OLD | NEW |
| (Empty) |
1 /* | |
2 * jcdctmgr.c | |
3 * | |
4 * Copyright (C) 1994-1996, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains the forward-DCT management logic. | |
9 * This code selects a particular DCT implementation to be used, | |
10 * and it performs related housekeeping chores including coefficient | |
11 * quantization. | |
12 */ | |
13 | |
14 #define JPEG_INTERNALS | |
15 #include "jinclude.h" | |
16 #include "jpeglib.h" | |
17 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
18 | |
19 | |
20 /* Private subobject for this module */ | |
21 | |
22 typedef struct { | |
23 struct jpeg_forward_dct pub; /* public fields */ | |
24 | |
25 /* Pointer to the DCT routine actually in use */ | |
26 forward_DCT_method_ptr do_dct; | |
27 | |
28 /* The actual post-DCT divisors --- not identical to the quant table | |
29 * entries, because of scaling (especially for an unnormalized DCT). | |
30 * Each table is given in normal array order. | |
31 */ | |
32 DCTELEM * divisors[NUM_QUANT_TBLS]; | |
33 | |
34 #ifdef DCT_FLOAT_SUPPORTED | |
35 /* Same as above for the floating-point case. */ | |
36 float_DCT_method_ptr do_float_dct; | |
37 FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; | |
38 #endif | |
39 } my_fdct_controller; | |
40 | |
41 typedef my_fdct_controller * my_fdct_ptr; | |
42 | |
43 | |
44 /* | |
45 * Initialize for a processing pass. | |
46 * Verify that all referenced Q-tables are present, and set up | |
47 * the divisor table for each one. | |
48 * In the current implementation, DCT of all components is done during | |
49 * the first pass, even if only some components will be output in the | |
50 * first scan. Hence all components should be examined here. | |
51 */ | |
52 | |
53 METHODDEF(void) | |
54 start_pass_fdctmgr (j_compress_ptr cinfo) | |
55 { | |
56 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |
57 int ci, qtblno, i; | |
58 jpeg_component_info *compptr; | |
59 JQUANT_TBL * qtbl; | |
60 DCTELEM * dtbl; | |
61 | |
62 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
63 ci++, compptr++) { | |
64 qtblno = compptr->quant_tbl_no; | |
65 /* Make sure specified quantization table is present */ | |
66 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | |
67 cinfo->quant_tbl_ptrs[qtblno] == NULL) | |
68 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | |
69 qtbl = cinfo->quant_tbl_ptrs[qtblno]; | |
70 /* Compute divisors for this quant table */ | |
71 /* We may do this more than once for same table, but it's not a big deal */ | |
72 switch (cinfo->dct_method) { | |
73 #ifdef DCT_ISLOW_SUPPORTED | |
74 case JDCT_ISLOW: | |
75 /* For LL&M IDCT method, divisors are equal to raw quantization | |
76 * coefficients multiplied by 8 (to counteract scaling). | |
77 */ | |
78 if (fdct->divisors[qtblno] == NULL) { | |
79 fdct->divisors[qtblno] = (DCTELEM *) | |
80 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
81 DCTSIZE2 * SIZEOF(DCTELEM)); | |
82 } | |
83 dtbl = fdct->divisors[qtblno]; | |
84 for (i = 0; i < DCTSIZE2; i++) { | |
85 dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; | |
86 } | |
87 break; | |
88 #endif | |
89 #ifdef DCT_IFAST_SUPPORTED | |
90 case JDCT_IFAST: | |
91 { | |
92 /* For AA&N IDCT method, divisors are equal to quantization | |
93 * coefficients scaled by scalefactor[row]*scalefactor[col], where | |
94 * scalefactor[0] = 1 | |
95 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |
96 * We apply a further scale factor of 8. | |
97 */ | |
98 #define CONST_BITS 14 | |
99 static const INT16 aanscales[DCTSIZE2] = { | |
100 /* precomputed values scaled up by 14 bits */ | |
101 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |
102 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | |
103 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | |
104 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | |
105 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |
106 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | |
107 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | |
108 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | |
109 }; | |
110 SHIFT_TEMPS | |
111 | |
112 if (fdct->divisors[qtblno] == NULL) { | |
113 fdct->divisors[qtblno] = (DCTELEM *) | |
114 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
115 DCTSIZE2 * SIZEOF(DCTELEM)); | |
116 } | |
117 dtbl = fdct->divisors[qtblno]; | |
118 for (i = 0; i < DCTSIZE2; i++) { | |
119 dtbl[i] = (DCTELEM) | |
120 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | |
121 (INT32) aanscales[i]), | |
122 CONST_BITS-3); | |
123 } | |
124 } | |
125 break; | |
126 #endif | |
127 #ifdef DCT_FLOAT_SUPPORTED | |
128 case JDCT_FLOAT: | |
129 { | |
130 /* For float AA&N IDCT method, divisors are equal to quantization | |
131 * coefficients scaled by scalefactor[row]*scalefactor[col], where | |
132 * scalefactor[0] = 1 | |
133 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |
134 * We apply a further scale factor of 8. | |
135 * What's actually stored is 1/divisor so that the inner loop can | |
136 * use a multiplication rather than a division. | |
137 */ | |
138 FAST_FLOAT * fdtbl; | |
139 int row, col; | |
140 static const double aanscalefactor[DCTSIZE] = { | |
141 1.0, 1.387039845, 1.306562965, 1.175875602, | |
142 1.0, 0.785694958, 0.541196100, 0.275899379 | |
143 }; | |
144 | |
145 if (fdct->float_divisors[qtblno] == NULL) { | |
146 fdct->float_divisors[qtblno] = (FAST_FLOAT *) | |
147 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
148 DCTSIZE2 * SIZEOF(FAST_FLOAT)); | |
149 } | |
150 fdtbl = fdct->float_divisors[qtblno]; | |
151 i = 0; | |
152 for (row = 0; row < DCTSIZE; row++) { | |
153 for (col = 0; col < DCTSIZE; col++) { | |
154 fdtbl[i] = (FAST_FLOAT) | |
155 (1.0 / (((double) qtbl->quantval[i] * | |
156 aanscalefactor[row] * aanscalefactor[col] * 8.0))); | |
157 i++; | |
158 } | |
159 } | |
160 } | |
161 break; | |
162 #endif | |
163 default: | |
164 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
165 break; | |
166 } | |
167 } | |
168 } | |
169 | |
170 | |
171 /* | |
172 * Perform forward DCT on one or more blocks of a component. | |
173 * | |
174 * The input samples are taken from the sample_data[] array starting at | |
175 * position start_row/start_col, and moving to the right for any additional | |
176 * blocks. The quantized coefficients are returned in coef_blocks[]. | |
177 */ | |
178 | |
179 METHODDEF(void) | |
180 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
181 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | |
182 JDIMENSION start_row, JDIMENSION start_col, | |
183 JDIMENSION num_blocks) | |
184 /* This version is used for integer DCT implementations. */ | |
185 { | |
186 /* This routine is heavily used, so it's worth coding it tightly. */ | |
187 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |
188 forward_DCT_method_ptr do_dct = fdct->do_dct; | |
189 DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; | |
190 DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | |
191 JDIMENSION bi; | |
192 | |
193 sample_data += start_row; /* fold in the vertical offset once */ | |
194 | |
195 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | |
196 /* Load data into workspace, applying unsigned->signed conversion */ | |
197 { register DCTELEM *workspaceptr; | |
198 register JSAMPROW elemptr; | |
199 register int elemr; | |
200 | |
201 workspaceptr = workspace; | |
202 for (elemr = 0; elemr < DCTSIZE; elemr++) { | |
203 elemptr = sample_data[elemr] + start_col; | |
204 #if DCTSIZE == 8 /* unroll the inner loop */ | |
205 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
206 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
207 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
208 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
209 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
210 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
211 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
212 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
213 #else | |
214 { register int elemc; | |
215 for (elemc = DCTSIZE; elemc > 0; elemc--) { | |
216 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | |
217 } | |
218 } | |
219 #endif | |
220 } | |
221 } | |
222 | |
223 /* Perform the DCT */ | |
224 (*do_dct) (workspace); | |
225 | |
226 /* Quantize/descale the coefficients, and store into coef_blocks[] */ | |
227 { register DCTELEM temp, qval; | |
228 register int i; | |
229 register JCOEFPTR output_ptr = coef_blocks[bi]; | |
230 | |
231 for (i = 0; i < DCTSIZE2; i++) { | |
232 qval = divisors[i]; | |
233 temp = workspace[i]; | |
234 /* Divide the coefficient value by qval, ensuring proper rounding. | |
235 * Since C does not specify the direction of rounding for negative | |
236 * quotients, we have to force the dividend positive for portability. | |
237 * | |
238 * In most files, at least half of the output values will be zero | |
239 * (at default quantization settings, more like three-quarters...) | |
240 * so we should ensure that this case is fast. On many machines, | |
241 * a comparison is enough cheaper than a divide to make a special test | |
242 * a win. Since both inputs will be nonnegative, we need only test | |
243 * for a < b to discover whether a/b is 0. | |
244 * If your machine's division is fast enough, define FAST_DIVIDE. | |
245 */ | |
246 #ifdef FAST_DIVIDE | |
247 #define DIVIDE_BY(a,b) a /= b | |
248 #else | |
249 #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 | |
250 #endif | |
251 if (temp < 0) { | |
252 temp = -temp; | |
253 temp += qval>>1; /* for rounding */ | |
254 DIVIDE_BY(temp, qval); | |
255 temp = -temp; | |
256 } else { | |
257 temp += qval>>1; /* for rounding */ | |
258 DIVIDE_BY(temp, qval); | |
259 } | |
260 output_ptr[i] = (JCOEF) temp; | |
261 } | |
262 } | |
263 } | |
264 } | |
265 | |
266 | |
267 #ifdef DCT_FLOAT_SUPPORTED | |
268 | |
269 METHODDEF(void) | |
270 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
271 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | |
272 JDIMENSION start_row, JDIMENSION start_col, | |
273 JDIMENSION num_blocks) | |
274 /* This version is used for floating-point DCT implementations. */ | |
275 { | |
276 /* This routine is heavily used, so it's worth coding it tightly. */ | |
277 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |
278 float_DCT_method_ptr do_dct = fdct->do_float_dct; | |
279 FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; | |
280 FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | |
281 JDIMENSION bi; | |
282 | |
283 sample_data += start_row; /* fold in the vertical offset once */ | |
284 | |
285 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | |
286 /* Load data into workspace, applying unsigned->signed conversion */ | |
287 { register FAST_FLOAT *workspaceptr; | |
288 register JSAMPROW elemptr; | |
289 register int elemr; | |
290 | |
291 workspaceptr = workspace; | |
292 for (elemr = 0; elemr < DCTSIZE; elemr++) { | |
293 elemptr = sample_data[elemr] + start_col; | |
294 #if DCTSIZE == 8 /* unroll the inner loop */ | |
295 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
296 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
297 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
298 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
299 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
300 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
301 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
302 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
303 #else | |
304 { register int elemc; | |
305 for (elemc = DCTSIZE; elemc > 0; elemc--) { | |
306 *workspaceptr++ = (FAST_FLOAT) | |
307 (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | |
308 } | |
309 } | |
310 #endif | |
311 } | |
312 } | |
313 | |
314 /* Perform the DCT */ | |
315 (*do_dct) (workspace); | |
316 | |
317 /* Quantize/descale the coefficients, and store into coef_blocks[] */ | |
318 { register FAST_FLOAT temp; | |
319 register int i; | |
320 register JCOEFPTR output_ptr = coef_blocks[bi]; | |
321 | |
322 for (i = 0; i < DCTSIZE2; i++) { | |
323 /* Apply the quantization and scaling factor */ | |
324 temp = workspace[i] * divisors[i]; | |
325 /* Round to nearest integer. | |
326 * Since C does not specify the direction of rounding for negative | |
327 * quotients, we have to force the dividend positive for portability. | |
328 * The maximum coefficient size is +-16K (for 12-bit data), so this | |
329 * code should work for either 16-bit or 32-bit ints. | |
330 */ | |
331 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | |
332 } | |
333 } | |
334 } | |
335 } | |
336 | |
337 #endif /* DCT_FLOAT_SUPPORTED */ | |
338 | |
339 | |
340 /* | |
341 * Initialize FDCT manager. | |
342 */ | |
343 | |
344 GLOBAL(void) | |
345 jinit_forward_dct (j_compress_ptr cinfo) | |
346 { | |
347 my_fdct_ptr fdct; | |
348 int i; | |
349 | |
350 fdct = (my_fdct_ptr) | |
351 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
352 SIZEOF(my_fdct_controller)); | |
353 cinfo->fdct = (struct jpeg_forward_dct *) fdct; | |
354 fdct->pub.start_pass = start_pass_fdctmgr; | |
355 | |
356 switch (cinfo->dct_method) { | |
357 #ifdef DCT_ISLOW_SUPPORTED | |
358 case JDCT_ISLOW: | |
359 fdct->pub.forward_DCT = forward_DCT; | |
360 fdct->do_dct = jpeg_fdct_islow; | |
361 break; | |
362 #endif | |
363 #ifdef DCT_IFAST_SUPPORTED | |
364 case JDCT_IFAST: | |
365 fdct->pub.forward_DCT = forward_DCT; | |
366 fdct->do_dct = jpeg_fdct_ifast; | |
367 break; | |
368 #endif | |
369 #ifdef DCT_FLOAT_SUPPORTED | |
370 case JDCT_FLOAT: | |
371 fdct->pub.forward_DCT = forward_DCT_float; | |
372 fdct->do_float_dct = jpeg_fdct_float; | |
373 break; | |
374 #endif | |
375 default: | |
376 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
377 break; | |
378 } | |
379 | |
380 /* Mark divisor tables unallocated */ | |
381 for (i = 0; i < NUM_QUANT_TBLS; i++) { | |
382 fdct->divisors[i] = NULL; | |
383 #ifdef DCT_FLOAT_SUPPORTED | |
384 fdct->float_divisors[i] = NULL; | |
385 #endif | |
386 } | |
387 } | |
OLD | NEW |