
|
| - } else {
|
| - temp += qval>>1; /* for rounding */
|
| - DIVIDE_BY(temp, qval);
|
| - }
|
| - output_ptr[i] = (JCOEF) temp;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef DCT_FLOAT_SUPPORTED
|
| -
|
| -METHODDEF(void)
|
| -forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| - JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
| - JDIMENSION start_row, JDIMENSION start_col,
|
| - JDIMENSION num_blocks)
|
| -/* This version is used for floating-point DCT implementations. */
|
| -{
|
| - /* This routine is heavily used, so it's worth coding it tightly. */
|
| - my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
| - float_DCT_method_ptr do_dct = fdct->do_float_dct;
|
| - FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
| - FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
| - JDIMENSION bi;
|
| -
|
| - sample_data += start_row; /* fold in the vertical offset once */
|
| -
|
| - for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
| - /* Load data into workspace, applying unsigned->signed conversion */
|
| - { register FAST_FLOAT *workspaceptr;
|
| - register JSAMPROW elemptr;
|
| - register int elemr;
|
| -
|
| - workspaceptr = workspace;
|
| - for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
| - elemptr = sample_data[elemr] + start_col;
|
| -#if DCTSIZE == 8 /* unroll the inner loop */
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| -#else
|
| - { register int elemc;
|
| - for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
| - *workspaceptr++ = (FAST_FLOAT)
|
| - (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| - }
|
| - }
|
| -#endif
|
| - }
|
| - }
|
| -
|
| - /* Perform the DCT */
|
| - (*do_dct) (workspace);
|
| -
|
| - /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
| - { register FAST_FLOAT temp;
|
| - register int i;
|
| - register JCOEFPTR output_ptr = coef_blocks[bi];
|
| -
|
| - for (i = 0; i < DCTSIZE2; i++) {
|
| - /* Apply the quantization and scaling factor */
|
| - temp = workspace[i] * divisors[i];
|
| - /* Round to nearest integer.
|
| - * Since C does not specify the direction of rounding for negative
|
| - * quotients, we have to force the dividend positive for portability.
|
| - * The maximum coefficient size is +-16K (for 12-bit data), so this
|
| - * code should work for either 16-bit or 32-bit ints.
|
| - */
|
| - output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -#endif /* DCT_FLOAT_SUPPORTED */
|
| -
|
| -
|
| -/*
|
| - * Initialize FDCT manager.
|
| - */
|
| -
|
| -GLOBAL(void)
|
| -jinit_forward_dct (j_compress_ptr cinfo)
|
| -{
|
| - my_fdct_ptr fdct;
|
| - int i;
|
| -
|
| - fdct = (my_fdct_ptr)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - SIZEOF(my_fdct_controller));
|
| - cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
| - fdct->pub.start_pass = start_pass_fdctmgr;
|
| -
|
| - switch (cinfo->dct_method) {
|
| -#ifdef DCT_ISLOW_SUPPORTED
|
| - case JDCT_ISLOW:
|
| - fdct->pub.forward_DCT = forward_DCT;
|
| - fdct->do_dct = jpeg_fdct_islow;
|
| - break;
|
| -#endif
|
| -#ifdef DCT_IFAST_SUPPORTED
|
| - case JDCT_IFAST:
|
| - fdct->pub.forward_DCT = forward_DCT;
|
| - fdct->do_dct = jpeg_fdct_ifast;
|
| - break;
|
| -#endif
|
| -#ifdef DCT_FLOAT_SUPPORTED
|
| - case JDCT_FLOAT:
|
| - fdct->pub.forward_DCT = forward_DCT_float;
|
| - fdct->do_float_dct = jpeg_fdct_float;
|
| - break;
|
| -#endif
|
| - default:
|
| - ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| - break;
|
| - }
|
| -
|
| - /* Mark divisor tables unallocated */
|
| - for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
| - fdct->divisors[i] = NULL;
|
| -#ifdef DCT_FLOAT_SUPPORTED
|
| - fdct->float_divisors[i] = NULL;
|
| -#endif
|
| - }
|
| -}
|
|
|