| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2016, the Dartino project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE.md file. | |
| 4 | |
| 5 // This code is ported from the LK repository. To keep the code in | |
| 6 // sync the define FLETCH_TARGET_OS_LK provides the code from the LK | |
| 7 // repository. Without the define FLETCH_TARGET_OS_LK this code will | |
| 8 // build and link for the disco_fletch project. | |
| 9 #ifdef FLETCH_TARGET_OS_LK | |
| 10 | |
| 11 #include <debug.h> | |
| 12 #include <trace.h> | |
| 13 #include <assert.h> | |
| 14 #include <stdio.h> | |
| 15 #include <stdlib.h> | |
| 16 #include <string.h> | |
| 17 #include <kernel/thread.h> | |
| 18 #include <kernel/mutex.h> | |
| 19 #include <kernel/spinlock.h> | |
| 20 #include <lib/cmpctmalloc.h> | |
| 21 #include <lib/heap.h> | |
| 22 #include <lib/page_alloc.h> | |
| 23 | |
| 24 #else // FLETCH_TARGET_OS_LK | |
| 25 | |
| 26 #include "platforms/stm/disco_fletch/src/cmpctmalloc.h" | |
| 27 | |
| 28 #include <inttypes.h> | |
| 29 #include <stdbool.h> | |
| 30 #include <stddef.h> | |
| 31 #include <stdio.h> | |
| 32 #include <stdlib.h> | |
| 33 #include <string.h> | |
| 34 #include <unistd.h> | |
| 35 | |
| 36 #include "platforms/stm/disco_fletch/src/globals.h" | |
| 37 | |
| 38 void* page_alloc(size_t pages); | |
| 39 void page_free(void* start, size_t pages); | |
| 40 | |
| 41 typedef uintptr_t addr_t; | |
| 42 typedef uintptr_t vaddr_t; | |
| 43 | |
| 44 #define LTRACEF(...) | |
| 45 #define LTRACE_ENTRY | |
| 46 #define DEBUG_ASSERT ASSERT | |
| 47 #define ASSERT(condition) \ | |
| 48 while (false && (condition)) { \ | |
| 49 } | |
| 50 #define STATIC_ASSERT(condition) | |
| 51 #define dprintf(...) fprintf(__VA_ARGS__) | |
| 52 #define INFO stdout | |
| 53 | |
| 54 #endif // FLETCH_TARGET_OS_LK | |
| 55 | |
| 56 // Malloc implementation tuned for space. | |
| 57 // | |
| 58 // Allocation strategy takes place with a global mutex. Freelist entries are | |
| 59 // kept in linked lists with 8 different sizes per binary order of magnitude | |
| 60 // and the header size is two words with eager coalescing on free. | |
| 61 | |
| 62 #ifdef DEBUG | |
| 63 #define CMPCT_DEBUG | |
| 64 #endif | |
| 65 | |
| 66 #ifdef FLETCH_TARGET_OS_LK | |
| 67 #define LOCAL_TRACE 0 | |
| 68 #endif | |
| 69 | |
| 70 #define ALLOC_FILL 0x99 | |
| 71 #define FREE_FILL 0x77 | |
| 72 #define PADDING_FILL 0x55 | |
| 73 | |
| 74 #ifdef FLETCH_TARGET_OS_LK | |
| 75 #if WITH_KERNEL_VM && !defined(HEAP_GROW_SIZE) | |
| 76 #define HEAP_GROW_SIZE (1 * 1024 * 1024) /* Grow aggressively */ | |
| 77 #elif !defined(HEAP_GROW_SIZE) | |
| 78 #define HEAP_GROW_SIZE (4 * 1024) /* Grow less aggressively */ | |
| 79 #endif | |
| 80 #else | |
| 81 #define HEAP_GROW_SIZE (4 * 1024) /* Grow less aggressively */ | |
| 82 #endif | |
| 83 | |
| 84 STATIC_ASSERT(IS_PAGE_ALIGNED(HEAP_GROW_SIZE)); | |
| 85 | |
| 86 // Individual allocations above 4Mbytes are just fetched directly from the | |
| 87 // block allocator. | |
| 88 #define HEAP_ALLOC_VIRTUAL_BITS 22 | |
| 89 | |
| 90 // When we grow the heap we have to have somewhere in the freelist to put the | |
| 91 // resulting freelist entry, so the freelist has to have a certain number of | |
| 92 // buckets. | |
| 93 STATIC_ASSERT(HEAP_GROW_SIZE <= (1u << HEAP_ALLOC_VIRTUAL_BITS)); | |
| 94 | |
| 95 // Buckets for allocations. The smallest 15 buckets are 8, 16, 24, etc. up to | |
| 96 // 120 bytes. After that we round up to the nearest size that can be written | |
| 97 // /^0*1...0*$/, giving 8 buckets per order of binary magnitude. The freelist | |
| 98 // entries in a given bucket have at least the given size, plus the header | |
| 99 // size. On 64 bit, the 8 byte bucket is useless, since the freelist header | |
| 100 // is 16 bytes larger than the header, but we have it for simplicity. | |
| 101 #define NUMBER_OF_BUCKETS (1 + 15 + (HEAP_ALLOC_VIRTUAL_BITS - 7) * 8) | |
| 102 | |
| 103 // All individual memory areas on the heap start with this. | |
| 104 typedef struct header_struct { | |
| 105 struct header_struct *left; // Pointer to the previous area in memory order
. | |
| 106 size_t size; | |
| 107 } header_t; | |
| 108 | |
| 109 typedef struct free_struct { | |
| 110 header_t header; | |
| 111 struct free_struct *next; | |
| 112 struct free_struct *prev; | |
| 113 } free_t; | |
| 114 | |
| 115 struct heap { | |
| 116 size_t size; | |
| 117 size_t remaining; | |
| 118 #ifdef FLETCH_TARGET_OS_LK | |
| 119 mutex_t lock; | |
| 120 #endif | |
| 121 free_t *free_lists[NUMBER_OF_BUCKETS]; | |
| 122 // We have some 32 bit words that tell us whether there is an entry in the | |
| 123 // freelist. | |
| 124 #define BUCKET_WORDS (((NUMBER_OF_BUCKETS) + 31) >> 5) | |
| 125 uint32_t free_list_bits[BUCKET_WORDS]; | |
| 126 }; | |
| 127 | |
| 128 // Heap static vars. | |
| 129 static struct heap theheap; | |
| 130 | |
| 131 static ssize_t heap_grow(size_t len, free_t **bucket); | |
| 132 | |
| 133 static void lock(void) | |
| 134 { | |
| 135 #ifdef FLETCH_TARGET_OS_LK | |
| 136 mutex_acquire(&theheap.lock); | |
| 137 #endif | |
| 138 } | |
| 139 | |
| 140 static void unlock(void) | |
| 141 { | |
| 142 #ifdef FLETCH_TARGET_OS_LK | |
| 143 mutex_release(&theheap.lock); | |
| 144 #endif | |
| 145 } | |
| 146 | |
| 147 static void dump_free(header_t *header) | |
| 148 { | |
| 149 dprintf(INFO, "\t\tbase %p, end 0x%lx, len 0x%zx\n", header, (vaddr_t)header
+ header->size, header->size); | |
| 150 } | |
| 151 | |
| 152 void cmpct_dump(void) | |
| 153 { | |
| 154 lock(); | |
| 155 dprintf(INFO, "Heap dump (using cmpctmalloc):\n"); | |
| 156 dprintf(INFO, "\tsize %lu, remaining %lu\n", | |
| 157 (unsigned long)theheap.size, | |
| 158 (unsigned long)theheap.remaining); | |
| 159 | |
| 160 dprintf(INFO, "\tfree list:\n"); | |
| 161 for (int i = 0; i < NUMBER_OF_BUCKETS; i++) { | |
| 162 bool header_printed = false; | |
| 163 free_t *free_area = theheap.free_lists[i]; | |
| 164 for (; free_area != NULL; free_area = free_area->next) { | |
| 165 ASSERT(free_area != free_area->next); | |
| 166 if (!header_printed) { | |
| 167 dprintf(INFO, "\tbucket %d\n", i); | |
| 168 header_printed = true; | |
| 169 } | |
| 170 dump_free(&free_area->header); | |
| 171 } | |
| 172 } | |
| 173 unlock(); | |
| 174 } | |
| 175 | |
| 176 // Operates in sizes that don't include the allocation header. | |
| 177 static int size_to_index_helper( | |
| 178 size_t size, size_t *rounded_up_out, int adjust, int increment) | |
| 179 { | |
| 180 // First buckets are simply 8-spaced up to 128. | |
| 181 if (size <= 128) { | |
| 182 if (sizeof(size_t) == 8u && size <= sizeof(free_t) - sizeof(header_t)) { | |
| 183 *rounded_up_out = sizeof(free_t) - sizeof(header_t); | |
| 184 } else { | |
| 185 *rounded_up_out = size; | |
| 186 } | |
| 187 // No allocation is smaller than 8 bytes, so the first bucket is for 8 | |
| 188 // byte spaces (not including the header). For 64 bit, the free list | |
| 189 // struct is 16 bytes larger than the header, so no allocation can be | |
| 190 // smaller than that (otherwise how to free it), but we have empty 8 | |
| 191 // and 16 byte buckets for simplicity. | |
| 192 return (size >> 3) - 1; | |
| 193 } | |
| 194 | |
| 195 // We are going to go up to the next size to round up, but if we hit a | |
| 196 // bucket size exactly we don't want to go up. By subtracting 8 here, we | |
| 197 // will do the right thing (the carry propagates up for the round numbers | |
| 198 // we are interested in). | |
| 199 size += adjust; | |
| 200 // After 128 the buckets are logarithmically spaced, every 16 up to 256, | |
| 201 // every 32 up to 512 etc. This can be thought of as rows of 8 buckets. | |
| 202 // GCC intrinsic count-leading-zeros. | |
| 203 // Eg. 128-255 has 24 leading zeros and we want row to be 4. | |
| 204 unsigned row = sizeof(size_t) * 8 - 4 - __builtin_clzl(size); | |
| 205 // For row 4 we want to shift down 4 bits. | |
| 206 unsigned column = (size >> row) & 7; | |
| 207 int row_column = (row << 3) | column; | |
| 208 row_column += increment; | |
| 209 size = (8 + (row_column & 7)) << (row_column >> 3); | |
| 210 *rounded_up_out = size; | |
| 211 // We start with 15 buckets, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, | |
| 212 // 104, 112, 120. Then we have row 4, sizes 128 and up, with the | |
| 213 // row-column 8 and up. | |
| 214 int answer = row_column + 15 - 32; | |
| 215 DEBUG_ASSERT(answer < NUMBER_OF_BUCKETS); | |
| 216 return answer; | |
| 217 } | |
| 218 | |
| 219 // Round up size to next bucket when allocating. | |
| 220 static int size_to_index_allocating(size_t size, size_t *rounded_up_out) | |
| 221 { | |
| 222 size_t rounded = ROUNDUP(size, 8); | |
| 223 return size_to_index_helper(rounded, rounded_up_out, -8, 1); | |
| 224 } | |
| 225 | |
| 226 // Round down size to next bucket when freeing. | |
| 227 static int size_to_index_freeing(size_t size) | |
| 228 { | |
| 229 size_t dummy; | |
| 230 return size_to_index_helper(size, &dummy, 0, 0); | |
| 231 } | |
| 232 | |
| 233 inline header_t *tag_as_free(void *left) | |
| 234 { | |
| 235 return (header_t *)((uintptr_t)left | 1); | |
| 236 } | |
| 237 | |
| 238 inline bool is_tagged_as_free(header_t *header) | |
| 239 { | |
| 240 return ((uintptr_t)(header->left) & 1) != 0; | |
| 241 } | |
| 242 | |
| 243 inline header_t *untag(void *left) | |
| 244 { | |
| 245 return (header_t *)((uintptr_t)left & ~1); | |
| 246 } | |
| 247 | |
| 248 inline header_t *right_header(header_t *header) | |
| 249 { | |
| 250 return (header_t *)((char *)header + header->size); | |
| 251 } | |
| 252 | |
| 253 inline static void set_free_list_bit(int index) | |
| 254 { | |
| 255 theheap.free_list_bits[index >> 5] |= (1u << (31 - (index & 0x1f))); | |
| 256 } | |
| 257 | |
| 258 inline static void clear_free_list_bit(int index) | |
| 259 { | |
| 260 theheap.free_list_bits[index >> 5] &= ~(1u << (31 - (index & 0x1f))); | |
| 261 } | |
| 262 | |
| 263 static int find_nonempty_bucket(int index) | |
| 264 { | |
| 265 uint32_t mask = (1u << (31 - (index & 0x1f))) - 1; | |
| 266 mask = mask * 2 + 1; | |
| 267 mask &= theheap.free_list_bits[index >> 5]; | |
| 268 if (mask != 0) return (index & ~0x1f) + __builtin_clz(mask); | |
| 269 for (index = ROUNDUP(index + 1, 32); index <= NUMBER_OF_BUCKETS; index += 32
) { | |
| 270 mask = theheap.free_list_bits[index >> 5]; | |
| 271 if (mask != 0u) return index + __builtin_clz(mask); | |
| 272 } | |
| 273 return -1; | |
| 274 } | |
| 275 | |
| 276 static bool is_start_of_os_allocation(header_t *header) | |
| 277 { | |
| 278 return header->left == untag(NULL); | |
| 279 } | |
| 280 | |
| 281 static void create_free_area(void *address, void *left, size_t size, free_t **bu
cket) | |
| 282 { | |
| 283 free_t *free_area = (free_t *)address; | |
| 284 free_area->header.size = size; | |
| 285 free_area->header.left = tag_as_free(left); | |
| 286 if (bucket == NULL) { | |
| 287 int index = size_to_index_freeing(size - sizeof(header_t)); | |
| 288 set_free_list_bit(index); | |
| 289 bucket = &theheap.free_lists[index]; | |
| 290 } | |
| 291 free_t *old_head = *bucket; | |
| 292 if (old_head != NULL) old_head->prev = free_area; | |
| 293 free_area->next = old_head; | |
| 294 free_area->prev = NULL; | |
| 295 *bucket = free_area; | |
| 296 theheap.remaining += size; | |
| 297 #ifdef CMPCT_DEBUG | |
| 298 memset(free_area + 1, FREE_FILL, size - sizeof(free_t)); | |
| 299 #endif | |
| 300 } | |
| 301 | |
| 302 static bool is_end_of_os_allocation(char *address) | |
| 303 { | |
| 304 return ((header_t *)address)->size == 0; | |
| 305 } | |
| 306 | |
| 307 static void free_to_os(header_t *header, size_t size) | |
| 308 { | |
| 309 DEBUG_ASSERT(IS_PAGE_ALIGNED(size)); | |
| 310 page_free(header, size >> PAGE_SIZE_SHIFT); | |
| 311 theheap.size -= size; | |
| 312 } | |
| 313 | |
| 314 static void free_memory(void *address, void *left, size_t size) | |
| 315 { | |
| 316 left = untag(left); | |
| 317 if (IS_PAGE_ALIGNED(left) && | |
| 318 is_start_of_os_allocation(left) && | |
| 319 is_end_of_os_allocation((char *)address + size)) { | |
| 320 free_to_os(left, size + ((header_t *)left)->size + sizeof(header_t)); | |
| 321 } else { | |
| 322 create_free_area(address, left, size, NULL); | |
| 323 } | |
| 324 } | |
| 325 | |
| 326 static void unlink_free(free_t *free_area, int bucket) | |
| 327 { | |
| 328 theheap.remaining -= free_area->header.size; | |
| 329 ASSERT(theheap.remaining < 4000000000u); | |
| 330 free_t *next = free_area->next; | |
| 331 free_t *prev = free_area->prev; | |
| 332 if (theheap.free_lists[bucket] == free_area) { | |
| 333 theheap.free_lists[bucket] = next; | |
| 334 if (next == NULL) clear_free_list_bit(bucket); | |
| 335 } | |
| 336 if (prev != NULL) prev->next = next; | |
| 337 if (next != NULL) next->prev = prev; | |
| 338 } | |
| 339 | |
| 340 static void unlink_free_unknown_bucket(free_t *free_area) | |
| 341 { | |
| 342 return unlink_free(free_area, size_to_index_freeing(free_area->header.size -
sizeof(header_t))); | |
| 343 } | |
| 344 | |
| 345 static void *create_allocation_header( | |
| 346 void *address, size_t offset, size_t size, void *left) | |
| 347 { | |
| 348 header_t *standalone = (header_t *)((char *)address + offset); | |
| 349 standalone->left = untag(left); | |
| 350 standalone->size = size; | |
| 351 return standalone + 1; | |
| 352 } | |
| 353 | |
| 354 static void FixLeftPointer(header_t *right, header_t *new_left) | |
| 355 { | |
| 356 int tag = (uintptr_t)right->left & 1; | |
| 357 right->left = (header_t *)(((uintptr_t)new_left & ~1) | tag); | |
| 358 } | |
| 359 | |
| 360 static void WasteFreeMemory(void) | |
| 361 { | |
| 362 while (theheap.remaining != 0) cmpct_alloc(1); | |
| 363 } | |
| 364 | |
| 365 // If we just make a big allocation it gets rounded off. If we actually | |
| 366 // want to use a reasonably accurate amount of memory for test purposes, we | |
| 367 // have to do many small allocations. | |
| 368 static void *TestTrimHelper(ssize_t target) | |
| 369 { | |
| 370 char *answer = NULL; | |
| 371 size_t remaining = theheap.remaining; | |
| 372 while (theheap.remaining - target > 512) { | |
| 373 char *next_block = cmpct_alloc(8 + ((theheap.remaining - target) >> 2)); | |
| 374 *(char**)next_block = answer; | |
| 375 answer = next_block; | |
| 376 if (theheap.remaining > remaining) return answer; | |
| 377 // Abandon attemt to hit particular freelist entry size if we accidentall
y got more memory | |
| 378 // from the OS. | |
| 379 remaining = theheap.remaining; | |
| 380 } | |
| 381 return answer; | |
| 382 } | |
| 383 | |
| 384 static void TestTrimFreeHelper(char *block) | |
| 385 { | |
| 386 while (block) { | |
| 387 char *next_block = *(char **)block; | |
| 388 cmpct_free(block); | |
| 389 block = next_block; | |
| 390 } | |
| 391 } | |
| 392 | |
| 393 #ifdef FLETCH_TARGET_OS_LK | |
| 394 static void cmpct_test_trim(void) | |
| 395 #else | |
| 396 void cmpct_test_trim(void) | |
| 397 #endif | |
| 398 { | |
| 399 WasteFreeMemory(); | |
| 400 | |
| 401 size_t test_sizes[200]; | |
| 402 int sizes = 0; | |
| 403 | |
| 404 for (size_t s = 1; s < PAGE_SIZE * 4; s = (s + 1) * 1.1) { | |
| 405 test_sizes[sizes++] = s; | |
| 406 ASSERT(sizes < 200); | |
| 407 } | |
| 408 for (ssize_t s = -32; s <= 32; s += 8) { | |
| 409 test_sizes[sizes++] = PAGE_SIZE + s; | |
| 410 ASSERT(sizes < 200); | |
| 411 } | |
| 412 | |
| 413 // Test allocations at the start of an OS allocation. | |
| 414 for (int with_second_alloc = 0; with_second_alloc < 2; with_second_alloc++)
{ | |
| 415 for (int i = 0; i < sizes; i++) { | |
| 416 size_t s = test_sizes[i]; | |
| 417 | |
| 418 char *a, *a2 = NULL; | |
| 419 a = cmpct_alloc(s); | |
| 420 if (with_second_alloc) { | |
| 421 a2 = cmpct_alloc(1); | |
| 422 if (s < PAGE_SIZE >> 1) { | |
| 423 // It is the intention of the test that a is at the start of
an OS allocation | |
| 424 // and that a2 is "right after" it. Otherwise we are not te
sting what I | |
| 425 // thought. OS allocations are certainly not smaller than a
page, so check in | |
| 426 // that case. | |
| 427 ASSERT((uintptr_t)(a2 - a) < s * 1.13 + 48); | |
| 428 } | |
| 429 } | |
| 430 cmpct_trim(); | |
| 431 size_t remaining = theheap.remaining; | |
| 432 // We should have < 1 page on either side of the a allocation. | |
| 433 ASSERT(remaining < PAGE_SIZE * 2); | |
| 434 cmpct_free(a); | |
| 435 if (with_second_alloc) { | |
| 436 // Now only a2 is holding onto the OS allocation. | |
| 437 ASSERT(theheap.remaining > remaining); | |
| 438 } else { | |
| 439 ASSERT(theheap.remaining == 0); | |
| 440 } | |
| 441 remaining = theheap.remaining; | |
| 442 cmpct_trim(); | |
| 443 ASSERT(theheap.remaining <= remaining); | |
| 444 // If a was at least one page then the trim should have freed up tha
t page. | |
| 445 if (s >= PAGE_SIZE && with_second_alloc) ASSERT(theheap.remaining <
remaining); | |
| 446 if (with_second_alloc) cmpct_free(a2); | |
| 447 } | |
| 448 ASSERT(theheap.remaining == 0); | |
| 449 } | |
| 450 | |
| 451 ASSERT(theheap.remaining == 0); | |
| 452 | |
| 453 // Now test allocations near the end of an OS allocation. | |
| 454 for (ssize_t wobble = -64; wobble <= 64; wobble += 8) { | |
| 455 for (int i = 0; i < sizes; i++) { | |
| 456 size_t s = test_sizes[i]; | |
| 457 | |
| 458 if ((ssize_t)s + wobble < 0) continue; | |
| 459 | |
| 460 char *start_of_os_alloc = cmpct_alloc(1); | |
| 461 | |
| 462 // If the OS allocations are very small this test does not make sens
e. | |
| 463 if (theheap.remaining <= s + wobble) { | |
| 464 cmpct_free(start_of_os_alloc); | |
| 465 continue; | |
| 466 } | |
| 467 | |
| 468 char *big_bit_in_the_middle = TestTrimHelper(s + wobble); | |
| 469 size_t remaining = theheap.remaining; | |
| 470 | |
| 471 // If the remaining is big we started a new OS allocation and the te
st | |
| 472 // makes no sense. | |
| 473 if (remaining > 128 + s * 1.13 + wobble) { | |
| 474 cmpct_free(start_of_os_alloc); | |
| 475 TestTrimFreeHelper(big_bit_in_the_middle); | |
| 476 continue; | |
| 477 } | |
| 478 | |
| 479 cmpct_free(start_of_os_alloc); | |
| 480 remaining = theheap.remaining; | |
| 481 | |
| 482 // This trim should sometimes trim a page off the end of the OS allo
cation. | |
| 483 cmpct_trim(); | |
| 484 ASSERT(theheap.remaining <= remaining); | |
| 485 remaining = theheap.remaining; | |
| 486 | |
| 487 // We should have < 1 page on either side of the big allocation. | |
| 488 ASSERT(remaining < PAGE_SIZE * 2); | |
| 489 | |
| 490 TestTrimFreeHelper(big_bit_in_the_middle); | |
| 491 } | |
| 492 } | |
| 493 } | |
| 494 | |
| 495 | |
| 496 #ifdef FLETCH_TARGET_OS_LK | |
| 497 static void cmpct_test_buckets(void) | |
| 498 #else | |
| 499 void cmpct_test_buckets(void) | |
| 500 #endif | |
| 501 { | |
| 502 size_t rounded; | |
| 503 unsigned bucket; | |
| 504 // Check for the 8-spaced buckets up to 128. | |
| 505 for (unsigned i = 1; i <= 128; i++) { | |
| 506 // Round up when allocating. | |
| 507 bucket = size_to_index_allocating(i, &rounded); | |
| 508 unsigned expected = (ROUNDUP(i, 8) >> 3) - 1; | |
| 509 ASSERT(bucket == expected); | |
| 510 ASSERT(IS_ALIGNED(rounded, 8)); | |
| 511 ASSERT(rounded >= i); | |
| 512 if (i >= sizeof(free_t) - sizeof(header_t)) { | |
| 513 // Once we get above the size of the free area struct (4 words), we | |
| 514 // won't round up much for these small size. | |
| 515 ASSERT(rounded - i < 8); | |
| 516 } | |
| 517 // Only rounded sizes are freed. | |
| 518 if ((i & 7) == 0) { | |
| 519 // Up to size 128 we have exact buckets for each multiple of 8. | |
| 520 ASSERT(bucket == (unsigned)size_to_index_freeing(i)); | |
| 521 } | |
| 522 } | |
| 523 int bucket_base = 7; | |
| 524 for (unsigned j = 16; j < 1024; j *= 2, bucket_base += 8) { | |
| 525 // Note the "<=", which ensures that we test the powers of 2 twice to en
sure | |
| 526 // that both ways of calculating the bucket number match. | |
| 527 for (unsigned i = j * 8; i <= j * 16; i++) { | |
| 528 // Round up to j multiple in this range when allocating. | |
| 529 bucket = size_to_index_allocating(i, &rounded); | |
| 530 unsigned expected = bucket_base + ROUNDUP(i, j) / j; | |
| 531 ASSERT(bucket == expected); | |
| 532 ASSERT(IS_ALIGNED(rounded, j)); | |
| 533 ASSERT(rounded >= i); | |
| 534 ASSERT(rounded - i < j); | |
| 535 // Only 8-rounded sizes are freed or chopped off the end of a free a
rea | |
| 536 // when allocating. | |
| 537 if ((i & 7) == 0) { | |
| 538 // When freeing, if we don't hit the size of the bucket precisel
y, | |
| 539 // we have to put the free space into a smaller bucket, because | |
| 540 // the buckets have entries that will always be big enough for | |
| 541 // the corresponding allocation size (so we don't have to | |
| 542 // traverse the free chains to find a big enough one). | |
| 543 if ((i % j) == 0) { | |
| 544 ASSERT((int)bucket == size_to_index_freeing(i)); | |
| 545 } else { | |
| 546 ASSERT((int)bucket - 1 == size_to_index_freeing(i)); | |
| 547 } | |
| 548 } | |
| 549 } | |
| 550 } | |
| 551 } | |
| 552 | |
| 553 static void cmpct_test_get_back_newly_freed_helper(size_t size) | |
| 554 { | |
| 555 void *allocated = cmpct_alloc(size); | |
| 556 if (allocated == NULL) return; | |
| 557 char *allocated2 = cmpct_alloc(8); | |
| 558 char *expected_position = (char *)allocated + size; | |
| 559 if (allocated2 < expected_position || allocated2 > expected_position + 128)
{ | |
| 560 // If the allocated2 allocation is not in the same OS allocation as the | |
| 561 // first allocation then the test may not work as expected (the memory | |
| 562 // may be returned to the OS when we free the first allocation, and we | |
| 563 // might not get it back). | |
| 564 cmpct_free(allocated); | |
| 565 cmpct_free(allocated2); | |
| 566 return; | |
| 567 } | |
| 568 | |
| 569 cmpct_free(allocated); | |
| 570 void *allocated3 = cmpct_alloc(size); | |
| 571 // To avoid churn and fragmentation we would want to get the newly freed | |
| 572 // memory back again when we allocate the same size shortly after. | |
| 573 ASSERT(allocated3 == allocated); | |
| 574 cmpct_free(allocated2); | |
| 575 cmpct_free(allocated3); | |
| 576 } | |
| 577 | |
| 578 #ifdef FLETCH_TARGET_OS_LK | |
| 579 static void cmpct_test_get_back_newly_freed(void) | |
| 580 #else | |
| 581 void cmpct_test_get_back_newly_freed(void) | |
| 582 #endif | |
| 583 { | |
| 584 size_t increment = 16; | |
| 585 for (size_t i = 128; i <= 0x8000000; i *= 2, increment *= 2) { | |
| 586 for (size_t j = i; j < i * 2; j += increment) { | |
| 587 cmpct_test_get_back_newly_freed_helper(i - 8); | |
| 588 cmpct_test_get_back_newly_freed_helper(i); | |
| 589 cmpct_test_get_back_newly_freed_helper(i + 1); | |
| 590 } | |
| 591 } | |
| 592 for (size_t i = 1024; i <= 2048; i++) { | |
| 593 cmpct_test_get_back_newly_freed_helper(i); | |
| 594 } | |
| 595 } | |
| 596 | |
| 597 #ifdef FLETCH_TARGET_OS_LK | |
| 598 static void cmpct_test_return_to_os(void) | |
| 599 #else | |
| 600 void cmpct_test_return_to_os(void) | |
| 601 #endif | |
| 602 { | |
| 603 cmpct_trim(); | |
| 604 size_t remaining = theheap.remaining; | |
| 605 // This goes in a new OS allocation since the trim above removed any free | |
| 606 // area big enough to contain it. | |
| 607 void *a = cmpct_alloc(5000); | |
| 608 void *b = cmpct_alloc(2500); | |
| 609 cmpct_free(a); | |
| 610 cmpct_free(b); | |
| 611 // If things work as expected the new allocation is at the start of an OS | |
| 612 // allocation. There's just one sentinel and one header to the left of it. | |
| 613 // It that's not the case then the allocation was met from some space in | |
| 614 // the middle of an OS allocation, and our test won't work as expected, so | |
| 615 // bail out. | |
| 616 if (((uintptr_t)a & (PAGE_SIZE - 1)) != sizeof(header_t) * 2) return; | |
| 617 // No trim needed when the entire OS allocation is free. | |
| 618 ASSERT(remaining == theheap.remaining); | |
| 619 } | |
| 620 | |
| 621 static void *large_alloc(size_t size) | |
| 622 { | |
| 623 #ifdef CMPCT_DEBUG | |
| 624 size_t requested_size = size; | |
| 625 #endif | |
| 626 size = ROUNDUP(size, 8); | |
| 627 free_t *free_area = NULL; | |
| 628 lock(); | |
| 629 heap_grow(size, &free_area); | |
| 630 void *result = | |
| 631 create_allocation_header(free_area, 0, free_area->header.size, free_area
->header.left); | |
| 632 // Normally the 'remaining free space' counter would be decremented when we | |
| 633 // unlink the free area from its bucket. However in this case the free | |
| 634 // area was too big to go in any bucket and we had it in our own | |
| 635 // "free_area" variable so there is no unlinking and we have to adjust the | |
| 636 // counter here. | |
| 637 theheap.remaining -= free_area->header.size; | |
| 638 unlock(); | |
| 639 #ifdef CMPCT_DEBUG | |
| 640 memset(result, ALLOC_FILL, requested_size); | |
| 641 memset((char *)result + requested_size, PADDING_FILL, free_area->header.size
- requested_size); | |
| 642 #endif | |
| 643 return result; | |
| 644 } | |
| 645 | |
| 646 void cmpct_trim(void) | |
| 647 { | |
| 648 // Look at free list entries that are at least as large as one page plus a | |
| 649 // header. They might be at the start or the end of a block, so we can trim | |
| 650 // them and free the page(s). | |
| 651 lock(); | |
| 652 for (int bucket = size_to_index_freeing(PAGE_SIZE); | |
| 653 bucket < NUMBER_OF_BUCKETS; | |
| 654 bucket++) { | |
| 655 free_t * next; | |
| 656 for (free_t *free_area = theheap.free_lists[bucket]; | |
| 657 free_area != NULL; | |
| 658 free_area = next) { | |
| 659 DEBUG_ASSERT(free_area->header.size >= PAGE_SIZE + sizeof(header_t))
; | |
| 660 next = free_area->next; | |
| 661 header_t *right = right_header(&free_area->header); | |
| 662 if (is_end_of_os_allocation((char *)right)) { | |
| 663 char *old_os_allocation_end = (char *)ROUNDUP((uintptr_t)right,
PAGE_SIZE); | |
| 664 // The page will end with a smaller free list entry and a header
-sized sentinel. | |
| 665 char *new_os_allocation_end = (char *) | |
| 666 ROUNDUP((uintptr_t)free_area + sizeof(header_t) + sizeof(fre
e_t), PAGE_SIZE); | |
| 667 size_t freed_up = old_os_allocation_end - new_os_allocation_end; | |
| 668 DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up)); | |
| 669 // Rare, because we only look at large freelist entries, but unl
ucky rounding | |
| 670 // could mean we can't actually free anything here. | |
| 671 if (freed_up == 0) continue; | |
| 672 unlink_free(free_area, bucket); | |
| 673 size_t new_free_size = free_area->header.size - freed_up; | |
| 674 DEBUG_ASSERT(new_free_size >= sizeof(free_t)); | |
| 675 // Right sentinel, not free, stops attempts to coalesce right. | |
| 676 create_allocation_header(free_area, new_free_size, 0, free_area)
; | |
| 677 // Also puts it in the correct bucket. | |
| 678 create_free_area(free_area, untag(free_area->header.left), new_f
ree_size, NULL); | |
| 679 page_free(new_os_allocation_end, freed_up >> PAGE_SIZE_SHIFT); | |
| 680 theheap.size -= freed_up; | |
| 681 } else if (is_start_of_os_allocation(untag(free_area->header.left)))
{ | |
| 682 char *old_os_allocation_start = | |
| 683 (char *)ROUNDDOWN((uintptr_t)free_area, PAGE_SIZE); | |
| 684 // For the sentinel, we need at least one header-size of space b
etween the page | |
| 685 // edge and the first allocation to the right of the free area. | |
| 686 char *new_os_allocation_start = | |
| 687 (char *)ROUNDDOWN((uintptr_t)(right - 1), PAGE_SIZE); | |
| 688 size_t freed_up = new_os_allocation_start - old_os_allocation_st
art; | |
| 689 DEBUG_ASSERT(IS_PAGE_ALIGNED(freed_up)); | |
| 690 // This should not happen because we only look at the large free
list buckets. | |
| 691 if (freed_up == 0) continue; | |
| 692 unlink_free(free_area, bucket); | |
| 693 size_t sentinel_size = sizeof(header_t); | |
| 694 size_t new_free_size = free_area->header.size - freed_up; | |
| 695 if (new_free_size < sizeof(free_t)) { | |
| 696 sentinel_size += new_free_size; | |
| 697 new_free_size = 0; | |
| 698 } | |
| 699 // Left sentinel, not free, stops attempts to coalesce left. | |
| 700 create_allocation_header(new_os_allocation_start, 0, sentinel_si
ze, NULL); | |
| 701 if (new_free_size == 0) { | |
| 702 FixLeftPointer(right, (header_t *)new_os_allocation_start); | |
| 703 } else { | |
| 704 DEBUG_ASSERT(new_free_size >= sizeof(free_t)); | |
| 705 char *new_free = new_os_allocation_start + sentinel_size; | |
| 706 // Also puts it in the correct bucket. | |
| 707 create_free_area(new_free, new_os_allocation_start, new_free
_size, NULL); | |
| 708 FixLeftPointer(right, (header_t *)new_free); | |
| 709 } | |
| 710 page_free(old_os_allocation_start, freed_up >> PAGE_SIZE_SHIFT); | |
| 711 theheap.size -= freed_up; | |
| 712 } | |
| 713 } | |
| 714 } | |
| 715 unlock(); | |
| 716 } | |
| 717 | |
| 718 void *cmpct_alloc(size_t size) | |
| 719 { | |
| 720 if (size == 0u) return NULL; | |
| 721 | |
| 722 if (size + sizeof(header_t) > (1u << HEAP_ALLOC_VIRTUAL_BITS)) return large_
alloc(size); | |
| 723 | |
| 724 size_t rounded_up; | |
| 725 int start_bucket = size_to_index_allocating(size, &rounded_up); | |
| 726 | |
| 727 rounded_up += sizeof(header_t); | |
| 728 | |
| 729 lock(); | |
| 730 int bucket = find_nonempty_bucket(start_bucket); | |
| 731 if (bucket == -1) { | |
| 732 // Grow heap by at least 12% if we can. | |
| 733 size_t growby = MIN(1u << HEAP_ALLOC_VIRTUAL_BITS, | |
| 734 MAX(theheap.size >> 3, | |
| 735 MAX(HEAP_GROW_SIZE, rounded_up))); | |
| 736 while (heap_grow(growby, NULL) < 0) { | |
| 737 if (growby <= rounded_up) { | |
| 738 unlock(); | |
| 739 return NULL; | |
| 740 } | |
| 741 growby = MAX(growby >> 1, rounded_up); | |
| 742 } | |
| 743 bucket = find_nonempty_bucket(start_bucket); | |
| 744 } | |
| 745 free_t *head = theheap.free_lists[bucket]; | |
| 746 size_t left_over = head->header.size - rounded_up; | |
| 747 // We can't carve off the rest for a new free space if it's smaller than the | |
| 748 // free-list linked structure. We also don't carve it off if it's less than | |
| 749 // 1.6% the size of the allocation. This is to avoid small long-lived | |
| 750 // allocations being placed right next to large allocations, hindering | |
| 751 // coalescing and returning pages to the OS. | |
| 752 if (left_over >= sizeof(free_t) && left_over > (size >> 6)) { | |
| 753 header_t *right = right_header(&head->header); | |
| 754 unlink_free(head, bucket); | |
| 755 void *free = (char *)head + rounded_up; | |
| 756 create_free_area(free, head, left_over, NULL); | |
| 757 FixLeftPointer(right, (header_t *)free); | |
| 758 head->header.size -= left_over; | |
| 759 } else { | |
| 760 unlink_free(head, bucket); | |
| 761 } | |
| 762 void *result = | |
| 763 create_allocation_header(head, 0, head->header.size, head->header.left); | |
| 764 #ifdef CMPCT_DEBUG | |
| 765 memset(result, ALLOC_FILL, size); | |
| 766 memset(((char *)result) + size, PADDING_FILL, rounded_up - size - sizeof(hea
der_t)); | |
| 767 #endif | |
| 768 unlock(); | |
| 769 return result; | |
| 770 } | |
| 771 | |
| 772 void *cmpct_memalign(size_t size, size_t alignment) | |
| 773 { | |
| 774 if (alignment < 8) return cmpct_alloc(size); | |
| 775 size_t padded_size = | |
| 776 size + alignment + sizeof(free_t) + sizeof(header_t); | |
| 777 char *unaligned = (char *)cmpct_alloc(padded_size); | |
| 778 lock(); | |
| 779 size_t mask = alignment - 1; | |
| 780 uintptr_t payload_int = (uintptr_t)unaligned + sizeof(free_t) + | |
| 781 sizeof(header_t) + mask; | |
| 782 char *payload = (char *)(payload_int & ~mask); | |
| 783 if (unaligned != payload) { | |
| 784 header_t *unaligned_header = (header_t *)unaligned - 1; | |
| 785 header_t *header = (header_t *)payload - 1; | |
| 786 size_t left_over = payload - unaligned; | |
| 787 create_allocation_header( | |
| 788 header, 0, unaligned_header->size - left_over, unaligned_header); | |
| 789 header_t *right = right_header(unaligned_header); | |
| 790 unaligned_header->size = left_over; | |
| 791 FixLeftPointer(right, header); | |
| 792 unlock(); | |
| 793 cmpct_free(unaligned); | |
| 794 } else { | |
| 795 unlock(); | |
| 796 } | |
| 797 // TODO: Free the part after the aligned allocation. | |
| 798 return payload; | |
| 799 } | |
| 800 | |
| 801 void cmpct_free(void *payload) | |
| 802 { | |
| 803 if (payload == NULL) return; | |
| 804 header_t *header = (header_t *)payload - 1; | |
| 805 DEBUG_ASSERT(!is_tagged_as_free(header)); // Double free! | |
| 806 size_t size = header->size; | |
| 807 lock(); | |
| 808 header_t *left = header->left; | |
| 809 if (left != NULL && is_tagged_as_free(left)) { | |
| 810 // Coalesce with left free object. | |
| 811 unlink_free_unknown_bucket((free_t *)left); | |
| 812 header_t *right = right_header(header); | |
| 813 if (is_tagged_as_free(right)) { | |
| 814 // Coalesce both sides. | |
| 815 unlink_free_unknown_bucket((free_t *)right); | |
| 816 header_t *right_right = right_header(right); | |
| 817 FixLeftPointer(right_right, left); | |
| 818 free_memory(left, left->left, left->size + size + right->size); | |
| 819 } else { | |
| 820 // Coalesce only left. | |
| 821 FixLeftPointer(right, left); | |
| 822 free_memory(left, left->left, left->size + size); | |
| 823 } | |
| 824 } else { | |
| 825 header_t *right = right_header(header); | |
| 826 if (is_tagged_as_free(right)) { | |
| 827 // Coalesce only right. | |
| 828 header_t *right_right = right_header(right); | |
| 829 unlink_free_unknown_bucket((free_t *)right); | |
| 830 FixLeftPointer(right_right, header); | |
| 831 free_memory(header, left, size + right->size); | |
| 832 } else { | |
| 833 free_memory(header, left, size); | |
| 834 } | |
| 835 } | |
| 836 unlock(); | |
| 837 } | |
| 838 | |
| 839 void *cmpct_realloc(void *payload, size_t size) | |
| 840 { | |
| 841 if (payload == NULL) return cmpct_alloc(size); | |
| 842 header_t *header = (header_t *)payload - 1; | |
| 843 size_t old_size = header->size - sizeof(header_t); | |
| 844 void *new_payload = cmpct_alloc(size); | |
| 845 memcpy(new_payload, payload, MIN(size, old_size)); | |
| 846 cmpct_free(payload); | |
| 847 return new_payload; | |
| 848 } | |
| 849 | |
| 850 static void add_to_heap(void *new_area, size_t size, free_t **bucket) | |
| 851 { | |
| 852 void *top = (char *)new_area + size; | |
| 853 header_t *left_sentinel = (header_t *)new_area; | |
| 854 // Not free, stops attempts to coalesce left. | |
| 855 create_allocation_header(left_sentinel, 0, sizeof(header_t), NULL); | |
| 856 header_t *new_header = left_sentinel + 1; | |
| 857 size_t free_size = size - 2 * sizeof(header_t); | |
| 858 create_free_area(new_header, left_sentinel, free_size, bucket); | |
| 859 header_t *right_sentinel = (header_t *)(top - sizeof(header_t)); | |
| 860 // Not free, stops attempts to coalesce right. | |
| 861 create_allocation_header(right_sentinel, 0, 0, new_header); | |
| 862 } | |
| 863 | |
| 864 // Create a new free-list entry of at least size bytes (including the | |
| 865 // allocation header). Called with the lock, apart from during init. | |
| 866 static ssize_t heap_grow(size_t size, free_t **bucket) | |
| 867 { | |
| 868 // The new free list entry will have a header on each side (the | |
| 869 // sentinels) so we need to grow the gross heap size by this much more. | |
| 870 size += 2 * sizeof(header_t); | |
| 871 size = ROUNDUP(size, PAGE_SIZE); | |
| 872 void *ptr = page_alloc(size >> PAGE_SIZE_SHIFT); | |
| 873 theheap.size += size; | |
| 874 if (ptr == NULL) return -1; | |
| 875 LTRACEF("growing heap by 0x%zx bytes, new ptr %p\n", size, ptr); | |
| 876 add_to_heap(ptr, size, bucket); | |
| 877 return size; | |
| 878 } | |
| 879 | |
| 880 void cmpct_init(void) | |
| 881 { | |
| 882 LTRACE_ENTRY; | |
| 883 | |
| 884 // Create a mutex. | |
| 885 #ifdef FLETCH_TARGET_OS_LK | |
| 886 mutex_init(&theheap.lock); | |
| 887 #endif | |
| 888 | |
| 889 // Initialize the free list. | |
| 890 for (int i = 0; i < NUMBER_OF_BUCKETS; i++) { | |
| 891 theheap.free_lists[i] = NULL; | |
| 892 } | |
| 893 for (int i = 0; i < BUCKET_WORDS; i++) { | |
| 894 theheap.free_list_bits[i] = 0; | |
| 895 } | |
| 896 | |
| 897 size_t initial_alloc = HEAP_GROW_SIZE - 2 * sizeof(header_t); | |
| 898 | |
| 899 theheap.remaining = 0; | |
| 900 | |
| 901 heap_grow(initial_alloc, NULL); | |
| 902 } | |
| OLD | NEW |