Index: src/gpu/GrDistanceFieldGenFromVector.cpp |
diff --git a/src/gpu/GrDistanceFieldGenFromVector.cpp b/src/gpu/GrDistanceFieldGenFromVector.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..50c6fb464350dfd8a4d2020ea005e22a2ef1da3c |
--- /dev/null |
+++ b/src/gpu/GrDistanceFieldGenFromVector.cpp |
@@ -0,0 +1,773 @@ |
+/* |
+ * Copyright 2016 ARM Ltd. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "GrDistanceFieldGenFromVector.h" |
+#include "SkPoint.h" |
+#include "SkGeometry.h" |
+#include "GrPathUtils.h" |
+#include "GrConfig.h" |
+ |
+/** |
+ * If a scanline (a row of texel) cross from the kRight_Side |
+ * of a segment to the kLeft_Side, the winding score should |
+ * add 1. |
+ * And winding score should subtract 1 if the scanline cross |
+ * from kLeft_Side to kRight_Side. |
+ * Always return kNA_Side if the scanline does not cross over |
+ * the segment. Winding score should be zero in this case. |
+ * You can get the winding number for each texel of the scanline |
+ * by adding the winding score from left to right. |
+ * Assuming we always start from outside, so the winding number |
+ * should always start from zero. |
+ * ________ ________ |
+ * | | | | |
+ * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment |
+ * |+1 |-1 |-1 |+1 <= Winding score |
+ * 0 | 1 ^ 0 ^ -1 |0 <= Winding number |
+ * |________| |________| |
+ * |
+ * .......NA................NA.......... |
+ * 0 0 |
+ */ |
+enum SegSide { |
bsalomon
2016/02/02 18:03:48
nit, we usually put the full name of the enum afte
Joel.Liang
2016/02/04 12:12:05
Done.
|
+ kLeft_Side = -1, |
+ kOn_Side = 0, |
+ kRight_Side = 1, |
+ kNA_Side = 2, |
+}; |
+ |
+struct DFData { |
+ float fDistSq; // distance squared to nearest (so far) edge |
+ int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment |
+}; |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+/* |
+ * Type definition for double precision DScalar, DPoint and DMatrix |
+ */ |
+ |
+// Scalar with double precision |
+typedef double DScalar; |
mtklein
2016/02/04 14:32:59
We could probably just type "double". SkScalar on
Joel.Liang
2016/02/05 10:10:55
Done.
|
+ |
+// Point with double precision |
+struct DPoint { |
+ DScalar fX, fY; |
+ |
+ static DPoint Make(DScalar x, DScalar y) { |
+ DPoint pt; |
+ pt.set(x, y); |
+ return pt; |
+ } |
+ |
+ DScalar x() const { return fX; } |
+ DScalar y() const { return fY; } |
+ |
+ void set(DScalar x, DScalar y) { fX = x; fY = y; } |
+ |
+ /** Returns the euclidian distance from (0,0) to (x,y) |
+ */ |
+ static DScalar Length(DScalar x, DScalar y) { |
+ return sqrt(x * x + y * y); |
+ } |
+ |
+ /** Returns the euclidian distance between a and b |
+ */ |
+ static DScalar Distance(const DPoint& a, const DPoint& b) { |
+ return Length(a.fX - b.fX, a.fY - b.fY); |
+ } |
+ |
+ DScalar distanceToSqd(const DPoint& pt) const { |
+ DScalar dx = fX - pt.fX; |
+ DScalar dy = fY - pt.fY; |
+ return dx * dx + dy * dy; |
+ } |
+}; |
+ |
+// Matrix with double precision |
+class DMatrix { |
bsalomon
2016/02/02 18:03:48
SkMatrix promotes itself to doubles for some opera
Joel.Liang
2016/02/04 12:12:04
I just tried SkMatrix, it didn't give sufficient p
|
+public: |
+ DScalar operator[](int index) const { |
+ SkASSERT((unsigned)index < 9); |
+ return fMat[index]; |
+ } |
+ |
+ DScalar& operator[](int index) { |
+ SkASSERT((unsigned)index < 9); |
+ return fMat[index]; |
+ } |
+ |
+ enum { |
+ kMScaleX, |
+ kMSkewX, |
+ kMTransX, |
+ kMSkewY, |
+ kMScaleY, |
+ kMTransY, |
+ kMPersp0, |
+ kMPersp1, |
+ kMPersp2 |
+ }; |
+ |
+ void setAll(DScalar scaleX, DScalar skewX, DScalar transX, |
+ DScalar skewY, DScalar scaleY, DScalar transY, |
+ DScalar persp0, DScalar persp1, DScalar persp2) { |
+ fMat[kMScaleX] = scaleX; |
+ fMat[kMSkewX] = skewX; |
+ fMat[kMTransX] = transX; |
+ fMat[kMSkewY] = skewY; |
+ fMat[kMScaleY] = scaleY; |
+ fMat[kMTransY] = transY; |
+ fMat[kMPersp0] = persp0; |
+ fMat[kMPersp1] = persp1; |
+ fMat[kMPersp2] = persp2; |
+ } |
+ |
+ /** Set the matrix to identity |
+ */ |
+ void reset() { |
+ fMat[kMScaleX] = fMat[kMScaleY] = fMat[kMPersp2] = 1.0; |
+ fMat[kMSkewX] = fMat[kMSkewY] = |
+ fMat[kMTransX] = fMat[kMTransY] = |
+ fMat[kMPersp0] = fMat[kMPersp1] = 0.0; |
+ } |
+ |
+ // alias for reset() |
+ void setIdentity() { this->reset(); } |
+ |
+ DPoint mapPoint(const SkPoint& src) const { |
+ DPoint pt = DPoint::Make(src.x(), src.y()); |
+ return this->mapPoint(pt); |
+ } |
+ |
+ DPoint mapPoint(const DPoint& src) const { |
+ return DPoint::Make(fMat[kMScaleX] * src.x() + fMat[kMSkewY] * src.y() + fMat[kMPersp0], |
mtklein
2016/02/04 14:32:59
If you only use this matrix for affine transformat
Wasim.Abbas
2016/02/04 14:48:38
In Patch Set 5 we have changed this matrix code. I
|
+ fMat[kMSkewX] * src.x() + fMat[kMScaleY] * src.y() + fMat[kMPersp1]); |
+ } |
+private: |
+ DScalar fMat[9]; |
+}; |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+static const SkScalar kClose = (SK_Scalar1 / 16.0); |
+static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
+static const SkScalar kNearlyZero = (SK_Scalar1 / (1 << 15)); |
+ |
+static inline bool between_closed_open(double a, double b, double c, |
bsalomon
2016/02/02 18:03:48
Should these doubles be DScalars? (same for the co
Joel.Liang
2016/02/04 12:12:05
Done.
|
+ SkScalar tolerance = kNearlyZero) { |
+ SkASSERT(tolerance >= 0.f); |
+ return b < c ? (a >= b - tolerance && a < c - tolerance) : |
+ (a >= c - tolerance && a < b - tolerance); |
+} |
+ |
+static inline bool between_closed(double a, double b, double c, |
+ SkScalar tolerance = kNearlyZero) { |
+ SkASSERT(tolerance >= 0.f); |
+ return b < c ? (a >= b - tolerance && a <= c + tolerance) : |
+ (a >= c - tolerance && a <= b + tolerance); |
+} |
+ |
+static inline bool nearly_zero(double x, |
+ SkScalar tolerance = kNearlyZero) { |
+ SkASSERT(tolerance >= 0.f); |
+ return fabs(x) <= tolerance; |
+} |
+ |
+static inline bool nearly_equal(double x, double y, |
+ SkScalar tolerance = kNearlyZero) { |
+ SkASSERT(tolerance >= 0.f); |
+ return fabs(x - y) <= tolerance; |
+} |
+ |
+static inline float sign_of(const float &val) { |
bsalomon
2016/02/02 18:03:48
Do we not have a helper for this already?
Joel.Liang
2016/02/04 12:12:04
For input value 0.0, we need 1.0 return here. The
|
+ return (val < 0.f) ? -1.f : 1.f; |
+} |
+ |
+static bool is_colinear(const SkPoint pts[3]) { |
+ return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - |
+ (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x())); |
+} |
+ |
+class PathSegment { |
+public: |
+ enum { |
+ // These enum values are assumed in member functions below. |
+ kLine = 0, |
+ kQuad = 1, |
+ } fType; |
+ |
+ // line uses 2 pts, quad uses 3 pts |
+ SkPoint fPts[3]; |
+ |
+ DPoint fB0T, fB2T; |
+ DMatrix fXformMatrix; |
+ DScalar fScalingFactor; |
+ SkRect fBoundingBox; |
+ |
+ void init(); |
+ |
+ int countPoints() { |
+ GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
+ return fType + 2; |
+ } |
+ |
+ const SkPoint& endPt() const { |
+ GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
+ return fPts[fType + 1]; |
+ }; |
+}; |
+ |
+typedef SkTArray<PathSegment, true> PathSegmentArray; |
+ |
+void PathSegment::init() { |
+ const DPoint b0 = DPoint::Make(this->fPts[0].x(), this->fPts[0].y()); |
+ const DPoint b2 = DPoint::Make(this->endPt().x(), this->endPt().y()); |
+ const DScalar b0x = b0.x(); |
+ const DScalar b0y = b0.y(); |
+ const DScalar b2x = b2.x(); |
+ const DScalar b2y = b2.y(); |
+ |
+ this->fBoundingBox.set(this->fPts[0], this->endPt()); |
+ |
+ if (this->fType == PathSegment::kLine) { |
+ this->fScalingFactor = DPoint::Distance(b0, b2); |
+ |
+ const DScalar cosTheta = (b2x - b0x) / this->fScalingFactor; |
+ const DScalar sinTheta = (b2y - b0y) / this->fScalingFactor; |
+ |
+ this->fXformMatrix.setAll( |
+ cosTheta, -sinTheta, 0.0, |
+ sinTheta, cosTheta, 0.0, |
+ -(cosTheta * b0x) - (sinTheta * b0y), (sinTheta * b0x) - (cosTheta * b0y), 1.0 |
+ ); |
Joel.Liang
2016/02/04 12:12:04
This matrix is a transposed matrix of general Open
|
+ } else { |
+ SkASSERT(this->fType == PathSegment::kQuad); |
+ |
+ // Calculate bounding box |
+ const SkPoint _P1mP0 = this->fPts[1] - this->fPts[0]; |
+ SkPoint t = _P1mP0 - this->fPts[2] + this->fPts[1]; |
+ t.fX = _P1mP0.x() / t.x(); |
+ t.fY = _P1mP0.y() / t.y(); |
+ t.fX = SkScalarClampMax(t.x(), 1.0); |
+ t.fY = SkScalarClampMax(t.y(), 1.0); |
+ t.fX = _P1mP0.x() * t.x(); |
+ t.fY = _P1mP0.y() * t.y(); |
+ const SkPoint b1 = this->fPts[0] + t; |
+ this->fBoundingBox.growToInclude(&b1, 1); |
+ |
+ const DScalar cp1x = this->fPts[1].x(); |
+ const DScalar cp1y = this->fPts[1].y(); |
+ |
+ |
+ const double a = pow(b0y - (2.0 * cp1y) + b2y, 2.0); |
bsalomon
2016/02/02 18:03:48
DScalars?
Joel.Liang
2016/02/04 12:12:05
Done.
|
+ const double h = -1.0 * (b0y - (2.0 * cp1y) + b2y) * (b0x - (2.0 * cp1x) + b2x); |
+ const double b = pow(b0x - (2.0 * cp1x) + b2x, 2.0); |
bsalomon
2016/02/02 18:03:48
Are pow(<foo>, 2.0)s as fast as <foo>*<foo>?
Joel.Liang
2016/02/04 12:12:04
I done a performance test for pow and <foo>*<foo>,
|
+ const double c = (pow(b0x, 2.0) * pow(b2y, 2.0)) - (4.0 * b0x * cp1x * cp1y * b2y) |
+ - (2.0 * b0x * b2x * b0y * b2y) + (4.0 * b0x * b2x * pow(cp1y, 2.0)) |
+ + (4.0 * pow(cp1x, 2.0) * b0y * b2y) - (4.0 * cp1x * b2x * b0y * cp1y) |
+ + (pow(b2x, 2.0) * pow(b0y, 2.0)); |
+ const double g = (b0x * b0y * b2y) - (2.0 * b0x * pow(cp1y, 2.0)) |
+ + (2.0 * b0x * cp1y * b2y) - (b0x * pow(b2y, 2.0)) |
+ + (2.0 * cp1x * b0y * cp1y) - (4.0 * cp1x * b0y * b2y) |
+ + (2.0 * cp1x * cp1y * b2y) - (b2x * pow(b0y, 2.0)) |
+ + (2.0 * b2x * b0y * cp1y) + (b2x * b0y * b2y) |
+ - (2.0 * b2x * pow(cp1y, 2.0)); |
+ const double f = -((pow(b0x, 2.0) * b2y) - (2.0 * b0x * cp1x * cp1y) |
+ - (2.0 * b0x * cp1x * b2y) - (b0x * b2x * b0y) |
+ + (4.0 * b0x * b2x * cp1y) - (b0x * b2x * b2y) |
+ + (2.0 * pow(cp1x, 2.0) * b0y) + (2.0 * pow(cp1x, 2.0) * b2y) |
+ - (2.0 * cp1x * b2x * b0y) - (2.0 * cp1x * b2x * cp1y) |
+ + (pow(b2x, 2.0) * b0y)); |
+ |
+ |
+ const double cosTheta = sqrt(a / (a + b)); |
+ const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); |
+ |
+ const double gDef = cosTheta * g - sinTheta * f; |
+ const double fDef = sinTheta * g + cosTheta * f; |
+ |
+ |
+ const double x0 = gDef / (a + b); |
+ const double y0 = (1.0 / (2.0 * fDef)) * (c - (pow(gDef, 2.0) / (a + b))); |
+ |
+ |
+ const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); |
+ this->fScalingFactor = (1.0 / lambda); |
+ this->fScalingFactor *= this->fScalingFactor; |
+ |
+ |
+ this->fXformMatrix.setAll( |
+ lambda * cosTheta, lambda * sinTheta, 0.0, |
+ - lambda * sinTheta, lambda * cosTheta, 0.0, |
+ lambda * x0, lambda * y0, 1.0 |
+ ); |
Joel.Liang
2016/02/04 12:12:04
Transpose the matrix in the next commit.
|
+ } |
+ |
+ this->fB0T = this->fXformMatrix.mapPoint(b0); |
+ this->fB2T = this->fXformMatrix.mapPoint(b2); |
+} |
+ |
+static void init_distances(DFData* data, int size) { |
+ DFData* currData = data; |
+ |
+ for (int i = 0; i < size; ++i) { |
+ // init distance to "far away" |
+ currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; |
+ currData->fDeltaWindingScore = 0; |
+ ++currData; |
+ } |
+} |
+ |
+static inline bool get_direction(const SkPath& path, const SkMatrix& m, |
+ SkPathPriv::FirstDirection* dir) { |
+ if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { |
+ return false; |
+ } |
+ |
+ // check whether m reverses the orientation |
+ SkASSERT(!m.hasPerspective()); |
+ SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - |
+ SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); |
+ |
+ if (det2x2 < 0) { |
+ *dir = SkPathPriv::OppositeFirstDirection(*dir); |
+ } |
+ return true; |
+} |
+ |
+static inline void add_line_to_segment(const SkPoint pts[2], |
+ PathSegmentArray* segments) { |
+ segments->push_back(); |
+ segments->back().fType = PathSegment::kLine; |
+ segments->back().fPts[0] = pts[0]; |
+ segments->back().fPts[1] = pts[1]; |
+ |
+ segments->back().init(); |
+} |
+ |
+static inline void add_quad_segment(const SkPoint pts[3], |
+ PathSegmentArray* segments) { |
+ if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || |
+ pts[1].distanceToSqd(pts[2]) < kCloseSqd || |
+ is_colinear(pts)) { |
+ if (pts[0] != pts[2]) { |
+ SkPoint line_pts[2]; |
+ line_pts[0] = pts[0]; |
+ line_pts[1] = pts[2]; |
+ add_line_to_segment(line_pts, segments); |
+ } |
+ } else { |
+ segments->push_back(); |
+ segments->back().fType = PathSegment::kQuad; |
+ segments->back().fPts[0] = pts[0]; |
+ segments->back().fPts[1] = pts[1]; |
+ segments->back().fPts[2] = pts[2]; |
+ |
+ segments->back().init(); |
+ } |
+} |
+ |
+static inline void add_cubic_segments(const SkPoint pts[4], |
+ SkPathPriv::FirstDirection dir, |
+ PathSegmentArray* segments) { |
+ SkSTArray<15, SkPoint, true> quads; |
+ GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); |
+ int count = quads.count(); |
+ for (int q = 0; q < count; q += 3) { |
+ add_quad_segment(&quads[q], segments); |
+ } |
+} |
+ |
+static float calculate_nearest_point_for_quad( |
+ const PathSegment& segment, |
+ const DPoint &xFormPt) { |
+ #define THIRD float(0.33333333333f) |
bsalomon
2016/02/02 18:03:48
If you're only using these in this function maybe
Joel.Liang
2016/02/04 12:12:05
Done.
|
+ #define TWENTYSEVENTH float(0.037037037f) |
+ |
+ const float a = 0.5f - xFormPt.y(); |
+ const float b = -0.5f * xFormPt.x(); |
+ |
+ const float a3 = a * a * a; |
+ const float b2 = b * b; |
+ |
+ const float c = (b2 * 0.25f) + (a3 * TWENTYSEVENTH); |
+ |
+ if (c >= 0.f) { |
+ const float sqrtC = sqrt(c); |
+ const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); |
+ return result; |
+ } else { |
+ const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); |
+ const float phi = (float)acos(cosPhi); |
+ float result; |
+ if (xFormPt.x() > 0.f) { |
+ result = 2.f * (float)sqrt(-a * THIRD) * (float)cos(phi * THIRD); |
+ if (!between_closed(result, segment.fB0T.x(), segment.fB2T.x())) { |
+ result = 2.f * (float)sqrt(-a * THIRD) * (float)cos((phi * THIRD) + (SK_ScalarPI * 2.f * THIRD)); |
+ } |
+ } else { |
+ result = 2.f * (float)sqrt(-a * THIRD) * (float)cos((phi * THIRD) + (SK_ScalarPI * 2.f * THIRD)); |
+ if (!between_closed(result, segment.fB0T.x(), segment.fB2T.x())) { |
+ result = 2.f * (float)sqrt(-a * THIRD) * (float)cos(phi * THIRD); |
+ } |
+ } |
+ return result; |
+ } |
+} |
+ |
+struct RowData |
bsalomon
2016/02/02 18:03:48
Some comments on this struct might be useful (e.g.
Joel.Liang
2016/02/04 12:12:05
Done. I have changed some member variable name and
|
+{ |
bsalomon
2016/02/02 18:03:48
{ on prev line
Joel.Liang
2016/02/04 12:12:04
Done.
|
+ enum IntersectionType { |
+ kNoIntersection, |
+ kVerticalLine, |
+ kTangentLine, |
+ kTwoPointsIntersect |
+ } fIntersectionType; |
+ int fSignB0B2; |
+ double fPow2x; |
bsalomon
2016/02/02 18:03:48
DScalars?
Joel.Liang
2016/02/04 12:12:04
Done.
|
+ double fIntersectionPoint1; |
+ double fIntersectionPoint2; |
+}; |
+ |
+void precomputation_for_row( |
+ RowData *rowData, |
+ const PathSegment& segment, |
+ const SkPoint& pointLeft, |
+ const SkPoint& pointRight |
+ ) { |
+ if (segment.fType != PathSegment::kQuad) { |
+ return; |
+ } |
+ |
+ const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); |
+ const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);; |
+ |
+ rowData->fSignB0B2 = sign_of(segment.fB2T.x() - segment.fB0T.x()); |
+ |
+ const double x1 = xFormPtLeft.x(); |
bsalomon
2016/02/02 18:03:48
DScalars?
Joel.Liang
2016/02/04 12:12:04
Done.
|
+ const double y1 = xFormPtLeft.y(); |
+ const double x2 = xFormPtRight.x(); |
+ const double y2 = xFormPtRight.y(); |
+ |
+ if (nearly_equal(x1, x2)) { |
+ rowData->fIntersectionType = RowData::kVerticalLine; |
+ rowData->fPow2x = pow(x1, 2.0); |
+ return; |
+ } |
+ |
+ // Line y = mx + b |
+ const double m = (y2 - y1) / (x2 - x1); |
+ const double b = -m * x1 + y1; |
+ |
+ const double c = pow(m, 2.0) + 4.0 * b; |
+ |
+ if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) { |
+ rowData->fIntersectionType = RowData::kTangentLine; |
+ rowData->fIntersectionPoint1 = m / 2.0; |
+ rowData->fIntersectionPoint2 = m / 2.0; |
+ } else if (c < 0.0) { |
+ rowData->fIntersectionType = RowData::kNoIntersection; |
+ return; |
+ } else { |
+ rowData->fIntersectionType = RowData::kTwoPointsIntersect; |
+ const double d = sqrt(c); |
+ rowData->fIntersectionPoint1 = (m + d) / 2.0; |
+ rowData->fIntersectionPoint2 = (m - d) / 2.0; |
+ } |
+} |
+ |
+SegSide calculate_side_of_quad( |
+ const PathSegment& segment, |
+ const SkPoint& point, |
+ const DPoint& xFormPt, |
+ const RowData& rowData) { |
+ SegSide side = kNA_Side; |
+ |
+ if (RowData::kVerticalLine == rowData.fIntersectionType) { |
+ side = (SegSide)(int)(sign_of(rowData.fPow2x - xFormPt.y()) * rowData.fSignB0B2); |
+ } |
+ else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType || |
+ RowData::kTangentLine == rowData.fIntersectionType) { |
+ const double p1 = rowData.fIntersectionPoint1; |
+ const double p2 = rowData.fIntersectionPoint2; |
+ |
+ int signP1 = sign_of(p1 - xFormPt.x()); |
+ if (between_closed(p1, segment.fB0T.x(), segment.fB2T.x())) { |
+ side = (SegSide)((-signP1) * rowData.fSignB0B2); |
+ } |
+ if (between_closed(p2, segment.fB0T.x(), segment.fB2T.x())) { |
+ int signP2 = sign_of(p2 - xFormPt.x()); |
+ if (side == kNA_Side || signP2 == 1) { |
+ side = (SegSide)(signP2 * rowData.fSignB0B2); |
+ } |
+ } |
+ |
+ // The scanline is the tangent line of current quadratic segment. |
+ if (RowData::kTangentLine == rowData.fIntersectionType) { |
+ // The path start at the tangent point. |
+ if (nearly_equal(p1, segment.fB0T.x())) { |
+ side = (SegSide)(side * (-signP1) * rowData.fSignB0B2); |
+ } |
+ |
+ // The path end at the tangent point. |
+ if (nearly_equal(p1, segment.fB2T.x())) { |
+ side = (SegSide)(side * signP1 * rowData.fSignB0B2); |
+ } |
+ } |
+ } |
+ |
+ return side; |
+} |
+ |
+static float distance_to_segment(const SkPoint& point, |
+ const PathSegment& segment, |
+ const RowData& rowData, |
+ SegSide* side) { |
+ SkASSERT(side); |
+ |
+ const DPoint xformPt = segment.fXformMatrix.mapPoint(point); |
+ |
+ if (segment.fType == PathSegment::kLine) { |
+ float result = SK_DistanceFieldPad * SK_DistanceFieldPad; |
+ |
+ if (between_closed(xformPt.x(), segment.fB0T.x(), segment.fB2T.x())) { |
+ result = pow(xformPt.y(), 2.0); |
+ } else if (xformPt.x() < segment.fB0T.x()) { |
+ result = (pow(xformPt.x(), 2.0) + pow(xformPt.y(), 2.0)); |
+ } else { |
+ result = (pow((xformPt.x() - segment.fB2T.x()), 2.0) |
+ + pow(xformPt.y(), 2.0)); |
+ } |
+ |
+ if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
+ segment.fBoundingBox.bottom())) { |
+ *side = (SegSide)(int)sign_of(-xformPt.y()); |
+ } else { |
+ *side = kNA_Side; |
+ } |
+ return result; |
+ } else { |
+ SkASSERT(segment.fType == PathSegment::kQuad); |
+ |
+ const DPoint& xformPt = segment.fXformMatrix.mapPoint(point); |
+ const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); |
+ |
+ float dist; |
+ |
+ if (between_closed(nearestPoint, segment.fB0T.x(), segment.fB2T.x())) { |
+ DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); |
+ dist = xformPt.distanceToSqd(x); |
+ } else { |
+ const float distToB0T = xformPt.distanceToSqd(segment.fB0T); |
+ const float distToB2T = xformPt.distanceToSqd(segment.fB2T); |
+ |
+ if (distToB0T < distToB2T) { |
+ dist = distToB0T; |
+ } else { |
+ dist = distToB2T; |
+ } |
+ } |
+ |
+ if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
+ segment.fBoundingBox.bottom())) { |
+ *side = calculate_side_of_quad(segment, point, xformPt, rowData); |
+ } else { |
+ *side = kNA_Side; |
+ } |
+ |
+ return dist * segment.fScalingFactor; |
+ } |
+} |
+ |
+static void calculate_distance_field_data(PathSegmentArray* segments, |
+ DFData* dataPtr, |
+ int width, int height) { |
+ int count = segments->count(); |
+ for (int a = 0; a < count; ++a) { |
+ PathSegment& segment = (*segments)[a]; |
+ const SkRect& segBB = segment.fBoundingBox.makeOutset( |
+ SK_DistanceFieldPad, SK_DistanceFieldPad); |
+ int startColumn = segBB.left(); |
+ int endColumn = segBB.right() + 1; |
+ |
+ int startRow = segBB.top(); |
+ int endRow = segBB.bottom() + 1; |
+ |
+ SkASSERT((startColumn >= 0) && "StartColumn < 0!"); |
+ SkASSERT((endColumn <= width) && "endColumn > width!"); |
+ SkASSERT((startRow >= 0) && "StartRow < 0!"); |
+ SkASSERT((endRow <= height) && "EndRow > height!"); |
+ |
+ for (int row = startRow; row < endRow; ++row) { |
+ SegSide prevSide = kNA_Side; |
+ const float pY = row + 0.5f; |
+ RowData rowData; |
+ |
+ const SkPoint pointLeft = SkPoint::Make(startColumn, pY); |
+ const SkPoint pointRight = SkPoint::Make(endColumn, pY); |
+ |
+ precomputation_for_row(&rowData, segment, pointLeft, pointRight); |
+ |
+ for (int col = startColumn; col < endColumn; ++col) { |
+ int idx = (row * width) + col; |
+ |
+ const float pX = col + 0.5f; |
+ const SkPoint point = SkPoint::Make(pX, pY); |
+ |
+ const float distSq = dataPtr[idx].fDistSq; |
+ int dilation = distSq < 1.5 * 1.5 ? 1 : |
+ distSq < 2.5 * 2.5 ? 2 : |
+ distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; |
+ if (dilation > SK_DistanceFieldPad) { |
+ dilation = SK_DistanceFieldPad; |
+ } |
+ |
+ // Optimisation for not calculating some points. |
+ if (dilation != SK_DistanceFieldPad |
+ && !segment.fBoundingBox.roundOut() |
bsalomon
2016/02/02 18:03:48
&& on prev line, looks like everything following &
Joel.Liang
2016/02/04 12:12:04
Not fits within 100 col. So I split it into 2 line
|
+ .makeOutset(dilation, dilation) |
+ .contains(col, row)) { |
+ continue; |
+ } |
+ |
+ SegSide side = kNA_Side; |
+ int deltaWindingScore = 0; |
+ float currDistSq = |
+ distance_to_segment(point, segment, rowData, &side); |
+ if (prevSide == kLeft_Side && side == kRight_Side) { |
+ deltaWindingScore = -1; |
+ } else if (prevSide == kRight_Side && side == kLeft_Side) { |
+ deltaWindingScore = 1; |
+ } |
+ prevSide = side; |
+ |
+ if (currDistSq < distSq) { |
+ dataPtr[idx].fDistSq = currDistSq; |
+ } |
+ dataPtr[idx].fDeltaWindingScore += deltaWindingScore; |
+ } |
+ } |
+ } |
+} |
+ |
+static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) { |
+ if (dist <= -(distanceMagnitude * (1.0f - 1.0f / 128.0f))) { |
+ return 255; |
+ } else if (dist > distanceMagnitude) { |
+ return 0; |
+ } else { |
+ return (unsigned char)((distanceMagnitude - dist) * 128.0f / distanceMagnitude); |
+ } |
+} |
+ |
+bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, |
+ const SkPath& path, const SkMatrix& drawMatrix, |
+ int width, int height, size_t rowBytes) { |
+ SkASSERT(distanceField); |
+ |
+ SkMatrix m = drawMatrix; |
+ m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); |
+ |
+ // create temp data |
+ size_t dataSize = width * height * sizeof(DFData); |
+ SkAutoSMalloc<1024> dfStorage(dataSize); |
+ DFData* dataPtr = (DFData*) dfStorage.get(); |
+ |
+ // create initial distance data |
+ init_distances(dataPtr, width * height); |
+ |
+ SkPath::Iter iter(path, true); |
+ SkSTArray<15, PathSegment, true> segments; |
+ |
+ SkPathPriv::FirstDirection dir; |
+ // get_direction can fail for some degenerate paths. |
+ if (path.getSegmentMasks() & SkPath::kCubic_SegmentMask && |
+ !get_direction(path, m, &dir)) { |
+ return false; |
+ } |
+ |
+ for (;;) { |
+ SkPoint pts[4]; |
+ SkPath::Verb verb = iter.next(pts); |
+ switch (verb) { |
+ case SkPath::kMove_Verb: |
+ // m.mapPoints(pts, 1); |
+ break; |
+ case SkPath::kLine_Verb: { |
+ m.mapPoints(pts, 2); |
+ add_line_to_segment(pts, &segments); |
+ break; |
+ } |
+ case SkPath::kQuad_Verb: |
+ m.mapPoints(pts, 3); |
+ add_quad_segment(pts, &segments); |
+ break; |
+ case SkPath::kConic_Verb: { |
+ m.mapPoints(pts, 3); |
+ SkScalar weight = iter.conicWeight(); |
+ SkAutoConicToQuads converter; |
+ const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f); |
+ for (int i = 0; i < converter.countQuads(); ++i) { |
+ add_quad_segment(quadPts + 2*i, &segments); |
+ } |
+ break; |
+ } |
+ case SkPath::kCubic_Verb: { |
+ m.mapPoints(pts, 4); |
+ add_cubic_segments(pts, dir, &segments); |
+ break; |
+ }; |
+ default: |
+ break; |
+ } |
+ if (verb == SkPath::kDone_Verb) { |
+ break; |
+ } |
+ } |
+ |
+ calculate_distance_field_data(&segments, dataPtr, width, height); |
+ |
+ for (int row = 0; row < height; ++row) { |
+ int windingNumber = 0; // Winding number start from zero for each scanline |
+ for (int col = 0; col < width; ++col) { |
+ int idx = (row * width) + col; |
+ windingNumber += dataPtr[idx].fDeltaWindingScore; |
+ |
+ enum DFSign { |
+ kInside = -1, |
+ kOutside = 1 |
+ } dfSign; |
+ |
+ if (path.getFillType() == SkPath::kWinding_FillType) { |
+ dfSign = windingNumber ? kInside : kOutside; |
+ } else if (path.getFillType() == SkPath::kInverseWinding_FillType) { |
+ dfSign = windingNumber ? kOutside : kInside; |
+ } else if (path.getFillType() == SkPath::kEvenOdd_FillType) { |
+ dfSign = (windingNumber % 2) ? kInside : kOutside; |
+ } else { |
+ SkASSERT(path.getFillType() == SkPath::kInverseEvenOdd_FillType); |
+ dfSign = (windingNumber % 2) ? kOutside : kInside; |
+ } |
+ |
+ // The winding number at the end of a scanline should be zero. |
+ if ((col == width - 1) && (windingNumber != 0)) { |
+ SkASSERT(0 && "Winding number should be zero at the end of a scan line."); |
+ return false; |
+ } |
+ |
+ const float miniDist = sqrt(dataPtr[idx].fDistSq); |
+ const float dist = dfSign * miniDist; |
+ |
+ unsigned char pixelVal = |
+ pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude); |
+ |
+ distanceField[(row * rowBytes) + col] = pixelVal; |
+ } |
+ } |
+ return true; |
+} |