Index: platforms/stm/disco_fletch/src/cmpctmalloc.c |
diff --git a/platforms/stm/disco_fletch/src/cmpctmalloc.c b/platforms/stm/disco_fletch/src/cmpctmalloc.c |
deleted file mode 100644 |
index 7df68e487fce88ef6d4ef18a6a8abc0efcd6e1fd..0000000000000000000000000000000000000000 |
--- a/platforms/stm/disco_fletch/src/cmpctmalloc.c |
+++ /dev/null |
@@ -1,902 +0,0 @@ |
-// Copyright (c) 2016, the Dartino project authors. Please see the AUTHORS file |
-// for details. All rights reserved. Use of this source code is governed by a |
-// BSD-style license that can be found in the LICENSE.md file. |
- |
-// This code is ported from the LK repository. To keep the code in |
-// sync the define FLETCH_TARGET_OS_LK provides the code from the LK |
-// repository. Without the define FLETCH_TARGET_OS_LK this code will |
-// build and link for the disco_fletch project. |
-#ifdef FLETCH_TARGET_OS_LK |
- |
-#include <debug.h> |
-#include <trace.h> |
-#include <assert.h> |
-#include <stdio.h> |
-#include <stdlib.h> |
-#include <string.h> |
-#include <kernel/thread.h> |
-#include <kernel/mutex.h> |
-#include <kernel/spinlock.h> |
-#include <lib/cmpctmalloc.h> |
-#include <lib/heap.h> |
-#include <lib/page_alloc.h> |
- |
-#else // FLETCH_TARGET_OS_LK |
- |
-#include "platforms/stm/disco_fletch/src/cmpctmalloc.h" |
- |
-#include <inttypes.h> |
-#include <stdbool.h> |
-#include <stddef.h> |
-#include <stdio.h> |
-#include <stdlib.h> |
-#include <string.h> |
-#include <unistd.h> |
- |
-#include "platforms/stm/disco_fletch/src/globals.h" |
- |
-void* page_alloc(size_t pages); |
-void page_free(void* start, size_t pages); |
- |
-typedef uintptr_t addr_t; |
-typedef uintptr_t vaddr_t; |
- |
-#define LTRACEF(...) |
-#define LTRACE_ENTRY |
-#define DEBUG_ASSERT ASSERT |
-#define ASSERT(condition) \ |
- while (false && (condition)) { \ |
- } |
-#define STATIC_ASSERT(condition) |
-#define dprintf(...) fprintf(__VA_ARGS__) |
-#define INFO stdout |
- |
-#endif // FLETCH_TARGET_OS_LK |
- |
-// Malloc implementation tuned for space. |
-// |
-// Allocation strategy takes place with a global mutex. Freelist entries are |
-// kept in linked lists with 8 different sizes per binary order of magnitude |
-// and the header size is two words with eager coalescing on free. |
- |
-#ifdef DEBUG |
-#define CMPCT_DEBUG |
-#endif |
- |
-#ifdef FLETCH_TARGET_OS_LK |
-#define LOCAL_TRACE 0 |
-#endif |
- |
-#define ALLOC_FILL 0x99 |
-#define FREE_FILL 0x77 |
-#define PADDING_FILL 0x55 |
- |
-#ifdef FLETCH_TARGET_OS_LK |
-#if WITH_KERNEL_VM && !defined(HEAP_GROW_SIZE) |
-#define HEAP_GROW_SIZE (1 * 1024 * 1024) /* Grow aggressively */ |
-#elif !defined(HEAP_GROW_SIZE) |
-#define HEAP_GROW_SIZE (4 * 1024) /* Grow less aggressively */ |
-#endif |
-#else |
-#define HEAP_GROW_SIZE (4 * 1024) /* Grow less aggressively */ |
-#endif |
- |
-STATIC_ASSERT(IS_PAGE_ALIGNED(HEAP_GROW_SIZE)); |
- |
-// Individual allocations above 4Mbytes are just fetched directly from the |
-// block allocator. |
-#define HEAP_ALLOC_VIRTUAL_BITS 22 |
- |
-// When we grow the heap we have to have somewhere in the freelist to put the |
-// resulting freelist entry, so the freelist has to have a certain number of |
-// buckets. |
-STATIC_ASSERT(HEAP_GROW_SIZE <= (1u << HEAP_ALLOC_VIRTUAL_BITS)); |
- |
-// Buckets for allocations. The smallest 15 buckets are 8, 16, 24, etc. up to |
-// 120 bytes. After that we round up to the nearest size that can be written |
-// /^0*1...0*$/, giving 8 buckets per order of binary magnitude. The freelist |
-// entries in a given bucket have at least the given size, plus the header |
-// size. On 64 bit, the 8 byte bucket is useless, since the freelist header |
-// is 16 bytes larger than the header, but we have it for simplicity. |
-#define NUMBER_OF_BUCKETS (1 + 15 + (HEAP_ALLOC_VIRTUAL_BITS - 7) * 8) |
- |
-// All individual memory areas on the heap start with this. |
-typedef struct header_struct { |
- struct header_struct *left; // Pointer to the previous area in memory order. |
- size_t size; |
-} header_t; |
- |
-typedef struct free_struct { |
- header_t header; |
- struct free_struct *next; |
- struct free_struct *prev; |
-} free_t; |
- |
-struct heap { |
- size_t size; |
- size_t remaining; |
-#ifdef FLETCH_TARGET_OS_LK |
- mutex_t lock; |
-#endif |
- free_t *free_lists[NUMBER_OF_BUCKETS]; |
- // We have some 32 bit words that tell us whether there is an entry in the |
- // freelist. |
-#define BUCKET_WORDS (((NUMBER_OF_BUCKETS) + 31) >> 5) |
- uint32_t free_list_bits[BUCKET_WORDS]; |
-}; |
- |
-// Heap static vars. |
-static struct heap theheap; |
- |
-static ssize_t heap_grow(size_t len, free_t **bucket); |
- |
-static void lock(void) |
-{ |
-#ifdef FLETCH_TARGET_OS_LK |
- mutex_acquire(&theheap.lock); |
-#endif |
-} |
- |
-static void unlock(void) |
-{ |
-#ifdef FLETCH_TARGET_OS_LK |
- mutex_release(&theheap.lock); |
-#endif |
-} |
- |
-static void dump_free(header_t *header) |
-{ |
- dprintf(INFO, "\t\tbase %p, end 0x%lx, len 0x%zx\n", header, (vaddr_t)header + header->size, header->size); |
-} |
- |
-void cmpct_dump(void) |
-{ |
- lock(); |
- dprintf(INFO, "Heap dump (using cmpctmalloc):\n"); |
- dprintf(INFO, "\tsize %lu, remaining %lu\n", |
- (unsigned long)theheap.size, |
- (unsigned long)theheap.remaining); |
- |
- dprintf(INFO, "\tfree list:\n"); |
- for (int i = 0; i < NUMBER_OF_BUCKETS; i++) { |
- bool header_printed = false; |
- free_t *free_area = theheap.free_lists[i]; |
- for (; free_area != NULL; free_area = free_area->next) { |
- ASSERT(free_area != free_area->next); |
- if (!header_printed) { |
- dprintf(INFO, "\tbucket %d\n", i); |
- header_printed = true; |
- } |
- dump_free(&free_area->header); |
- } |
- } |
- unlock(); |
-} |
- |
-// Operates in sizes that don't include the allocation header. |
-static int size_to_index_helper( |
- size_t size, size_t *rounded_up_out, int adjust, int increment) |
-{ |
- // First buckets are simply 8-spaced up to 128. |
- if (size <= 128) { |
- if (sizeof(size_t) == 8u && size <= sizeof(free_t) - sizeof(header_t)) { |
- *rounded_up_out = sizeof(free_t) - sizeof(header_t); |
- } else { |
- *rounded_up_out = size; |
- } |
- // No allocation is smaller than 8 bytes, so the first bucket is for 8 |
- // byte spaces (not including the header). For 64 bit, the free list |
- // struct is 16 bytes larger than the header, so no allocation can be |
- // smaller than that (otherwise how to free it), but we have empty 8 |
- // and 16 byte buckets for simplicity. |
- return (size >> 3) - 1; |
- } |
- |
- // We are going to go up to the next size to round up, but if we hit a |
- // bucket size exactly we don't want to go up. By subtracting 8 here, we |
- // will do the right thing (the carry propagates up for the round numbers |
- // we are interested in). |
- size += adjust; |
- // After 128 the buckets are logarithmically spaced, every 16 up to 256, |
- // every 32 up to 512 etc. This can be thought of as rows of 8 buckets. |
- // GCC intrinsic count-leading-zeros. |
- // Eg. 128-255 has 24 leading zeros and we want row to be 4. |
- unsigned row = sizeof(size_t) * 8 - 4 - __builtin_clzl(size); |
- // For row 4 we want to shift down 4 bits. |
- unsigned column = (size >> row) & 7; |
- int row_column = (row << 3) | column; |
- row_column += increment; |
- size = (8 + (row_column & 7)) << (row_column >> 3); |
- *rounded_up_out = size; |
- // We start with 15 buckets, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, |
- // 104, 112, 120. Then we have row 4, sizes 128 and up, with the |
- // row-column 8 and up. |
- int answer = row_column + 15 - 32; |
- DEBUG_ASSERT(answer < NUMBER_OF_BUCKETS); |
- return answer; |
-} |
- |
-// Round up size to next bucket when allocating. |
-static int size_to_index_allocating(size_t size, size_t *rounded_up_out) |
-{ |
- size_t rounded = ROUNDUP(size, 8); |
- return size_to_index_helper(rounded, rounded_up_out, -8, 1); |
-} |
- |
-// Round down size to next bucket when freeing. |
-static int size_to_index_freeing(size_t size) |
-{ |
- size_t dummy; |
- return size_to_index_helper(size, &dummy, 0, 0); |
-} |
- |
-inline header_t *tag_as_free(void *left) |
-{ |
- return (header_t *)((uintptr_t)left | 1); |
-} |
- |
-inline bool is_tagged_as_free(header_t *header) |
-{ |
- return ((uintptr_t)(header->left) & 1) != 0; |
-} |
- |
-inline header_t *untag(void *left) |
-{ |
- return (header_t *)((uintptr_t)left & ~1); |
-} |
- |
-inline header_t *right_header(header_t *header) |
-{ |
- return (header_t *)((char *)header + header->size); |
-} |
- |
-inline static void set_free_list_bit(int index) |
-{ |
- theheap.free_list_bits[index >> 5] |= (1u << (31 - (index & 0x1f))); |
-} |
- |
-inline static void clear_free_list_bit(int index) |
-{ |
- theheap.free_list_bits[index >> 5] &= ~(1u << (31 - (index & 0x1f))); |
-} |
- |
-static int find_nonempty_bucket(int index) |
-{ |
- uint32_t mask = (1u << (31 - (index & 0x1f))) - 1; |
- mask = mask * 2 + 1; |
- mask &= theheap.free_list_bits[index >> 5]; |
- if (mask != 0) return (index & ~0x1f) + __builtin_clz(mask); |
- for (index = ROUNDUP(index + 1, 32); index <= NUMBER_OF_BUCKETS; index += 32) { |
- mask = theheap.free_list_bits[index >> 5]; |
- if (mask != 0u) return index + __builtin_clz(mask); |
- } |
- return -1; |
-} |
- |
-static bool is_start_of_os_allocation(header_t *header) |
-{ |
- return header->left == untag(NULL); |
-} |
- |
-static void create_free_area(void *address, void *left, size_t size, free_t **bucket) |
-{ |
- free_t *free_area = (free_t *)address; |
- free_area->header.size = size; |
- free_area->header.left = tag_as_free(left); |
- if (bucket == NULL) { |
- int index = size_to_index_freeing(size - sizeof(header_t)); |
- set_free_list_bit(index); |
- bucket = &theheap.free_lists[index]; |
- } |
- free_t *old_head = *bucket; |
- if (old_head != NULL) old_head->prev = free_area; |
- free_area->next = old_head; |
- free_area->prev = NULL; |
- *bucket = free_area; |
- theheap.remaining += size; |
-#ifdef CMPCT_DEBUG |
- memset(free_area + 1, FREE_FILL, size - sizeof(free_t)); |
-#endif |
-} |
- |
-static bool is_end_of_os_allocation(char *address) |
-{ |
- return ((header_t *)address)->size == 0; |
-} |
- |
-static void free_to_os(header_t *header, size_t size) |
-{ |
- DEBUG_ASSERT(IS_PAGE_ALIGNED(size)); |
- page_free(header, size >> PAGE_SIZE_SHIFT); |
- theheap.size -= size; |
-} |
- |
-static void free_memory(void *address, void *left, size_t size) |
-{ |
- left = untag(left); |
- if (IS_PAGE_ALIGNED(left) && |
- is_start_of_os_allocation(left) && |
- is_end_of_os_allocation((char *)address + size)) { |
- free_to_os(left, size + ((header_t *)left)->size + sizeof(header_t)); |
- } else { |
- create_free_area(address, left, size, NULL); |
- } |
-} |
- |
-static void unlink_free(free_t *free_area, int bucket) |
-{ |
- theheap.remaining -= free_area->header.size; |
- ASSERT(theheap.remaining < 4000000000u); |
- free_t *next = free_area->next; |
- free_t *prev = free_area->prev; |
- if (theheap.free_lists[bucket] == free_area) { |
- theheap.free_lists[bucket] = next; |
- if (next == NULL) clear_free_list_bit(bucket); |
- } |
- if (prev != NULL) prev->next = next; |
- if (next != NULL) next->prev = prev; |
-} |
- |
-static void unlink_free_unknown_bucket(free_t *free_area) |
-{ |
- return unlink_free(free_area, size_to_index_freeing(free_area->header.size - sizeof(header_t))); |
-} |
- |
-static void *create_allocation_header( |
- void *address, size_t offset, size_t size, void *left) |
-{ |
- header_t *standalone = (header_t *)((char *)address + offset); |
- standalone->left = untag(left); |
- standalone->size = size; |
- return standalone + 1; |
-} |
- |
-static void FixLeftPointer(header_t *right, header_t *new_left) |
-{ |
- int tag = (uintptr_t)right->left & 1; |
- right->left = (header_t *)(((uintptr_t)new_left & ~1) | tag); |
-} |
- |
-static void WasteFreeMemory(void) |
-{ |
- while (theheap.remaining != 0) cmpct_alloc(1); |
-} |
- |
-// If we just make a big allocation it gets rounded off. If we actually |
-// want to use a reasonably accurate amount of memory for test purposes, we |
-// have to do many small allocations. |
-static void *TestTrimHelper(ssize_t target) |
-{ |
- char *answer = NULL; |
- size_t remaining = theheap.remaining; |
- while (theheap.remaining - target > 512) { |
- char *next_block = cmpct_alloc(8 + ((theheap.remaining - target) >> 2)); |
- *(char**)next_block = answer; |
- answer = next_block; |
- if (theheap.remaining > remaining) return answer; |
- // Abandon attemt to hit particular freelist entry size if we accidentally got more memory |
- // from the OS. |
- remaining = theheap.remaining; |
- } |
- return answer; |
-} |
- |
-static void TestTrimFreeHelper(char *block) |
-{ |
- while (block) { |
- char *next_block = *(char **)block; |
- cmpct_free(block); |
- block = next_block; |
- } |
-} |
- |
-#ifdef FLETCH_TARGET_OS_LK |
-static void cmpct_test_trim(void) |
-#else |
-void cmpct_test_trim(void) |
-#endif |
-{ |
- WasteFreeMemory(); |
- |
- size_t test_sizes[200]; |
- int sizes = 0; |
- |
- for (size_t s = 1; s < PAGE_SIZE * 4; s = (s + 1) * 1.1) { |
- test_sizes[sizes++] = s; |
- ASSERT(sizes < 200); |
- } |
- for (ssize_t s = -32; s <= 32; s += 8) { |
- test_sizes[sizes++] = PAGE_SIZE + s; |
- ASSERT(sizes < 200); |
- } |
- |
- // Test allocations at the start of an OS allocation. |
- for (int with_second_alloc = 0; with_second_alloc < 2; with_second_alloc++) { |
- for (int i = 0; i < sizes; i++) { |
- size_t s = test_sizes[i]; |
- |
- char *a, *a2 = NULL; |
- a = cmpct_alloc(s); |
- if (with_second_alloc) { |
- a2 = cmpct_alloc(1); |
- if (s < PAGE_SIZE >> 1) { |
- // It is the intention of the test that a is at the start of an OS allocation |
- // and that a2 is "right after" it. Otherwise we are not testing what I |
- // thought. OS allocations are certainly not smaller than a page, so check in |
- // that case. |
- ASSERT((uintptr_t)(a2 - a) < s * 1.13 + 48); |
- } |
- } |
- cmpct_trim(); |
- size_t remaining = theheap.remaining; |
- // We should have < 1 page on either side of the a allocation. |
- ASSERT(remaining < PAGE_SIZE * 2); |
- cmpct_free(a); |
- if (with_second_alloc) { |
- // Now only a2 is holding onto the OS allocation. |
- ASSERT(theheap.remaining > remaining); |
- } else { |
- ASSERT(theheap.remaining == 0); |
- } |
- remaining = theheap.remaining; |
- cmpct_trim(); |
- ASSERT(theheap.remaining <= remaining); |
- // If a was at least one page then the trim should have freed up that page. |
- if (s >= PAGE_SIZE && with_second_alloc) ASSERT(theheap.remaining < remaining); |
- if (with_second_alloc) cmpct_free(a2); |
- } |
- ASSERT(theheap.remaining == 0); |
- } |
- |
- ASSERT(theheap.remaining == 0); |
- |
- // Now test allocations near the end of an OS allocation. |
- for (ssize_t wobble = -64; wobble <= 64; wobble += 8) { |
- for (int i = 0; i < sizes; i++) { |
- size_t s = test_sizes[i]; |
- |
- if ((ssize_t)s + wobble < 0) continue; |
- |
- char *start_of_os_alloc = cmpct_alloc(1); |
- |
- // If the OS allocations are very small this test does not make sense. |
- if (theheap.remaining <= s + wobble) { |
- cmpct_free(start_of_os_alloc); |
- continue; |
- } |
- |
- char *big_bit_in_the_middle = TestTrimHelper(s + wobble); |
- size_t remaining = theheap.remaining; |
- |
- // If the remaining is big we started a new OS allocation and the test |
- // makes no sense. |
- if (remaining > 128 + s * 1.13 + wobble) { |
- cmpct_free(start_of_os_alloc); |
- TestTrimFreeHelper(big_bit_in_the_middle); |
- continue; |
- } |
- |
- cmpct_free(start_of_os_alloc); |
- remaining = theheap.remaining; |
- |
- // This trim should sometimes trim a page off the end of the OS allocation. |
- cmpct_trim(); |
- ASSERT(theheap.remaining <= remaining); |
- remaining = theheap.remaining; |
- |
- // We should have < 1 page on either side of the big allocation. |
- ASSERT(remaining < PAGE_SIZE * 2); |
- |
- TestTrimFreeHelper(big_bit_in_the_middle); |
- } |
- } |
-} |
- |
- |
-#ifdef FLETCH_TARGET_OS_LK |
-static void cmpct_test_buckets(void) |
-#else |
-void cmpct_test_buckets(void) |
-#endif |
-{ |
- size_t rounded; |
- unsigned bucket; |
- // Check for the 8-spaced buckets up to 128. |
- for (unsigned i = 1; i <= 128; i++) { |
- // Round up when allocating. |
- bucket = size_to_index_allocating(i, &rounded); |
- unsigned expected = (ROUNDUP(i, 8) >> 3) - 1; |
- ASSERT(bucket == expected); |
- ASSERT(IS_ALIGNED(rounded, 8)); |
- ASSERT(rounded >= i); |
- if (i >= sizeof(free_t) - sizeof(header_t)) { |
- // Once we get above the size of the free area struct (4 words), we |
- // won't round up much for these small size. |
- ASSERT(rounded - i < 8); |
- } |
- // Only rounded sizes are freed. |
- if ((i & 7) == 0) { |
- // Up to size 128 we have exact buckets for each multiple of 8. |
- ASSERT(bucket == (unsigned)size_to_index_freeing(i)); |
- } |
- } |
- int bucket_base = 7; |
- for (unsigned j = 16; j < 1024; j *= 2, bucket_base += 8) { |
- // Note the "<=", which ensures that we test the powers of 2 twice to ensure |
- // that both ways of calculating the bucket number match. |
- for (unsigned i = j * 8; i <= j * 16; i++) { |
- // Round up to j multiple in this range when allocating. |
- bucket = size_to_index_allocating(i, &rounded); |
- unsigned expected = bucket_base + ROUNDUP(i, j) / j; |
- ASSERT(bucket == expected); |
- ASSERT(IS_ALIGNED(rounded, j)); |
- ASSERT(rounded >= i); |
- ASSERT(rounded - i < j); |
- // Only 8-rounded sizes are freed or chopped off the end of a free area |
- // when allocating. |
- if ((i & 7) == 0) { |
- // When freeing, if we don't hit the size of the bucket precisely, |
- // we have to put the free space into a smaller bucket, because |
- // the buckets have entries that will always be big enough for |
- // the corresponding allocation size (so we don't have to |
- // traverse the free chains to find a big enough one). |
- if ((i % j) == 0) { |
- ASSERT((int)bucket == size_to_index_freeing(i)); |
- } else { |
- ASSERT((int)bucket - 1 == size_to_index_freeing(i)); |
- } |
- } |
- } |
- } |
-} |
- |
-static void cmpct_test_get_back_newly_freed_helper(size_t size) |
-{ |
- void *allocated = cmpct_alloc(size); |
- if (allocated == NULL) return; |
- char *allocated2 = cmpct_alloc(8); |
- char *expected_position = (char *)allocated + size; |
- if (allocated2 < expected_position || allocated2 > expected_position + 128) { |
- // If the allocated2 allocation is not in the same OS allocation as the |
- // first allocation then the test may not work as expected (the memory |
- // may be returned to the OS when we free the first allocation, and we |
- // might not get it back). |
- cmpct_free(allocated); |
- cmpct_free(allocated2); |
- return; |
- } |
- |
- cmpct_free(allocated); |
- void *allocated3 = cmpct_alloc(size); |
- // To avoid churn and fragmentation we would want to get the newly freed |
- // memory back again when we allocate the same size shortly after. |
- ASSERT(allocated3 == allocated); |
- cmpct_free(allocated2); |
- cmpct_free(allocated3); |
-} |
- |
-#ifdef FLETCH_TARGET_OS_LK |
-static void cmpct_test_get_back_newly_freed(void) |
-#else |
-void cmpct_test_get_back_newly_freed(void) |
-#endif |
-{ |
- size_t increment = 16; |
- for (size_t i = 128; i <= 0x8000000; i *= 2, increment *= 2) { |
- for (size_t j = i; j < i * 2; j += increment) { |
- cmpct_test_get_back_newly_freed_helper(i - 8); |
- cmpct_test_get_back_newly_freed_helper(i); |
- cmpct_test_get_back_newly_freed_helper(i + 1); |
- } |
- } |
- for (size_t i = 1024; i <= 2048; i++) { |
- cmpct_test_get_back_newly_freed_helper(i); |
- } |
-} |
- |
-#ifdef FLETCH_TARGET_OS_LK |
-static void cmpct_test_return_to_os(void) |
-#else |
-void cmpct_test_return_to_os(void) |
-#endif |
-{ |
- cmpct_trim(); |
- size_t remaining = theheap.remaining; |
- // This goes in a new OS allocation since the trim above removed any free |
- // area big enough to contain it. |
- void *a = cmpct_alloc(5000); |
- void *b = cmpct_alloc(2500); |
- cmpct_free(a); |
- cmpct_free(b); |
- // If things work as expected the new allocation is at the start of an OS |
- // allocation. There's just one sentinel and one header to the left of it. |
- // It that's not the case then the allocation was met from some space in |
- // the middle of an OS allocation, and our test won't work as expected, so |
- // bail out. |
- if (((uintptr_t)a & (PAGE_SIZE - 1)) != sizeof(header_t) * 2) return; |
- // No trim needed when the entire OS allocation is free. |
- ASSERT(remaining == theheap.remaining); |
-} |
- |
-static void *large_alloc(size_t size) |
-{ |
-#ifdef CMPCT_DEBUG |
- size_t requested_size = size; |
-#endif |
- size = ROUNDUP(size, 8); |
- free_t *free_area = NULL; |
- lock(); |
- heap_grow(size, &free_area); |
- void *result = |
- create_allocation_header(free_area, 0, free_area->header.size, free_area->header.left); |
- // Normally the 'remaining free space' counter would be decremented when we |
- // unlink the free area from its bucket. However in this case the free |
- // area was too big to go in any bucket and we had it in our own |
- // "free_area" variable so there is no unlinking and we have to adjust the |
- // counter here. |
- theheap.remaining -= free_area->header.size; |
- unlock(); |
-#ifdef CMPCT_DEBUG |
- memset(result, ALLOC_FILL, requested_size); |
- memset((char *)result + requested_size, PADDING_FILL, free_area->header.size - requested_size); |
-#endif |
- return result; |
-} |
- |
-void cmpct_trim(void) |
-{ |
- // Look at free list entries that are at least as large as one page plus a |
- // header. They might be at the start or the end of a block, so we can trim |
- // them and free the page(s). |
- lock(); |
- for (int bucket = size_to_index_freeing(PAGE_SIZE); |
- bucket < NUMBER_OF_BUCKETS; |
- bucket++) { |
- free_t * next; |
- for (free_t *free_area = theheap.free_lists[bucket]; |
- free_area != NULL; |
- free_area = next) { |
- DEBUG_ASSERT(free_area->header.size >= PAGE_SIZE + sizeof(header_t)); |
- next = free_area->next; |
- header_t *right = right_header(&free_area->header); |
- if (is_end_of_os_allocation((char *)right)) { |
- char *old_os_allocation_end = (char *)ROUNDUP((uintptr_t)right, PAGE_SIZE); |
- // The page will end with a smaller free list entry and a header-sized sentinel. |
- char *new_os_allocation_end = (char *) |
- ROUNDUP((uintptr_t)free_area + sizeof(header_t) + sizeof(free_t), PAGE_SIZE); |
- size_t freed_up = old_os_allocation_end - new_os_allocation_end; |
- DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up)); |
- // Rare, because we only look at large freelist entries, but unlucky rounding |
- // could mean we can't actually free anything here. |
- if (freed_up == 0) continue; |
- unlink_free(free_area, bucket); |
- size_t new_free_size = free_area->header.size - freed_up; |
- DEBUG_ASSERT(new_free_size >= sizeof(free_t)); |
- // Right sentinel, not free, stops attempts to coalesce right. |
- create_allocation_header(free_area, new_free_size, 0, free_area); |
- // Also puts it in the correct bucket. |
- create_free_area(free_area, untag(free_area->header.left), new_free_size, NULL); |
- page_free(new_os_allocation_end, freed_up >> PAGE_SIZE_SHIFT); |
- theheap.size -= freed_up; |
- } else if (is_start_of_os_allocation(untag(free_area->header.left))) { |
- char *old_os_allocation_start = |
- (char *)ROUNDDOWN((uintptr_t)free_area, PAGE_SIZE); |
- // For the sentinel, we need at least one header-size of space between the page |
- // edge and the first allocation to the right of the free area. |
- char *new_os_allocation_start = |
- (char *)ROUNDDOWN((uintptr_t)(right - 1), PAGE_SIZE); |
- size_t freed_up = new_os_allocation_start - old_os_allocation_start; |
- DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up)); |
- // This should not happen because we only look at the large free list buckets. |
- if (freed_up == 0) continue; |
- unlink_free(free_area, bucket); |
- size_t sentinel_size = sizeof(header_t); |
- size_t new_free_size = free_area->header.size - freed_up; |
- if (new_free_size < sizeof(free_t)) { |
- sentinel_size += new_free_size; |
- new_free_size = 0; |
- } |
- // Left sentinel, not free, stops attempts to coalesce left. |
- create_allocation_header(new_os_allocation_start, 0, sentinel_size, NULL); |
- if (new_free_size == 0) { |
- FixLeftPointer(right, (header_t *)new_os_allocation_start); |
- } else { |
- DEBUG_ASSERT(new_free_size >= sizeof(free_t)); |
- char *new_free = new_os_allocation_start + sentinel_size; |
- // Also puts it in the correct bucket. |
- create_free_area(new_free, new_os_allocation_start, new_free_size, NULL); |
- FixLeftPointer(right, (header_t *)new_free); |
- } |
- page_free(old_os_allocation_start, freed_up >> PAGE_SIZE_SHIFT); |
- theheap.size -= freed_up; |
- } |
- } |
- } |
- unlock(); |
-} |
- |
-void *cmpct_alloc(size_t size) |
-{ |
- if (size == 0u) return NULL; |
- |
- if (size + sizeof(header_t) > (1u << HEAP_ALLOC_VIRTUAL_BITS)) return large_alloc(size); |
- |
- size_t rounded_up; |
- int start_bucket = size_to_index_allocating(size, &rounded_up); |
- |
- rounded_up += sizeof(header_t); |
- |
- lock(); |
- int bucket = find_nonempty_bucket(start_bucket); |
- if (bucket == -1) { |
- // Grow heap by at least 12% if we can. |
- size_t growby = MIN(1u << HEAP_ALLOC_VIRTUAL_BITS, |
- MAX(theheap.size >> 3, |
- MAX(HEAP_GROW_SIZE, rounded_up))); |
- while (heap_grow(growby, NULL) < 0) { |
- if (growby <= rounded_up) { |
- unlock(); |
- return NULL; |
- } |
- growby = MAX(growby >> 1, rounded_up); |
- } |
- bucket = find_nonempty_bucket(start_bucket); |
- } |
- free_t *head = theheap.free_lists[bucket]; |
- size_t left_over = head->header.size - rounded_up; |
- // We can't carve off the rest for a new free space if it's smaller than the |
- // free-list linked structure. We also don't carve it off if it's less than |
- // 1.6% the size of the allocation. This is to avoid small long-lived |
- // allocations being placed right next to large allocations, hindering |
- // coalescing and returning pages to the OS. |
- if (left_over >= sizeof(free_t) && left_over > (size >> 6)) { |
- header_t *right = right_header(&head->header); |
- unlink_free(head, bucket); |
- void *free = (char *)head + rounded_up; |
- create_free_area(free, head, left_over, NULL); |
- FixLeftPointer(right, (header_t *)free); |
- head->header.size -= left_over; |
- } else { |
- unlink_free(head, bucket); |
- } |
- void *result = |
- create_allocation_header(head, 0, head->header.size, head->header.left); |
-#ifdef CMPCT_DEBUG |
- memset(result, ALLOC_FILL, size); |
- memset(((char *)result) + size, PADDING_FILL, rounded_up - size - sizeof(header_t)); |
-#endif |
- unlock(); |
- return result; |
-} |
- |
-void *cmpct_memalign(size_t size, size_t alignment) |
-{ |
- if (alignment < 8) return cmpct_alloc(size); |
- size_t padded_size = |
- size + alignment + sizeof(free_t) + sizeof(header_t); |
- char *unaligned = (char *)cmpct_alloc(padded_size); |
- lock(); |
- size_t mask = alignment - 1; |
- uintptr_t payload_int = (uintptr_t)unaligned + sizeof(free_t) + |
- sizeof(header_t) + mask; |
- char *payload = (char *)(payload_int & ~mask); |
- if (unaligned != payload) { |
- header_t *unaligned_header = (header_t *)unaligned - 1; |
- header_t *header = (header_t *)payload - 1; |
- size_t left_over = payload - unaligned; |
- create_allocation_header( |
- header, 0, unaligned_header->size - left_over, unaligned_header); |
- header_t *right = right_header(unaligned_header); |
- unaligned_header->size = left_over; |
- FixLeftPointer(right, header); |
- unlock(); |
- cmpct_free(unaligned); |
- } else { |
- unlock(); |
- } |
- // TODO: Free the part after the aligned allocation. |
- return payload; |
-} |
- |
-void cmpct_free(void *payload) |
-{ |
- if (payload == NULL) return; |
- header_t *header = (header_t *)payload - 1; |
- DEBUG_ASSERT(!is_tagged_as_free(header)); // Double free! |
- size_t size = header->size; |
- lock(); |
- header_t *left = header->left; |
- if (left != NULL && is_tagged_as_free(left)) { |
- // Coalesce with left free object. |
- unlink_free_unknown_bucket((free_t *)left); |
- header_t *right = right_header(header); |
- if (is_tagged_as_free(right)) { |
- // Coalesce both sides. |
- unlink_free_unknown_bucket((free_t *)right); |
- header_t *right_right = right_header(right); |
- FixLeftPointer(right_right, left); |
- free_memory(left, left->left, left->size + size + right->size); |
- } else { |
- // Coalesce only left. |
- FixLeftPointer(right, left); |
- free_memory(left, left->left, left->size + size); |
- } |
- } else { |
- header_t *right = right_header(header); |
- if (is_tagged_as_free(right)) { |
- // Coalesce only right. |
- header_t *right_right = right_header(right); |
- unlink_free_unknown_bucket((free_t *)right); |
- FixLeftPointer(right_right, header); |
- free_memory(header, left, size + right->size); |
- } else { |
- free_memory(header, left, size); |
- } |
- } |
- unlock(); |
-} |
- |
-void *cmpct_realloc(void *payload, size_t size) |
-{ |
- if (payload == NULL) return cmpct_alloc(size); |
- header_t *header = (header_t *)payload - 1; |
- size_t old_size = header->size - sizeof(header_t); |
- void *new_payload = cmpct_alloc(size); |
- memcpy(new_payload, payload, MIN(size, old_size)); |
- cmpct_free(payload); |
- return new_payload; |
-} |
- |
-static void add_to_heap(void *new_area, size_t size, free_t **bucket) |
-{ |
- void *top = (char *)new_area + size; |
- header_t *left_sentinel = (header_t *)new_area; |
- // Not free, stops attempts to coalesce left. |
- create_allocation_header(left_sentinel, 0, sizeof(header_t), NULL); |
- header_t *new_header = left_sentinel + 1; |
- size_t free_size = size - 2 * sizeof(header_t); |
- create_free_area(new_header, left_sentinel, free_size, bucket); |
- header_t *right_sentinel = (header_t *)(top - sizeof(header_t)); |
- // Not free, stops attempts to coalesce right. |
- create_allocation_header(right_sentinel, 0, 0, new_header); |
-} |
- |
-// Create a new free-list entry of at least size bytes (including the |
-// allocation header). Called with the lock, apart from during init. |
-static ssize_t heap_grow(size_t size, free_t **bucket) |
-{ |
- // The new free list entry will have a header on each side (the |
- // sentinels) so we need to grow the gross heap size by this much more. |
- size += 2 * sizeof(header_t); |
- size = ROUNDUP(size, PAGE_SIZE); |
- void *ptr = page_alloc(size >> PAGE_SIZE_SHIFT); |
- theheap.size += size; |
- if (ptr == NULL) return -1; |
- LTRACEF("growing heap by 0x%zx bytes, new ptr %p\n", size, ptr); |
- add_to_heap(ptr, size, bucket); |
- return size; |
-} |
- |
-void cmpct_init(void) |
-{ |
- LTRACE_ENTRY; |
- |
- // Create a mutex. |
-#ifdef FLETCH_TARGET_OS_LK |
- mutex_init(&theheap.lock); |
-#endif |
- |
- // Initialize the free list. |
- for (int i = 0; i < NUMBER_OF_BUCKETS; i++) { |
- theheap.free_lists[i] = NULL; |
- } |
- for (int i = 0; i < BUCKET_WORDS; i++) { |
- theheap.free_list_bits[i] = 0; |
- } |
- |
- size_t initial_alloc = HEAP_GROW_SIZE - 2 * sizeof(header_t); |
- |
- theheap.remaining = 0; |
- |
- heap_grow(initial_alloc, NULL); |
-} |