Chromium Code Reviews| Index: src/gpu/GrDistanceFieldGenFromVector.cpp |
| diff --git a/src/gpu/GrDistanceFieldGenFromVector.cpp b/src/gpu/GrDistanceFieldGenFromVector.cpp |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..34411ee0ee15c49411ef9d2be30dcfc67e3abfd4 |
| --- /dev/null |
| +++ b/src/gpu/GrDistanceFieldGenFromVector.cpp |
| @@ -0,0 +1,785 @@ |
| +/* |
| + * Copyright 2016 ARM Ltd. |
| + * |
| + * Use of this source code is governed by a BSD-style license that can be |
| + * found in the LICENSE file. |
| + */ |
| + |
| +#include "GrDistanceFieldGenFromVector.h" |
| +#include "SkPoint.h" |
| +#include "SkGeometry.h" |
| +#include "GrPathUtils.h" |
| +#include "GrConfig.h" |
| + |
| +/** |
| + * If a scanline (a row of texel) cross from the kRight_SegSide |
| + * of a segment to the kLeft_SegSide, the winding score should |
| + * add 1. |
| + * And winding score should subtract 1 if the scanline cross |
| + * from kLeft_SegSide to kRight_SegSide. |
| + * Always return kNA_SegSide if the scanline does not cross over |
| + * the segment. Winding score should be zero in this case. |
| + * You can get the winding number for each texel of the scanline |
| + * by adding the winding score from left to right. |
| + * Assuming we always start from outside, so the winding number |
| + * should always start from zero. |
| + * ________ ________ |
| + * | | | | |
| + * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment |
| + * |+1 |-1 |-1 |+1 <= Winding score |
| + * 0 | 1 ^ 0 ^ -1 |0 <= Winding number |
| + * |________| |________| |
| + * |
| + * .......NA................NA.......... |
| + * 0 0 |
| + */ |
| +enum SegSide { |
| + kLeft_SegSide = -1, |
| + kOn_SegSide = 0, |
| + kRight_SegSide = 1, |
| + kNA_SegSide = 2, |
| +}; |
| + |
| +struct DFData { |
| + float fDistSq; // distance squared to nearest (so far) edge |
| + int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment |
| +}; |
| + |
| +/////////////////////////////////////////////////////////////////////////////// |
| + |
| +/* |
| + * Type definition for double precision DPoint and DAffineMatrix |
| + */ |
| + |
| +// Point with double precision |
| +struct DPoint { |
| + double fX, fY; |
| + |
| + static DPoint Make(double x, double y) { |
| + DPoint pt; |
| + pt.set(x, y); |
| + return pt; |
| + } |
| + |
| + double x() const { return fX; } |
| + double y() const { return fY; } |
| + |
| + void set(double x, double y) { fX = x; fY = y; } |
| + |
| + /** Returns the euclidian distance from (0,0) to (x,y) |
| + */ |
| + static double Length(double x, double y) { |
| + return sqrt(x * x + y * y); |
| + } |
| + |
| + /** Returns the euclidian distance between a and b |
| + */ |
| + static double Distance(const DPoint& a, const DPoint& b) { |
| + return Length(a.fX - b.fX, a.fY - b.fY); |
| + } |
| + |
| + double distanceToSqd(const DPoint& pt) const { |
| + double dx = fX - pt.fX; |
| + double dy = fY - pt.fY; |
| + return dx * dx + dy * dy; |
| + } |
| +}; |
| + |
| +// Matrix with double precision for affine transformation. |
| +// We don't store row 3 because its always (0, 0, 1). |
| +class DAffineMatrix { |
| +public: |
| + double operator[](int index) const { |
| + SkASSERT((unsigned)index < 6); |
| + return fMat[index]; |
| + } |
| + |
| + double& operator[](int index) { |
| + SkASSERT((unsigned)index < 6); |
| + return fMat[index]; |
| + } |
| + |
| + void setAffine(double m11, double m12, double m13, |
| + double m21, double m22, double m23) { |
| + fMat[0] = m11; |
| + fMat[1] = m12; |
| + fMat[2] = m13; |
| + fMat[3] = m21; |
| + fMat[4] = m22; |
| + fMat[5] = m23; |
| + } |
| + |
| + /** Set the matrix to identity |
| + */ |
| + void reset() { |
| + fMat[0] = fMat[4] = 1.0; |
| + fMat[1] = fMat[3] = |
| + fMat[2] = fMat[5] = 0.0; |
| + } |
| + |
| + // alias for reset() |
| + void setIdentity() { this->reset(); } |
| + |
| + DPoint mapPoint(const SkPoint& src) const { |
| + DPoint pt = DPoint::Make(src.x(), src.y()); |
| + return this->mapPoint(pt); |
| + } |
| + |
| + DPoint mapPoint(const DPoint& src) const { |
| + return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2], |
| + fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]); |
| + } |
| +private: |
| + double fMat[6]; |
| +}; |
| + |
| +/////////////////////////////////////////////////////////////////////////////// |
| + |
| +static const double kClose = (SK_Scalar1 / 16.0); |
| +static const double kCloseSqd = SkScalarMul(kClose, kClose); |
| +static const double kNearlyZero = (SK_Scalar1 / (1 << 15)); |
| + |
| +static inline bool between_closed_open(double a, double b, double c, |
| + double tolerance = kNearlyZero) { |
| + SkASSERT(tolerance >= 0.f); |
| + return b < c ? (a >= b - tolerance && a < c - tolerance) : |
| + (a >= c - tolerance && a < b - tolerance); |
| +} |
| + |
| +static inline bool between_closed(double a, double b, double c, |
| + double tolerance = kNearlyZero) { |
| + SkASSERT(tolerance >= 0.f); |
| + return b < c ? (a >= b - tolerance && a <= c + tolerance) : |
| + (a >= c - tolerance && a <= b + tolerance); |
| +} |
| + |
| +static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { |
| + SkASSERT(tolerance >= 0.f); |
| + return fabs(x) <= tolerance; |
| +} |
| + |
| +static inline bool nearly_equal(double x, double y, double tolerance = kNearlyZero) { |
| + SkASSERT(tolerance >= 0.f); |
| + return fabs(x - y) <= tolerance; |
| +} |
| + |
| +static inline float sign_of(const float &val) { |
| + return (val < 0.f) ? -1.f : 1.f; |
| +} |
| + |
| +static bool is_colinear(const SkPoint pts[3]) { |
| + return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - |
| + (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x())); |
| +} |
| + |
| +class PathSegment { |
| +public: |
| + enum { |
| + // These enum values are assumed in member functions below. |
| + kLine = 0, |
| + kQuad = 1, |
| + } fType; |
| + |
| + // line uses 2 pts, quad uses 3 pts |
| + SkPoint fPts[3]; |
| + |
| + DPoint fP0T, fP2T; |
| + DAffineMatrix fXformMatrix; |
| + double fScalingFactor; |
| + SkRect fBoundingBox; |
| + |
| + void init(); |
| + |
| + int countPoints() { |
| + GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| + return fType + 2; |
| + } |
| + |
| + const SkPoint& endPt() const { |
| + GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| + return fPts[fType + 1]; |
| + }; |
| +}; |
| + |
| +typedef SkTArray<PathSegment, true> PathSegmentArray; |
| + |
| +void PathSegment::init() { |
| + const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y()); |
| + const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y()); |
| + const double p0x = p0.x(); |
| + const double p0y = p0.y(); |
| + const double p2x = p2.x(); |
| + const double p2y = p2.y(); |
| + |
| + fBoundingBox.set(fPts[0], this->endPt()); |
| + |
| + if (fType == PathSegment::kLine) { |
| + fScalingFactor = DPoint::Distance(p0, p2); |
| + |
| + const double cosTheta = (p2x - p0x) / fScalingFactor; |
| + const double sinTheta = (p2y - p0y) / fScalingFactor; |
| + |
| + fXformMatrix.setAffine( |
| + cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), |
| + -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) |
| + ); |
| + } else { |
| + SkASSERT(fType == PathSegment::kQuad); |
| + |
| + // Calculate bounding box |
| + const SkPoint _P1mP0 = fPts[1] - fPts[0]; |
| + SkPoint t = _P1mP0 - fPts[2] + fPts[1]; |
| + t.fX = _P1mP0.x() / t.x(); |
| + t.fY = _P1mP0.y() / t.y(); |
| + t.fX = SkScalarClampMax(t.x(), 1.0); |
| + t.fY = SkScalarClampMax(t.y(), 1.0); |
| + t.fX = _P1mP0.x() * t.x(); |
| + t.fY = _P1mP0.y() * t.y(); |
| + const SkPoint m = fPts[0] + t; |
| + fBoundingBox.growToInclude(&m, 1); |
| + |
| + const double p1x = fPts[1].x(); |
| + const double p1y = fPts[1].y(); |
| + |
| + const double p0xSqd = p0x * p0x; |
| + const double p0ySqd = p0y * p0y; |
| + const double p2xSqd = p2x * p2x; |
| + const double p2ySqd = p2y * p2y; |
| + const double p1xSqd = p1x * p1x; |
| + const double p1ySqd = p1y * p1y; |
| + |
| + const double p01xProd = p0x * p1x; |
| + const double p02xProd = p0x * p2x; |
| + const double b12xProd = p1x * p2x; |
| + const double p01yProd = p0y * p1y; |
| + const double p02yProd = p0y * p2y; |
| + const double b12yProd = p1y * p2y; |
| + |
| + const double sqrtA = p0y - (2.0 * p1y) + p2y; |
| + const double a = sqrtA * sqrtA; |
| + const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); |
| + const double sqrtB = p0x - (2.0 * p1x) + p2x; |
| + const double b = sqrtB * sqrtB; |
| + const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) |
| + - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) |
| + + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) |
| + + (p2xSqd * p0ySqd); |
| + const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) |
| + + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) |
| + + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) |
| + + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) |
| + + (2.0 * p2x * p01yProd) + (p2x * p02yProd) |
| + - (2.0 * p2x * p1ySqd); |
| + const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) |
| + - (2.0 * p01xProd * p2y) - (p02xProd * p0y) |
| + + (4.0 * p02xProd * p1y) - (p02xProd * p2y) |
| + + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) |
| + - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) |
| + + (p2xSqd * p0y)); |
| + |
| + const double cosTheta = sqrt(a / (a + b)); |
| + const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); |
| + |
| + const double gDef = cosTheta * g - sinTheta * f; |
| + const double fDef = sinTheta * g + cosTheta * f; |
| + |
| + |
| + const double x0 = gDef / (a + b); |
| + const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); |
| + |
| + |
| + const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); |
| + fScalingFactor = (1.0 / lambda); |
| + fScalingFactor *= fScalingFactor; |
| + |
| + const double lambda_cosTheta = lambda * cosTheta; |
| + const double lambda_sinTheta = lambda * sinTheta; |
| + |
| + fXformMatrix.setAffine( |
| + lambda_cosTheta, -lambda_sinTheta, lambda * x0, |
| + lambda_sinTheta, lambda_cosTheta, lambda * y0 |
| + ); |
| + } |
| + |
| + fP0T = fXformMatrix.mapPoint(p0); |
| + fP2T = fXformMatrix.mapPoint(p2); |
| +} |
| + |
| +static void init_distances(DFData* data, int size) { |
| + DFData* currData = data; |
| + |
| + for (int i = 0; i < size; ++i) { |
| + // init distance to "far away" |
| + currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; |
| + currData->fDeltaWindingScore = 0; |
| + ++currData; |
| + } |
| +} |
| + |
| +static inline bool get_direction(const SkPath& path, const SkMatrix& m, |
| + SkPathPriv::FirstDirection* dir) { |
| + if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { |
| + return false; |
| + } |
| + |
| + // check whether m reverses the orientation |
| + SkASSERT(!m.hasPerspective()); |
| + SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - |
| + SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); |
| + |
| + if (det2x2 < 0) { |
| + *dir = SkPathPriv::OppositeFirstDirection(*dir); |
| + } |
| + return true; |
| +} |
| + |
| +static inline void add_line_to_segment(const SkPoint pts[2], |
| + PathSegmentArray* segments) { |
| + segments->push_back(); |
| + segments->back().fType = PathSegment::kLine; |
| + segments->back().fPts[0] = pts[0]; |
| + segments->back().fPts[1] = pts[1]; |
| + |
| + segments->back().init(); |
| +} |
| + |
| +static inline void add_quad_segment(const SkPoint pts[3], |
| + PathSegmentArray* segments) { |
| + if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || |
| + pts[1].distanceToSqd(pts[2]) < kCloseSqd || |
| + is_colinear(pts)) { |
| + if (pts[0] != pts[2]) { |
| + SkPoint line_pts[2]; |
| + line_pts[0] = pts[0]; |
| + line_pts[1] = pts[2]; |
| + add_line_to_segment(line_pts, segments); |
| + } |
| + } else { |
| + segments->push_back(); |
| + segments->back().fType = PathSegment::kQuad; |
| + segments->back().fPts[0] = pts[0]; |
| + segments->back().fPts[1] = pts[1]; |
| + segments->back().fPts[2] = pts[2]; |
| + |
| + segments->back().init(); |
| + } |
| +} |
| + |
| +static inline void add_cubic_segments(const SkPoint pts[4], |
| + SkPathPriv::FirstDirection dir, |
| + PathSegmentArray* segments) { |
| + SkSTArray<15, SkPoint, true> quads; |
| + GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); |
| + int count = quads.count(); |
| + for (int q = 0; q < count; q += 3) { |
| + add_quad_segment(&quads[q], segments); |
| + } |
| +} |
| + |
| +static float calculate_nearest_point_for_quad( |
| + const PathSegment& segment, |
| + const DPoint &xFormPt) { |
| + static const float kThird = 0.33333333333f; |
| + static const float kTwentySeventh = 0.037037037f; |
| + |
| + const float a = 0.5f - xFormPt.y(); |
| + const float b = -0.5f * xFormPt.x(); |
| + |
| + const float a3 = a * a * a; |
| + const float b2 = b * b; |
| + |
| + const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); |
| + |
| + if (c >= 0.f) { |
| + const float sqrtC = sqrt(c); |
| + const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); |
| + return result; |
| + } else { |
| + const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); |
| + const float phi = (float)acos(cosPhi); |
| + float result; |
| + if (xFormPt.x() > 0.f) { |
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
| + if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
| + } |
| + } else { |
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
| + if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
| + } |
| + } |
| + return result; |
| + } |
| +} |
| + |
| +// This structure contains some intermediate values shared by the same row. |
| +// It is used to calculate segment side of a quadratic bezier. |
| +struct RowData { |
| + // The intersection type of a scanline and y = x * x parabola in canonical space. |
| + enum IntersectionType { |
| + kNoIntersection, |
| + kVerticalLine, |
| + kTangentLine, |
| + kTwoPointsIntersect |
| + } fIntersectionType; |
| + |
| + // The direction of the quadratic segment in the canonical space. |
| + // 1: The quadratic segment going from negative x-axis to positive x-axis. |
| + // -1: The quadratic segment going from positive x-axis to negative x-axis. |
| + int fQuadXDirection; |
| + |
| + // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. |
| + double fYAtIntersection; |
| + |
| + // The x-value for two intersection points. |
| + double fXAtIntersection1; |
| + double fXAtIntersection2; |
| +}; |
| + |
| +void precomputation_for_row( |
| + RowData *rowData, |
| + const PathSegment& segment, |
| + const SkPoint& pointLeft, |
| + const SkPoint& pointRight |
| + ) { |
| + if (segment.fType != PathSegment::kQuad) { |
| + return; |
| + } |
| + |
| + const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); |
| + const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);; |
| + |
| + rowData->fQuadXDirection = sign_of(segment.fP2T.x() - segment.fP0T.x()); |
| + |
| + const double x1 = xFormPtLeft.x(); |
| + const double y1 = xFormPtLeft.y(); |
| + const double x2 = xFormPtRight.x(); |
| + const double y2 = xFormPtRight.y(); |
| + |
| + if (nearly_equal(x1, x2)) { |
| + rowData->fIntersectionType = RowData::kVerticalLine; |
| + rowData->fYAtIntersection = x1 * x1; |
| + return; |
| + } |
| + |
| + // Line y = mx + b |
| + const double m = (y2 - y1) / (x2 - x1); |
| + const double b = -m * x1 + y1; |
| + |
| + const double c = m * m + 4.0 * b; |
| + |
| + if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) { |
| + rowData->fIntersectionType = RowData::kTangentLine; |
| + rowData->fXAtIntersection1 = m / 2.0; |
| + rowData->fXAtIntersection2 = m / 2.0; |
| + } else if (c < 0.0) { |
| + rowData->fIntersectionType = RowData::kNoIntersection; |
| + return; |
| + } else { |
| + rowData->fIntersectionType = RowData::kTwoPointsIntersect; |
| + const double d = sqrt(c); |
| + rowData->fXAtIntersection1 = (m + d) / 2.0; |
| + rowData->fXAtIntersection2 = (m - d) / 2.0; |
| + } |
| +} |
| + |
| +SegSide calculate_side_of_quad( |
| + const PathSegment& segment, |
| + const SkPoint& point, |
| + const DPoint& xFormPt, |
| + const RowData& rowData) { |
| + SegSide side = kNA_SegSide; |
| + |
| + if (RowData::kVerticalLine == rowData.fIntersectionType) { |
| + side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection); |
| + } |
| + else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType || |
| + RowData::kTangentLine == rowData.fIntersectionType) { |
| + const double p1 = rowData.fXAtIntersection1; |
| + const double p2 = rowData.fXAtIntersection2; |
| + |
| + int signP1 = sign_of(p1 - xFormPt.x()); |
| + if (between_closed(p1, segment.fP0T.x(), segment.fP2T.x())) { |
| + side = (SegSide)((-signP1) * rowData.fQuadXDirection); |
| + } |
| + if (between_closed(p2, segment.fP0T.x(), segment.fP2T.x())) { |
| + int signP2 = sign_of(p2 - xFormPt.x()); |
| + if (side == kNA_SegSide || signP2 == 1) { |
| + side = (SegSide)(signP2 * rowData.fQuadXDirection); |
| + } |
| + } |
| + |
| + // The scanline is the tangent line of current quadratic segment. |
| + if (RowData::kTangentLine == rowData.fIntersectionType) { |
| + // The path start at the tangent point. |
| + if (nearly_equal(p1, segment.fP0T.x())) { |
| + side = (SegSide)(side * (-signP1) * rowData.fQuadXDirection); |
| + } |
| + |
| + // The path end at the tangent point. |
| + if (nearly_equal(p1, segment.fP2T.x())) { |
| + side = (SegSide)(side * signP1 * rowData.fQuadXDirection); |
| + } |
| + } |
| + } |
| + |
| + return side; |
| +} |
| + |
| +static float distance_to_segment(const SkPoint& point, |
| + const PathSegment& segment, |
| + const RowData& rowData, |
| + SegSide* side) { |
| + SkASSERT(side); |
| + |
| + const DPoint xformPt = segment.fXformMatrix.mapPoint(point); |
| + |
| + if (segment.fType == PathSegment::kLine) { |
| + float result = SK_DistanceFieldPad * SK_DistanceFieldPad; |
| + |
| + if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) { |
| + result = xformPt.y() * xformPt.y(); |
| + } else if (xformPt.x() < segment.fP0T.x()) { |
| + result = (xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y()); |
| + } else { |
| + result = ((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x()) |
| + + xformPt.y() * xformPt.y()); |
| + } |
| + |
| + if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
| + segment.fBoundingBox.bottom())) { |
| + *side = (SegSide)(int)sign_of(-xformPt.y()); |
| + } else { |
| + *side = kNA_SegSide; |
| + } |
| + return result; |
| + } else { |
| + SkASSERT(segment.fType == PathSegment::kQuad); |
| + |
| + const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); |
| + |
| + float dist; |
| + |
| + if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) { |
| + DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); |
| + dist = xformPt.distanceToSqd(x); |
| + } else { |
| + const float distToB0T = xformPt.distanceToSqd(segment.fP0T); |
| + const float distToB2T = xformPt.distanceToSqd(segment.fP2T); |
| + |
| + if (distToB0T < distToB2T) { |
| + dist = distToB0T; |
| + } else { |
| + dist = distToB2T; |
| + } |
| + } |
| + |
| + if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
| + segment.fBoundingBox.bottom())) { |
| + *side = calculate_side_of_quad(segment, point, xformPt, rowData); |
| + } else { |
| + *side = kNA_SegSide; |
| + } |
| + |
| + return dist * segment.fScalingFactor; |
| + } |
| +} |
| + |
| +static void calculate_distance_field_data(PathSegmentArray* segments, |
| + DFData* dataPtr, |
| + int width, int height) { |
| + int count = segments->count(); |
| + for (int a = 0; a < count; ++a) { |
| + PathSegment& segment = (*segments)[a]; |
| + const SkRect& segBB = segment.fBoundingBox.makeOutset( |
| + SK_DistanceFieldPad, SK_DistanceFieldPad); |
| + int startColumn = segBB.left(); |
| + int endColumn = segBB.right() + 1; |
| + |
| + int startRow = segBB.top(); |
| + int endRow = segBB.bottom() + 1; |
| + |
| + SkASSERT((startColumn >= 0) && "StartColumn < 0!"); |
| + SkASSERT((endColumn <= width) && "endColumn > width!"); |
| + SkASSERT((startRow >= 0) && "StartRow < 0!"); |
| + SkASSERT((endRow <= height) && "EndRow > height!"); |
| + |
| + for (int row = startRow; row < endRow; ++row) { |
| + SegSide prevSide = kNA_SegSide; |
| + const float pY = row + 0.5f; |
| + RowData rowData; |
| + |
| + const SkPoint pointLeft = SkPoint::Make(startColumn, pY); |
| + const SkPoint pointRight = SkPoint::Make(endColumn, pY); |
| + |
| + precomputation_for_row(&rowData, segment, pointLeft, pointRight); |
| + |
| + for (int col = startColumn; col < endColumn; ++col) { |
| + int idx = (row * width) + col; |
| + |
| + const float pX = col + 0.5f; |
| + const SkPoint point = SkPoint::Make(pX, pY); |
| + |
| + const float distSq = dataPtr[idx].fDistSq; |
| + int dilation = distSq < 1.5 * 1.5 ? 1 : |
| + distSq < 2.5 * 2.5 ? 2 : |
| + distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; |
| + if (dilation > SK_DistanceFieldPad) { |
| + dilation = SK_DistanceFieldPad; |
| + } |
| + |
| + // Optimisation for not calculating some points. |
| + if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut() |
| + .makeOutset(dilation, dilation).contains(col, row)) { |
| + continue; |
| + } |
| + |
| + SegSide side = kNA_SegSide; |
| + int deltaWindingScore = 0; |
| + float currDistSq = distance_to_segment(point, segment, rowData, &side); |
| + if (prevSide == kLeft_SegSide && side == kRight_SegSide) { |
| + deltaWindingScore = -1; |
| + } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { |
| + deltaWindingScore = 1; |
| + } |
| + |
| + prevSide = side; |
| + |
| + if (currDistSq < distSq) { |
| + dataPtr[idx].fDistSq = currDistSq; |
| + } |
| + |
| + dataPtr[idx].fDeltaWindingScore += deltaWindingScore; |
| + } |
| + } |
| + } |
| +} |
| + |
| +static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) { |
| + // The distance field is constructed as unsigned char values, so that the zero value is at 128, |
| + // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. |
| + // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. |
| + dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); |
| + |
| + // Scale into the positive range for unsigned distance |
| + dist += distanceMagnitude; |
| + |
| + // Scale into unsigned char range |
| + return (unsigned char)(dist / (2 * distanceMagnitude) * 256.0f); |
| +} |
| + |
| +bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, |
| + const SkPath& path, const SkMatrix& drawMatrix, |
| + int width, int height, size_t rowBytes) { |
| + SkASSERT(distanceField); |
| + |
| + SkMatrix m = drawMatrix; |
| + m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); |
| + |
| + // create temp data |
| + size_t dataSize = width * height * sizeof(DFData); |
| + SkAutoSMalloc<1024> dfStorage(dataSize); |
| + DFData* dataPtr = (DFData*) dfStorage.get(); |
| + |
| + // create initial distance data |
| + init_distances(dataPtr, width * height); |
| + |
| + SkPath::Iter iter(path, true); |
| + SkSTArray<15, PathSegment, true> segments; |
| + |
| + SkPathPriv::FirstDirection dir; |
| + // get_direction can fail for some degenerate paths. |
| + if (path.getSegmentMasks() & SkPath::kCubic_SegmentMask && |
| + !get_direction(path, m, &dir)) { |
| + // Clear distance field for degenerate paths. |
|
Joel.Liang
2016/02/06 06:16:00
To avoid "return false" and then fallback to old a
bsalomon
2016/02/06 13:22:06
My understanding is that this can fail for non-emp
Joel.Liang
2016/02/15 08:36:48
If this can fail for non-empty paths, then there i
bsalomon
2016/02/16 14:59:34
Specifying dir is only required if true is passed
Joel.Liang
2016/02/17 10:42:41
ok, I'm now pass false as the third param. And wil
|
| + if (width * sizeof(unsigned char) == rowBytes) { |
| + memset(distanceField, 0, rowBytes * height); |
| + } else { |
| + for (int row = 0; row < height; ++row) { |
| + memset(distanceField + row * rowBytes, 0, width * sizeof(unsigned char)); |
| + } |
| + } |
| + return true; |
| + } |
| + |
| + for (;;) { |
| + SkPoint pts[4]; |
| + SkPath::Verb verb = iter.next(pts); |
| + switch (verb) { |
| + case SkPath::kMove_Verb: |
| + // m.mapPoints(pts, 1); |
| + break; |
| + case SkPath::kLine_Verb: { |
| + m.mapPoints(pts, 2); |
| + add_line_to_segment(pts, &segments); |
| + break; |
| + } |
| + case SkPath::kQuad_Verb: |
| + m.mapPoints(pts, 3); |
| + add_quad_segment(pts, &segments); |
| + break; |
| + case SkPath::kConic_Verb: { |
| + m.mapPoints(pts, 3); |
| + SkScalar weight = iter.conicWeight(); |
| + SkAutoConicToQuads converter; |
| + const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f); |
| + for (int i = 0; i < converter.countQuads(); ++i) { |
| + add_quad_segment(quadPts + 2*i, &segments); |
| + } |
| + break; |
| + } |
| + case SkPath::kCubic_Verb: { |
| + m.mapPoints(pts, 4); |
| + add_cubic_segments(pts, dir, &segments); |
| + break; |
| + }; |
| + default: |
| + break; |
| + } |
| + if (verb == SkPath::kDone_Verb) { |
| + break; |
| + } |
| + } |
| + |
| + calculate_distance_field_data(&segments, dataPtr, width, height); |
| + |
| + for (int row = 0; row < height; ++row) { |
| + int windingNumber = 0; // Winding number start from zero for each scanline |
| + for (int col = 0; col < width; ++col) { |
| + int idx = (row * width) + col; |
| + windingNumber += dataPtr[idx].fDeltaWindingScore; |
| + |
| + enum DFSign { |
| + kInside = -1, |
| + kOutside = 1 |
| + } dfSign; |
| + |
| + if (path.getFillType() == SkPath::kWinding_FillType) { |
| + dfSign = windingNumber ? kInside : kOutside; |
| + } else if (path.getFillType() == SkPath::kInverseWinding_FillType) { |
| + dfSign = windingNumber ? kOutside : kInside; |
| + } else if (path.getFillType() == SkPath::kEvenOdd_FillType) { |
| + dfSign = (windingNumber % 2) ? kInside : kOutside; |
| + } else { |
| + SkASSERT(path.getFillType() == SkPath::kInverseEvenOdd_FillType); |
| + dfSign = (windingNumber % 2) ? kOutside : kInside; |
| + } |
| + |
| + // The winding number at the end of a scanline should be zero. |
| + if ((col == width - 1) && (windingNumber != 0)) { |
| + SkASSERT(0 && "Winding number should be zero at the end of a scan line."); |
| + return false; |
| + } |
| + |
| + const float miniDist = sqrt(dataPtr[idx].fDistSq); |
| + const float dist = dfSign * miniDist; |
| + |
| + unsigned char pixelVal = |
| + pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude); |
| + |
| + distanceField[(row * rowBytes) + col] = pixelVal; |
| + } |
| + } |
| + return true; |
| +} |