Index: src/codec/SkPngFilters.cpp |
diff --git a/src/codec/SkPngFilters.cpp b/src/codec/SkPngFilters.cpp |
index 472123fa15e6c6010eda52f1b37efd49ab06068b..bd75eb8046cf70f2621ce085f2f7ad4d8c427504 100644 |
--- a/src/codec/SkPngFilters.cpp |
+++ b/src/codec/SkPngFilters.cpp |
@@ -16,157 +16,254 @@ |
#if defined(__SSE2__) |
- template <int bpp> |
- static __m128i load(const void* p) { |
- static_assert(bpp <= 4, ""); |
+static __m128i load3(const void* p) { |
+ uint32_t packed; |
+ memcpy(&packed, p, 3); |
+ return _mm_cvtsi32_si128(packed); |
+} |
- uint32_t packed; |
- memcpy(&packed, p, bpp); |
- return _mm_cvtsi32_si128(packed); |
- } |
+static __m128i load4(const void* p) { |
+ uint32_t packed; |
+ memcpy(&packed, p, 4); |
+ return _mm_cvtsi32_si128(packed); |
mtklein
2016/02/16 14:11:57
Now that we've split these apart, we might conside
|
+} |
- template <int bpp> |
- static void store(void* p, __m128i v) { |
- static_assert(bpp <= 4, ""); |
+static void store3(void* p, __m128i v) { |
+ uint32_t packed = _mm_cvtsi128_si32(v); |
+ memcpy(p, &packed, 3); |
+} |
- uint32_t packed = _mm_cvtsi128_si32(v); |
- memcpy(p, &packed, bpp); |
- } |
+static void store4(void* p, __m128i v) { |
+ uint32_t packed = _mm_cvtsi128_si32(v); |
+ memcpy(p, &packed, 4); |
+} |
- template <int bpp> |
- static void sk_sub_sse2(png_row_infop row_info, uint8_t* row, const uint8_t*) { |
- // The Sub filter predicts each pixel as the previous pixel, a. |
- // There is no pixel to the left of the first pixel. It's encoded directly. |
- // That works with our main loop if we just say that left pixel was zero. |
- __m128i a, d = _mm_setzero_si128(); |
- |
- int rb = row_info->rowbytes; |
- while (rb > 0) { |
- a = d; d = load<bpp>(row); |
- d = _mm_add_epi8(d, a); |
- store<bpp>(row, d); |
- |
- row += bpp; |
- rb -= bpp; |
- } |
- } |
+void sk_sub3_sse2(png_row_infop row_info, uint8_t* row, |
mtklein
2016/02/16 14:11:57
Why do these guys go to two lines? Wouldn't it on
msarett
2016/02/16 14:48:59
Not sure. I copied the style of the signatures fr
|
+ const uint8_t* prev) |
+{ |
+ // The Sub filter predicts each pixel as the previous pixel, a. |
+ // There is no pixel to the left of the first pixel. It's encoded directly. |
+ // That works with our main loop if we just say that left pixel was zero. |
+ __m128i a, d = _mm_setzero_si128(); |
- template <int bpp> |
- void sk_avg_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- // The Avg filter predicts each pixel as the (truncated) average of a and b. |
- // There's no pixel to the left of the first pixel. Luckily, it's |
- // predicted to be half of the pixel above it. So again, this works |
- // perfectly with our loop if we make sure a starts at zero. |
- const __m128i zero = _mm_setzero_si128(); |
- __m128i b; |
- __m128i a, d = zero; |
- |
- int rb = row_info->rowbytes; |
- while (rb > 0) { |
- b = load<bpp>(prev); |
- a = d; d = load<bpp>(row ); |
- |
- // PNG requires a truncating average here, so sadly we can't just use _mm_avg_epu8... |
- __m128i avg = _mm_avg_epu8(a,b); |
- // ...but we can fix it up by subtracting off 1 if it rounded up. |
- avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1))); |
- |
- d = _mm_add_epi8(d, avg); |
- store<bpp>(row, d); |
- |
- prev += bpp; |
- row += bpp; |
- rb -= bpp; |
- } |
- } |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ a = d; d = load3(row); |
+ d = _mm_add_epi8(d, a); |
+ store3(row, d); |
- // Returns |x| for 16-bit lanes. |
- static __m128i abs_i16(__m128i x) { |
- #if defined(__SSSE3__) |
- return _mm_abs_epi16(x); |
- #else |
- // Read this all as, return x<0 ? -x : x. |
- // To negate two's complement, you flip all the bits then add 1. |
- __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); |
- x = _mm_xor_si128(x, is_negative); // Flip negative lanes. |
- x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); // +1 to negative lanes, else +0. |
- return x; |
- #endif |
+ row += 3; |
+ rb -= 3; |
} |
+} |
- // Bytewise c ? t : e. |
- static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { |
- #if 0 && defined(__SSE4_1__) // Make sure we have a bot testing this before enabling. |
- return _mm_blendv_epi8(e,t,c); |
- #else |
- return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); |
- #endif |
- } |
+void sk_sub4_sse2(png_row_infop row_info, uint8_t* row, |
+ const uint8_t* prev) |
+{ |
+ // The Sub filter predicts each pixel as the previous pixel, a. |
+ // There is no pixel to the left of the first pixel. It's encoded directly. |
+ // That works with our main loop if we just say that left pixel was zero. |
+ __m128i a, d = _mm_setzero_si128(); |
- template <int bpp> |
- void sk_paeth_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- // Paeth tries to predict pixel d using the pixel to the left of it, a, |
- // and two pixels from the previous row, b and c: |
- // prev: c b |
- // row: a d |
- // The Paeth function predicts d to be whichever of a, b, or c is nearest to p=a+b-c. |
- |
- // The first pixel has no left context, and so uses an Up filter, p = b. |
- // This works naturally with our main loop's p = a+b-c if we force a and c to zero. |
- // Here we zero b and d, which become c and a respectively at the start of the loop. |
- const __m128i zero = _mm_setzero_si128(); |
- __m128i c, b = zero, |
- a, d = zero; |
- |
- int rb = row_info->rowbytes; |
- while (rb > 0) { |
- // It's easiest to do this math (particularly, deal with pc) with 16-bit intermediates. |
- c = b; b = _mm_unpacklo_epi8(load<bpp>(prev), zero); |
- a = d; d = _mm_unpacklo_epi8(load<bpp>(row ), zero); |
- |
- __m128i pa = _mm_sub_epi16(b,c), // (p-a) == (a+b-c - a) == (b-c) |
- pb = _mm_sub_epi16(a,c), // (p-b) == (a+b-c - b) == (a-c) |
- pc = _mm_add_epi16(pa,pb); // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) |
- |
- pa = abs_i16(pa); // |p-a| |
- pb = abs_i16(pb); // |p-b| |
- pc = abs_i16(pc); // |p-c| |
- |
- __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); |
- |
- // Paeth breaks ties favoring a over b over c. |
- __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, |
- if_then_else(_mm_cmpeq_epi16(smallest, pb), b, |
- c)); |
- |
- d = _mm_add_epi8(d, nearest); // Note `_epi8`: we need addition to wrap modulo 255. |
- store<bpp>(row, _mm_packus_epi16(d,d)); |
- |
- prev += bpp; |
- row += bpp; |
- rb -= bpp; |
- } |
- } |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ a = d; d = load4(row); |
+ d = _mm_add_epi8(d, a); |
+ store4(row, d); |
- void sk_sub3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- sk_sub_sse2<3>(row_info, row, prev); |
- } |
- void sk_sub4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- sk_sub_sse2<4>(row_info, row, prev); |
+ row += 4; |
+ rb -= 4; |
} |
+} |
+ |
+void sk_avg3_sse2(png_row_infop row_info, uint8_t* row, |
+ const uint8_t* prev) |
+{ |
+ // The Avg filter predicts each pixel as the (truncated) average of a and b. |
+ // There's no pixel to the left of the first pixel. Luckily, it's |
+ // predicted to be half of the pixel above it. So again, this works |
+ // perfectly with our loop if we make sure a starts at zero. |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i b; |
mtklein
2016/02/16 14:11:57
We might want to scoot b over a few columns right
msarett
2016/02/16 14:48:59
Done.
|
+ __m128i a, d = zero; |
- void sk_avg3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- sk_avg_sse2<3>(row_info, row, prev); |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ b = load3(prev); |
+ a = d; d = load3(row); |
+ |
+ // PNG requires a truncating average here, so sadly we can't just use |
+ // _mm_avg_epu8... |
+ __m128i avg = _mm_avg_epu8(a,b); |
+ // ...but we can fix it up by subtracting off 1 if it rounded up. |
+ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), |
+ _mm_set1_epi8(1))); |
+ |
+ d = _mm_add_epi8(d, avg); |
+ store3(row, d); |
+ |
+ prev += 3; |
+ row += 3; |
+ rb -= 3; |
} |
- void sk_avg4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- sk_avg_sse2<4>(row_info, row, prev); |
+} |
+void sk_avg4_sse2(png_row_infop row_info, uint8_t* row, |
+ const uint8_t* prev) |
+{ |
+ // The Avg filter predicts each pixel as the (truncated) average of a and b. |
+ // There's no pixel to the left of the first pixel. Luckily, it's |
+ // predicted to be half of the pixel above it. So again, this works |
+ // perfectly with our loop if we make sure a starts at zero. |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i b; |
+ __m128i a, d = zero; |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ b = load4(prev); |
+ a = d; d = load4(row); |
+ |
+ // PNG requires a truncating average here, so sadly we can't just use |
+ // _mm_avg_epu8... |
+ __m128i avg = _mm_avg_epu8(a,b); |
+ // ...but we can fix it up by subtracting off 1 if it rounded up. |
+ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), |
+ _mm_set1_epi8(1))); |
+ |
+ d = _mm_add_epi8(d, avg); |
+ store4(row, d); |
+ |
+ prev += 4; |
+ row += 4; |
+ rb -= 4; |
} |
+} |
- void sk_paeth3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- sk_paeth_sse2<3>(row_info, row, prev); |
+// Returns |x| for 16-bit lanes. |
+static __m128i abs_i16(__m128i x) { |
+#if defined(__SSSE3__) |
+ return _mm_abs_epi16(x); |
+#else |
+ // Read this all as, return x<0 ? -x : x. |
+ // To negate two's complement, you flip all the bits then add 1. |
+ __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); |
+ // Flip negative lanes. |
+ x = _mm_xor_si128(x, is_negative); |
+ // +1 to negative lanes, else +0. |
+ x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); |
+ return x; |
+#endif |
+} |
+ |
+// Bytewise c ? t : e. |
+static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { |
+#if defined(__SSE4_1__) |
+ return _mm_blendv_epi8(e,t,c); |
+#else |
+ return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); |
+#endif |
+} |
+ |
+void sk_paeth3_sse2(png_row_infop row_info, uint8_t* row, |
+ const uint8_t* prev) |
+{ |
+ // Paeth tries to predict pixel d using the pixel to the left of it, a, |
+ // and two pixels from the previous row, b and c: |
+ // prev: c b |
+ // row: a d |
+ // The Paeth function predicts d to be whichever of a, b, or c is nearest to |
+ // p=a+b-c. The first pixel has no left context, and so uses an Up filter, |
+ // p = b. This works naturally with our main loop's p = a+b-c if we force a |
+ // and c to zero. Here we zero b and d, which become c and a respectively |
+ // at the start of the loop. |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i c, b = zero, |
+ a, d = zero; |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ // It's easiest to do this math (particularly, deal with pc) with 16-bit |
+ // intermediates. |
+ b = load3(prev); |
+ d = load3(row); |
mtklein
2016/02/16 14:11:57
I think this breaks things by loading new values f
msarett
2016/02/16 14:48:59
Done.
|
+ c = b; b = _mm_unpacklo_epi8(b, zero); |
+ a = d; d = _mm_unpacklo_epi8(d, zero); |
+ __m128i pa = _mm_sub_epi16(b,c), |
+ // (p-a) == (a+b-c - a) == (b-c) |
mtklein
2016/02/16 14:11:57
Moving these comments around and changing the alig
msarett
2016/02/16 14:48:59
Done.
|
+ pb = _mm_sub_epi16(a,c), |
+ // (p-b) == (a+b-c - b) == (a-c) |
+ pc = _mm_add_epi16(pa,pb); |
+ // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) |
+ |
+ pa = abs_i16(pa);// |p-a| |
+ pb = abs_i16(pb);// |p-b| |
+ pc = abs_i16(pc);// |p-c| |
+ |
+ __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); |
+ |
+ // Paeth breaks ties favoring a over b over c. |
+ __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, |
+ if_then_else(_mm_cmpeq_epi16(smallest, pb), b, |
mtklein
2016/02/16 14:11:57
I think this hurts readability to indent like this
msarett
2016/02/16 14:48:58
Done.
|
+ c)); |
+ |
+ // Note `_epi8`: we need addition to wrap modulo 255. |
+ d = _mm_add_epi8(d, nearest); |
+ store3(row, _mm_packus_epi16(d,d)); |
+ prev += 3; |
+ row += 3; |
+ rb -= 3; |
} |
- void sk_paeth4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { |
- sk_paeth_sse2<4>(row_info, row, prev); |
+} |
+ |
+void sk_paeth4_sse2(png_row_infop row_info, uint8_t* row, |
+ const uint8_t* prev) |
+{ |
+ // Paeth tries to predict pixel d using the pixel to the left of it, a, |
+ // and two pixels from the previous row, b and c: |
+ // prev: c b |
+ // row: a d |
+ // The Paeth function predicts d to be whichever of a, b, or c is nearest to |
+ // p=a+b-c. The first pixel has no left context, and so uses an Up filter, |
+ // p = b. This works naturally with our main loop's p = a+b-c if we force a |
+ // and c to zero. Here we zero b and d, which become c and a respectively |
+ // at the start of the loop. |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i c, b = zero, |
+ a, d = zero; |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ // It's easiest to do this math (particularly, deal with pc) with 16-bit |
+ // intermediates. |
+ b = load4(prev); |
+ d = load4(row); |
+ c = b; b = _mm_unpacklo_epi8(b, zero); |
+ a = d; d = _mm_unpacklo_epi8(d, zero); |
+ __m128i pa = _mm_sub_epi16(b,c), |
+ // (p-a) == (a+b-c - a) == (b-c) |
+ pb = _mm_sub_epi16(a,c), |
+ // (p-b) == (a+b-c - b) == (a-c) |
+ pc = _mm_add_epi16(pa,pb); |
+ // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) |
+ |
+ pa = abs_i16(pa);// |p-a| |
+ pb = abs_i16(pb);// |p-b| |
+ pc = abs_i16(pc);// |p-c| |
+ |
+ __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); |
+ |
+ // Paeth breaks ties favoring a over b over c. |
+ __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, |
+ if_then_else(_mm_cmpeq_epi16(smallest, pb), b, |
+ c)); |
+ |
+ // Note `_epi8`: we need addition to wrap modulo 255. |
+ d = _mm_add_epi8(d, nearest); |
+ store4(row, _mm_packus_epi16(d,d)); |
+ prev += 4; |
+ row += 4; |
+ rb -= 4; |
} |
+} |
#endif |