OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkPngFilters.h" | 8 #include "SkPngFilters.h" |
9 | 9 |
10 // Functions in this file look at most 3 pixels (a,b,c) to predict the fourth (d ). | 10 // Functions in this file look at most 3 pixels (a,b,c) to predict the fourth (d ). |
11 // They're positioned like this: | 11 // They're positioned like this: |
12 // prev: c b | 12 // prev: c b |
13 // row: a d | 13 // row: a d |
14 // The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be which ever | 14 // The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be which ever |
15 // of a, b, or c is closest to p=a+b-c. (Up also exists, predicting d=b.) | 15 // of a, b, or c is closest to p=a+b-c. (Up also exists, predicting d=b.) |
16 | 16 |
17 #if defined(__SSE2__) | 17 #if defined(__SSE2__) |
18 | 18 |
19 template <int bpp> | 19 static __m128i load3(const void* p) { |
20 static __m128i load(const void* p) { | 20 uint32_t packed; |
21 static_assert(bpp <= 4, ""); | 21 memcpy(&packed, p, 3); |
22 | 22 return _mm_cvtsi32_si128(packed); |
23 uint32_t packed; | 23 } |
24 memcpy(&packed, p, bpp); | 24 |
25 return _mm_cvtsi32_si128(packed); | 25 static __m128i load4(const void* p) { |
26 } | 26 uint32_t packed; |
27 | 27 memcpy(&packed, p, 4); |
28 template <int bpp> | 28 return _mm_cvtsi32_si128(packed); |
mtklein
2016/02/16 14:11:57
Now that we've split these apart, we might conside
| |
29 static void store(void* p, __m128i v) { | 29 } |
30 static_assert(bpp <= 4, ""); | 30 |
31 | 31 static void store3(void* p, __m128i v) { |
32 uint32_t packed = _mm_cvtsi128_si32(v); | 32 uint32_t packed = _mm_cvtsi128_si32(v); |
33 memcpy(p, &packed, bpp); | 33 memcpy(p, &packed, 3); |
34 } | 34 } |
35 | 35 |
36 template <int bpp> | 36 static void store4(void* p, __m128i v) { |
37 static void sk_sub_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* ) { | 37 uint32_t packed = _mm_cvtsi128_si32(v); |
38 // The Sub filter predicts each pixel as the previous pixel, a. | 38 memcpy(p, &packed, 4); |
39 // There is no pixel to the left of the first pixel. It's encoded direc tly. | 39 } |
40 // That works with our main loop if we just say that left pixel was zero . | 40 |
41 __m128i a, d = _mm_setzero_si128(); | 41 void sk_sub3_sse2(png_row_infop row_info, uint8_t* row, |
mtklein
2016/02/16 14:11:57
Why do these guys go to two lines? Wouldn't it on
msarett
2016/02/16 14:48:59
Not sure. I copied the style of the signatures fr
| |
42 | 42 const uint8_t* prev) |
43 int rb = row_info->rowbytes; | 43 { |
44 while (rb > 0) { | 44 // The Sub filter predicts each pixel as the previous pixel, a. |
45 a = d; d = load<bpp>(row); | 45 // There is no pixel to the left of the first pixel. It's encoded directly. |
46 d = _mm_add_epi8(d, a); | 46 // That works with our main loop if we just say that left pixel was zero. |
47 store<bpp>(row, d); | 47 __m128i a, d = _mm_setzero_si128(); |
48 | 48 |
49 row += bpp; | 49 int rb = row_info->rowbytes; |
50 rb -= bpp; | 50 while (rb > 0) { |
51 } | 51 a = d; d = load3(row); |
52 } | 52 d = _mm_add_epi8(d, a); |
53 | 53 store3(row, d); |
54 template <int bpp> | 54 |
55 void sk_avg_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { | 55 row += 3; |
56 // The Avg filter predicts each pixel as the (truncated) average of a an d b. | 56 rb -= 3; |
57 // There's no pixel to the left of the first pixel. Luckily, it's | 57 } |
58 // predicted to be half of the pixel above it. So again, this works | 58 } |
59 // perfectly with our loop if we make sure a starts at zero. | 59 |
60 const __m128i zero = _mm_setzero_si128(); | 60 void sk_sub4_sse2(png_row_infop row_info, uint8_t* row, |
61 __m128i b; | 61 const uint8_t* prev) |
62 __m128i a, d = zero; | 62 { |
63 | 63 // The Sub filter predicts each pixel as the previous pixel, a. |
64 int rb = row_info->rowbytes; | 64 // There is no pixel to the left of the first pixel. It's encoded directly. |
65 while (rb > 0) { | 65 // That works with our main loop if we just say that left pixel was zero. |
66 b = load<bpp>(prev); | 66 __m128i a, d = _mm_setzero_si128(); |
67 a = d; d = load<bpp>(row ); | 67 |
68 | 68 int rb = row_info->rowbytes; |
69 // PNG requires a truncating average here, so sadly we can't just us e _mm_avg_epu8... | 69 while (rb > 0) { |
70 __m128i avg = _mm_avg_epu8(a,b); | 70 a = d; d = load4(row); |
71 // ...but we can fix it up by subtracting off 1 if it rounded up. | 71 d = _mm_add_epi8(d, a); |
72 avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_e pi8(1))); | 72 store4(row, d); |
73 | 73 |
74 d = _mm_add_epi8(d, avg); | 74 row += 4; |
75 store<bpp>(row, d); | 75 rb -= 4; |
76 | 76 } |
77 prev += bpp; | 77 } |
78 row += bpp; | 78 |
79 rb -= bpp; | 79 void sk_avg3_sse2(png_row_infop row_info, uint8_t* row, |
80 } | 80 const uint8_t* prev) |
81 } | 81 { |
82 | 82 // The Avg filter predicts each pixel as the (truncated) average of a and b. |
83 // Returns |x| for 16-bit lanes. | 83 // There's no pixel to the left of the first pixel. Luckily, it's |
84 static __m128i abs_i16(__m128i x) { | 84 // predicted to be half of the pixel above it. So again, this works |
85 #if defined(__SSSE3__) | 85 // perfectly with our loop if we make sure a starts at zero. |
86 return _mm_abs_epi16(x); | 86 const __m128i zero = _mm_setzero_si128(); |
87 #else | 87 __m128i b; |
mtklein
2016/02/16 14:11:57
We might want to scoot b over a few columns right
msarett
2016/02/16 14:48:59
Done.
| |
88 // Read this all as, return x<0 ? -x : x. | 88 __m128i a, d = zero; |
89 // To negate two's complement, you flip all the bits then add 1. | 89 |
90 __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); | 90 int rb = row_info->rowbytes; |
91 x = _mm_xor_si128(x, is_negative); // Flip negative lanes. | 91 while (rb > 0) { |
92 x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); // +1 to negativ e lanes, else +0. | 92 b = load3(prev); |
93 return x; | 93 a = d; d = load3(row); |
94 #endif | 94 |
95 } | 95 // PNG requires a truncating average here, so sadly we can't just use |
96 | 96 // _mm_avg_epu8... |
97 // Bytewise c ? t : e. | 97 __m128i avg = _mm_avg_epu8(a,b); |
98 static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { | 98 // ...but we can fix it up by subtracting off 1 if it rounded up. |
99 #if 0 && defined(__SSE4_1__) // Make sure we have a bot testing this before enabling. | 99 avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), |
100 return _mm_blendv_epi8(e,t,c); | 100 _mm_set1_epi8(1))); |
101 #else | 101 |
102 return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); | 102 d = _mm_add_epi8(d, avg); |
103 #endif | 103 store3(row, d); |
104 } | 104 |
105 | 105 prev += 3; |
106 template <int bpp> | 106 row += 3; |
107 void sk_paeth_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev ) { | 107 rb -= 3; |
108 // Paeth tries to predict pixel d using the pixel to the left of it, a, | 108 } |
109 // and two pixels from the previous row, b and c: | 109 } |
110 // prev: c b | 110 void sk_avg4_sse2(png_row_infop row_info, uint8_t* row, |
111 // row: a d | 111 const uint8_t* prev) |
112 // The Paeth function predicts d to be whichever of a, b, or c is neares t to p=a+b-c. | 112 { |
113 | 113 // The Avg filter predicts each pixel as the (truncated) average of a and b. |
114 // The first pixel has no left context, and so uses an Up filter, p = b. | 114 // There's no pixel to the left of the first pixel. Luckily, it's |
115 // This works naturally with our main loop's p = a+b-c if we force a and c to zero. | 115 // predicted to be half of the pixel above it. So again, this works |
116 // Here we zero b and d, which become c and a respectively at the start of the loop. | 116 // perfectly with our loop if we make sure a starts at zero. |
117 const __m128i zero = _mm_setzero_si128(); | 117 const __m128i zero = _mm_setzero_si128(); |
118 __m128i c, b = zero, | 118 __m128i b; |
119 a, d = zero; | 119 __m128i a, d = zero; |
120 | 120 |
121 int rb = row_info->rowbytes; | 121 int rb = row_info->rowbytes; |
122 while (rb > 0) { | 122 while (rb > 0) { |
123 // It's easiest to do this math (particularly, deal with pc) with 16 -bit intermediates. | 123 b = load4(prev); |
124 c = b; b = _mm_unpacklo_epi8(load<bpp>(prev), zero); | 124 a = d; d = load4(row); |
125 a = d; d = _mm_unpacklo_epi8(load<bpp>(row ), zero); | 125 |
126 | 126 // PNG requires a truncating average here, so sadly we can't just use |
127 __m128i pa = _mm_sub_epi16(b,c), // (p-a) == (a+b-c - a) == (b-c) | 127 // _mm_avg_epu8... |
128 pb = _mm_sub_epi16(a,c), // (p-b) == (a+b-c - b) == (a-c) | 128 __m128i avg = _mm_avg_epu8(a,b); |
129 pc = _mm_add_epi16(pa,pb); // (p-c) == (a+b-c - c) == (a+b-c -c) == (b-c)+(a-c) | 129 // ...but we can fix it up by subtracting off 1 if it rounded up. |
130 | 130 avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), |
131 pa = abs_i16(pa); // |p-a| | 131 _mm_set1_epi8(1))); |
132 pb = abs_i16(pb); // |p-b| | 132 |
133 pc = abs_i16(pc); // |p-c| | 133 d = _mm_add_epi8(d, avg); |
134 | 134 store4(row, d); |
135 __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); | 135 |
136 | 136 prev += 4; |
137 // Paeth breaks ties favoring a over b over c. | 137 row += 4; |
138 __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, | 138 rb -= 4; |
139 if_then_else(_mm_cmpeq_epi16(smallest, pb), b, | 139 } |
140 c)); | 140 } |
141 | 141 |
142 d = _mm_add_epi8(d, nearest); // Note `_epi8`: we need addition to wrap modulo 255. | 142 // Returns |x| for 16-bit lanes. |
143 store<bpp>(row, _mm_packus_epi16(d,d)); | 143 static __m128i abs_i16(__m128i x) { |
144 | 144 #if defined(__SSSE3__) |
145 prev += bpp; | 145 return _mm_abs_epi16(x); |
146 row += bpp; | 146 #else |
147 rb -= bpp; | 147 // Read this all as, return x<0 ? -x : x. |
148 } | 148 // To negate two's complement, you flip all the bits then add 1. |
149 } | 149 __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); |
150 | 150 // Flip negative lanes. |
151 void sk_sub3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { | 151 x = _mm_xor_si128(x, is_negative); |
152 sk_sub_sse2<3>(row_info, row, prev); | 152 // +1 to negative lanes, else +0. |
153 } | 153 x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); |
154 void sk_sub4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { | 154 return x; |
155 sk_sub_sse2<4>(row_info, row, prev); | |
156 } | |
157 | |
158 void sk_avg3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { | |
159 sk_avg_sse2<3>(row_info, row, prev); | |
160 } | |
161 void sk_avg4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) { | |
162 sk_avg_sse2<4>(row_info, row, prev); | |
163 } | |
164 | |
165 void sk_paeth3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* pre v) { | |
166 sk_paeth_sse2<3>(row_info, row, prev); | |
167 } | |
168 void sk_paeth4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* pre v) { | |
169 sk_paeth_sse2<4>(row_info, row, prev); | |
170 } | |
171 | |
172 #endif | 155 #endif |
156 } | |
157 | |
158 // Bytewise c ? t : e. | |
159 static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { | |
160 #if defined(__SSE4_1__) | |
161 return _mm_blendv_epi8(e,t,c); | |
162 #else | |
163 return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); | |
164 #endif | |
165 } | |
166 | |
167 void sk_paeth3_sse2(png_row_infop row_info, uint8_t* row, | |
168 const uint8_t* prev) | |
169 { | |
170 // Paeth tries to predict pixel d using the pixel to the left of it, a, | |
171 // and two pixels from the previous row, b and c: | |
172 // prev: c b | |
173 // row: a d | |
174 // The Paeth function predicts d to be whichever of a, b, or c is nearest to | |
175 // p=a+b-c. The first pixel has no left context, and so uses an Up filter, | |
176 // p = b. This works naturally with our main loop's p = a+b-c if we force a | |
177 // and c to zero. Here we zero b and d, which become c and a respectively | |
178 // at the start of the loop. | |
179 const __m128i zero = _mm_setzero_si128(); | |
180 __m128i c, b = zero, | |
181 a, d = zero; | |
182 | |
183 int rb = row_info->rowbytes; | |
184 while (rb > 0) { | |
185 // It's easiest to do this math (particularly, deal with pc) with 16-bit | |
186 // intermediates. | |
187 b = load3(prev); | |
188 d = load3(row); | |
mtklein
2016/02/16 14:11:57
I think this breaks things by loading new values f
msarett
2016/02/16 14:48:59
Done.
| |
189 c = b; b = _mm_unpacklo_epi8(b, zero); | |
190 a = d; d = _mm_unpacklo_epi8(d, zero); | |
191 __m128i pa = _mm_sub_epi16(b,c), | |
192 // (p-a) == (a+b-c - a) == (b-c) | |
mtklein
2016/02/16 14:11:57
Moving these comments around and changing the alig
msarett
2016/02/16 14:48:59
Done.
| |
193 pb = _mm_sub_epi16(a,c), | |
194 // (p-b) == (a+b-c - b) == (a-c) | |
195 pc = _mm_add_epi16(pa,pb); | |
196 // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) | |
197 | |
198 pa = abs_i16(pa);// |p-a| | |
199 pb = abs_i16(pb);// |p-b| | |
200 pc = abs_i16(pc);// |p-c| | |
201 | |
202 __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); | |
203 | |
204 // Paeth breaks ties favoring a over b over c. | |
205 __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, | |
206 if_then_else(_mm_cmpeq_epi16(smallest, pb), b, | |
mtklein
2016/02/16 14:11:57
I think this hurts readability to indent like this
msarett
2016/02/16 14:48:58
Done.
| |
207 c)); | |
208 | |
209 // Note `_epi8`: we need addition to wrap modulo 255. | |
210 d = _mm_add_epi8(d, nearest); | |
211 store3(row, _mm_packus_epi16(d,d)); | |
212 prev += 3; | |
213 row += 3; | |
214 rb -= 3; | |
215 } | |
216 } | |
217 | |
218 void sk_paeth4_sse2(png_row_infop row_info, uint8_t* row, | |
219 const uint8_t* prev) | |
220 { | |
221 // Paeth tries to predict pixel d using the pixel to the left of it, a, | |
222 // and two pixels from the previous row, b and c: | |
223 // prev: c b | |
224 // row: a d | |
225 // The Paeth function predicts d to be whichever of a, b, or c is nearest to | |
226 // p=a+b-c. The first pixel has no left context, and so uses an Up filter, | |
227 // p = b. This works naturally with our main loop's p = a+b-c if we force a | |
228 // and c to zero. Here we zero b and d, which become c and a respectively | |
229 // at the start of the loop. | |
230 const __m128i zero = _mm_setzero_si128(); | |
231 __m128i c, b = zero, | |
232 a, d = zero; | |
233 | |
234 int rb = row_info->rowbytes; | |
235 while (rb > 0) { | |
236 // It's easiest to do this math (particularly, deal with pc) with 16-bit | |
237 // intermediates. | |
238 b = load4(prev); | |
239 d = load4(row); | |
240 c = b; b = _mm_unpacklo_epi8(b, zero); | |
241 a = d; d = _mm_unpacklo_epi8(d, zero); | |
242 __m128i pa = _mm_sub_epi16(b,c), | |
243 // (p-a) == (a+b-c - a) == (b-c) | |
244 pb = _mm_sub_epi16(a,c), | |
245 // (p-b) == (a+b-c - b) == (a-c) | |
246 pc = _mm_add_epi16(pa,pb); | |
247 // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) | |
248 | |
249 pa = abs_i16(pa);// |p-a| | |
250 pb = abs_i16(pb);// |p-b| | |
251 pc = abs_i16(pc);// |p-c| | |
252 | |
253 __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); | |
254 | |
255 // Paeth breaks ties favoring a over b over c. | |
256 __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, | |
257 if_then_else(_mm_cmpeq_epi16(smallest, pb), b, | |
258 c)); | |
259 | |
260 // Note `_epi8`: we need addition to wrap modulo 255. | |
261 d = _mm_add_epi8(d, nearest); | |
262 store4(row, _mm_packus_epi16(d,d)); | |
263 prev += 4; | |
264 row += 4; | |
265 rb -= 4; | |
266 } | |
267 } | |
268 | |
269 #endif | |
OLD | NEW |