Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(200)

Side by Side Diff: src/gpu/GrDistanceFieldGenFromVector.cpp

Issue 1643143002: Generate Signed Distance Field directly from vector path (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Clear distance field for degenerate paths Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2016 ARM Ltd.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrDistanceFieldGenFromVector.h"
9 #include "SkPoint.h"
10 #include "SkGeometry.h"
11 #include "GrPathUtils.h"
12 #include "GrConfig.h"
13
14 /**
15 * If a scanline (a row of texel) cross from the kRight_SegSide
16 * of a segment to the kLeft_SegSide, the winding score should
17 * add 1.
18 * And winding score should subtract 1 if the scanline cross
19 * from kLeft_SegSide to kRight_SegSide.
20 * Always return kNA_SegSide if the scanline does not cross over
21 * the segment. Winding score should be zero in this case.
22 * You can get the winding number for each texel of the scanline
23 * by adding the winding score from left to right.
24 * Assuming we always start from outside, so the winding number
25 * should always start from zero.
26 * ________ ________
27 * | | | |
28 * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
29 * |+1 |-1 |-1 |+1 <= Winding score
30 * 0 | 1 ^ 0 ^ -1 |0 <= Winding number
31 * |________| |________|
32 *
33 * .......NA................NA..........
34 * 0 0
35 */
36 enum SegSide {
37 kLeft_SegSide = -1,
38 kOn_SegSide = 0,
39 kRight_SegSide = 1,
40 kNA_SegSide = 2,
41 };
42
43 struct DFData {
44 float fDistSq; // distance squared to nearest (so far) edge
45 int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segme nt
46 };
47
48 ///////////////////////////////////////////////////////////////////////////////
49
50 /*
51 * Type definition for double precision DPoint and DAffineMatrix
52 */
53
54 // Point with double precision
55 struct DPoint {
56 double fX, fY;
57
58 static DPoint Make(double x, double y) {
59 DPoint pt;
60 pt.set(x, y);
61 return pt;
62 }
63
64 double x() const { return fX; }
65 double y() const { return fY; }
66
67 void set(double x, double y) { fX = x; fY = y; }
68
69 /** Returns the euclidian distance from (0,0) to (x,y)
70 */
71 static double Length(double x, double y) {
72 return sqrt(x * x + y * y);
73 }
74
75 /** Returns the euclidian distance between a and b
76 */
77 static double Distance(const DPoint& a, const DPoint& b) {
78 return Length(a.fX - b.fX, a.fY - b.fY);
79 }
80
81 double distanceToSqd(const DPoint& pt) const {
82 double dx = fX - pt.fX;
83 double dy = fY - pt.fY;
84 return dx * dx + dy * dy;
85 }
86 };
87
88 // Matrix with double precision for affine transformation.
89 // We don't store row 3 because its always (0, 0, 1).
90 class DAffineMatrix {
91 public:
92 double operator[](int index) const {
93 SkASSERT((unsigned)index < 6);
94 return fMat[index];
95 }
96
97 double& operator[](int index) {
98 SkASSERT((unsigned)index < 6);
99 return fMat[index];
100 }
101
102 void setAffine(double m11, double m12, double m13,
103 double m21, double m22, double m23) {
104 fMat[0] = m11;
105 fMat[1] = m12;
106 fMat[2] = m13;
107 fMat[3] = m21;
108 fMat[4] = m22;
109 fMat[5] = m23;
110 }
111
112 /** Set the matrix to identity
113 */
114 void reset() {
115 fMat[0] = fMat[4] = 1.0;
116 fMat[1] = fMat[3] =
117 fMat[2] = fMat[5] = 0.0;
118 }
119
120 // alias for reset()
121 void setIdentity() { this->reset(); }
122
123 DPoint mapPoint(const SkPoint& src) const {
124 DPoint pt = DPoint::Make(src.x(), src.y());
125 return this->mapPoint(pt);
126 }
127
128 DPoint mapPoint(const DPoint& src) const {
129 return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
130 fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
131 }
132 private:
133 double fMat[6];
134 };
135
136 ///////////////////////////////////////////////////////////////////////////////
137
138 static const double kClose = (SK_Scalar1 / 16.0);
139 static const double kCloseSqd = SkScalarMul(kClose, kClose);
140 static const double kNearlyZero = (SK_Scalar1 / (1 << 15));
141
142 static inline bool between_closed_open(double a, double b, double c,
143 double tolerance = kNearlyZero) {
144 SkASSERT(tolerance >= 0.f);
145 return b < c ? (a >= b - tolerance && a < c - tolerance) :
146 (a >= c - tolerance && a < b - tolerance);
147 }
148
149 static inline bool between_closed(double a, double b, double c,
150 double tolerance = kNearlyZero) {
151 SkASSERT(tolerance >= 0.f);
152 return b < c ? (a >= b - tolerance && a <= c + tolerance) :
153 (a >= c - tolerance && a <= b + tolerance);
154 }
155
156 static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
157 SkASSERT(tolerance >= 0.f);
158 return fabs(x) <= tolerance;
159 }
160
161 static inline bool nearly_equal(double x, double y, double tolerance = kNearlyZe ro) {
162 SkASSERT(tolerance >= 0.f);
163 return fabs(x - y) <= tolerance;
164 }
165
166 static inline float sign_of(const float &val) {
167 return (val < 0.f) ? -1.f : 1.f;
168 }
169
170 static bool is_colinear(const SkPoint pts[3]) {
171 return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
172 (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()));
173 }
174
175 class PathSegment {
176 public:
177 enum {
178 // These enum values are assumed in member functions below.
179 kLine = 0,
180 kQuad = 1,
181 } fType;
182
183 // line uses 2 pts, quad uses 3 pts
184 SkPoint fPts[3];
185
186 DPoint fP0T, fP2T;
187 DAffineMatrix fXformMatrix;
188 double fScalingFactor;
189 SkRect fBoundingBox;
190
191 void init();
192
193 int countPoints() {
194 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
195 return fType + 2;
196 }
197
198 const SkPoint& endPt() const {
199 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
200 return fPts[fType + 1];
201 };
202 };
203
204 typedef SkTArray<PathSegment, true> PathSegmentArray;
205
206 void PathSegment::init() {
207 const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
208 const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
209 const double p0x = p0.x();
210 const double p0y = p0.y();
211 const double p2x = p2.x();
212 const double p2y = p2.y();
213
214 fBoundingBox.set(fPts[0], this->endPt());
215
216 if (fType == PathSegment::kLine) {
217 fScalingFactor = DPoint::Distance(p0, p2);
218
219 const double cosTheta = (p2x - p0x) / fScalingFactor;
220 const double sinTheta = (p2y - p0y) / fScalingFactor;
221
222 fXformMatrix.setAffine(
223 cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
224 -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
225 );
226 } else {
227 SkASSERT(fType == PathSegment::kQuad);
228
229 // Calculate bounding box
230 const SkPoint _P1mP0 = fPts[1] - fPts[0];
231 SkPoint t = _P1mP0 - fPts[2] + fPts[1];
232 t.fX = _P1mP0.x() / t.x();
233 t.fY = _P1mP0.y() / t.y();
234 t.fX = SkScalarClampMax(t.x(), 1.0);
235 t.fY = SkScalarClampMax(t.y(), 1.0);
236 t.fX = _P1mP0.x() * t.x();
237 t.fY = _P1mP0.y() * t.y();
238 const SkPoint m = fPts[0] + t;
239 fBoundingBox.growToInclude(&m, 1);
240
241 const double p1x = fPts[1].x();
242 const double p1y = fPts[1].y();
243
244 const double p0xSqd = p0x * p0x;
245 const double p0ySqd = p0y * p0y;
246 const double p2xSqd = p2x * p2x;
247 const double p2ySqd = p2y * p2y;
248 const double p1xSqd = p1x * p1x;
249 const double p1ySqd = p1y * p1y;
250
251 const double p01xProd = p0x * p1x;
252 const double p02xProd = p0x * p2x;
253 const double b12xProd = p1x * p2x;
254 const double p01yProd = p0y * p1y;
255 const double p02yProd = p0y * p2y;
256 const double b12yProd = p1y * p2y;
257
258 const double sqrtA = p0y - (2.0 * p1y) + p2y;
259 const double a = sqrtA * sqrtA;
260 const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
261 const double sqrtB = p0x - (2.0 * p1x) + p2x;
262 const double b = sqrtB * sqrtB;
263 const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
264 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
265 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
266 + (p2xSqd * p0ySqd);
267 const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
268 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
269 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
270 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
271 + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
272 - (2.0 * p2x * p1ySqd);
273 const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
274 - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
275 + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
276 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
277 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
278 + (p2xSqd * p0y));
279
280 const double cosTheta = sqrt(a / (a + b));
281 const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
282
283 const double gDef = cosTheta * g - sinTheta * f;
284 const double fDef = sinTheta * g + cosTheta * f;
285
286
287 const double x0 = gDef / (a + b);
288 const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
289
290
291 const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
292 fScalingFactor = (1.0 / lambda);
293 fScalingFactor *= fScalingFactor;
294
295 const double lambda_cosTheta = lambda * cosTheta;
296 const double lambda_sinTheta = lambda * sinTheta;
297
298 fXformMatrix.setAffine(
299 lambda_cosTheta, -lambda_sinTheta, lambda * x0,
300 lambda_sinTheta, lambda_cosTheta, lambda * y0
301 );
302 }
303
304 fP0T = fXformMatrix.mapPoint(p0);
305 fP2T = fXformMatrix.mapPoint(p2);
306 }
307
308 static void init_distances(DFData* data, int size) {
309 DFData* currData = data;
310
311 for (int i = 0; i < size; ++i) {
312 // init distance to "far away"
313 currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitud e;
314 currData->fDeltaWindingScore = 0;
315 ++currData;
316 }
317 }
318
319 static inline bool get_direction(const SkPath& path, const SkMatrix& m,
320 SkPathPriv::FirstDirection* dir) {
321 if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) {
322 return false;
323 }
324
325 // check whether m reverses the orientation
326 SkASSERT(!m.hasPerspective());
327 SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMS caleY)) -
328 SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSk ewY));
329
330 if (det2x2 < 0) {
331 *dir = SkPathPriv::OppositeFirstDirection(*dir);
332 }
333 return true;
334 }
335
336 static inline void add_line_to_segment(const SkPoint pts[2],
337 PathSegmentArray* segments) {
338 segments->push_back();
339 segments->back().fType = PathSegment::kLine;
340 segments->back().fPts[0] = pts[0];
341 segments->back().fPts[1] = pts[1];
342
343 segments->back().init();
344 }
345
346 static inline void add_quad_segment(const SkPoint pts[3],
347 PathSegmentArray* segments) {
348 if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
349 pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
350 is_colinear(pts)) {
351 if (pts[0] != pts[2]) {
352 SkPoint line_pts[2];
353 line_pts[0] = pts[0];
354 line_pts[1] = pts[2];
355 add_line_to_segment(line_pts, segments);
356 }
357 } else {
358 segments->push_back();
359 segments->back().fType = PathSegment::kQuad;
360 segments->back().fPts[0] = pts[0];
361 segments->back().fPts[1] = pts[1];
362 segments->back().fPts[2] = pts[2];
363
364 segments->back().init();
365 }
366 }
367
368 static inline void add_cubic_segments(const SkPoint pts[4],
369 SkPathPriv::FirstDirection dir,
370 PathSegmentArray* segments) {
371 SkSTArray<15, SkPoint, true> quads;
372 GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads);
373 int count = quads.count();
374 for (int q = 0; q < count; q += 3) {
375 add_quad_segment(&quads[q], segments);
376 }
377 }
378
379 static float calculate_nearest_point_for_quad(
380 const PathSegment& segment,
381 const DPoint &xFormPt) {
382 static const float kThird = 0.33333333333f;
383 static const float kTwentySeventh = 0.037037037f;
384
385 const float a = 0.5f - xFormPt.y();
386 const float b = -0.5f * xFormPt.x();
387
388 const float a3 = a * a * a;
389 const float b2 = b * b;
390
391 const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
392
393 if (c >= 0.f) {
394 const float sqrtC = sqrt(c);
395 const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
396 return result;
397 } else {
398 const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
399 const float phi = (float)acos(cosPhi);
400 float result;
401 if (xFormPt.x() > 0.f) {
402 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
403 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
404 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThi rd) + (SK_ScalarPI * 2.f * kThird));
405 }
406 } else {
407 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
408 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
409 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThir d);
410 }
411 }
412 return result;
413 }
414 }
415
416 // This structure contains some intermediate values shared by the same row.
417 // It is used to calculate segment side of a quadratic bezier.
418 struct RowData {
419 // The intersection type of a scanline and y = x * x parabola in canonical s pace.
420 enum IntersectionType {
421 kNoIntersection,
422 kVerticalLine,
423 kTangentLine,
424 kTwoPointsIntersect
425 } fIntersectionType;
426
427 // The direction of the quadratic segment in the canonical space.
428 // 1: The quadratic segment going from negative x-axis to positive x-axis.
429 // -1: The quadratic segment going from positive x-axis to negative x-axis.
430 int fQuadXDirection;
431
432 // The y-value(equal to x*x) of intersection point for the kVerticalLine int ersection type.
433 double fYAtIntersection;
434
435 // The x-value for two intersection points.
436 double fXAtIntersection1;
437 double fXAtIntersection2;
438 };
439
440 void precomputation_for_row(
441 RowData *rowData,
442 const PathSegment& segment,
443 const SkPoint& pointLeft,
444 const SkPoint& pointRight
445 ) {
446 if (segment.fType != PathSegment::kQuad) {
447 return;
448 }
449
450 const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
451 const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
452
453 rowData->fQuadXDirection = sign_of(segment.fP2T.x() - segment.fP0T.x());
454
455 const double x1 = xFormPtLeft.x();
456 const double y1 = xFormPtLeft.y();
457 const double x2 = xFormPtRight.x();
458 const double y2 = xFormPtRight.y();
459
460 if (nearly_equal(x1, x2)) {
461 rowData->fIntersectionType = RowData::kVerticalLine;
462 rowData->fYAtIntersection = x1 * x1;
463 return;
464 }
465
466 // Line y = mx + b
467 const double m = (y2 - y1) / (x2 - x1);
468 const double b = -m * x1 + y1;
469
470 const double c = m * m + 4.0 * b;
471
472 if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) {
473 rowData->fIntersectionType = RowData::kTangentLine;
474 rowData->fXAtIntersection1 = m / 2.0;
475 rowData->fXAtIntersection2 = m / 2.0;
476 } else if (c < 0.0) {
477 rowData->fIntersectionType = RowData::kNoIntersection;
478 return;
479 } else {
480 rowData->fIntersectionType = RowData::kTwoPointsIntersect;
481 const double d = sqrt(c);
482 rowData->fXAtIntersection1 = (m + d) / 2.0;
483 rowData->fXAtIntersection2 = (m - d) / 2.0;
484 }
485 }
486
487 SegSide calculate_side_of_quad(
488 const PathSegment& segment,
489 const SkPoint& point,
490 const DPoint& xFormPt,
491 const RowData& rowData) {
492 SegSide side = kNA_SegSide;
493
494 if (RowData::kVerticalLine == rowData.fIntersectionType) {
495 side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection);
496 }
497 else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType ||
498 RowData::kTangentLine == rowData.fIntersectionType) {
499 const double p1 = rowData.fXAtIntersection1;
500 const double p2 = rowData.fXAtIntersection2;
501
502 int signP1 = sign_of(p1 - xFormPt.x());
503 if (between_closed(p1, segment.fP0T.x(), segment.fP2T.x())) {
504 side = (SegSide)((-signP1) * rowData.fQuadXDirection);
505 }
506 if (between_closed(p2, segment.fP0T.x(), segment.fP2T.x())) {
507 int signP2 = sign_of(p2 - xFormPt.x());
508 if (side == kNA_SegSide || signP2 == 1) {
509 side = (SegSide)(signP2 * rowData.fQuadXDirection);
510 }
511 }
512
513 // The scanline is the tangent line of current quadratic segment.
514 if (RowData::kTangentLine == rowData.fIntersectionType) {
515 // The path start at the tangent point.
516 if (nearly_equal(p1, segment.fP0T.x())) {
517 side = (SegSide)(side * (-signP1) * rowData.fQuadXDirection);
518 }
519
520 // The path end at the tangent point.
521 if (nearly_equal(p1, segment.fP2T.x())) {
522 side = (SegSide)(side * signP1 * rowData.fQuadXDirection);
523 }
524 }
525 }
526
527 return side;
528 }
529
530 static float distance_to_segment(const SkPoint& point,
531 const PathSegment& segment,
532 const RowData& rowData,
533 SegSide* side) {
534 SkASSERT(side);
535
536 const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
537
538 if (segment.fType == PathSegment::kLine) {
539 float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
540
541 if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
542 result = xformPt.y() * xformPt.y();
543 } else if (xformPt.x() < segment.fP0T.x()) {
544 result = (xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
545 } else {
546 result = ((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment. fP2T.x())
547 + xformPt.y() * xformPt.y());
548 }
549
550 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
551 segment.fBoundingBox.bottom())) {
552 *side = (SegSide)(int)sign_of(-xformPt.y());
553 } else {
554 *side = kNA_SegSide;
555 }
556 return result;
557 } else {
558 SkASSERT(segment.fType == PathSegment::kQuad);
559
560 const float nearestPoint = calculate_nearest_point_for_quad(segment, xfo rmPt);
561
562 float dist;
563
564 if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
565 DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
566 dist = xformPt.distanceToSqd(x);
567 } else {
568 const float distToB0T = xformPt.distanceToSqd(segment.fP0T);
569 const float distToB2T = xformPt.distanceToSqd(segment.fP2T);
570
571 if (distToB0T < distToB2T) {
572 dist = distToB0T;
573 } else {
574 dist = distToB2T;
575 }
576 }
577
578 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
579 segment.fBoundingBox.bottom())) {
580 *side = calculate_side_of_quad(segment, point, xformPt, rowData);
581 } else {
582 *side = kNA_SegSide;
583 }
584
585 return dist * segment.fScalingFactor;
586 }
587 }
588
589 static void calculate_distance_field_data(PathSegmentArray* segments,
590 DFData* dataPtr,
591 int width, int height) {
592 int count = segments->count();
593 for (int a = 0; a < count; ++a) {
594 PathSegment& segment = (*segments)[a];
595 const SkRect& segBB = segment.fBoundingBox.makeOutset(
596 SK_DistanceFieldPad, SK_DistanceFieldPad);
597 int startColumn = segBB.left();
598 int endColumn = segBB.right() + 1;
599
600 int startRow = segBB.top();
601 int endRow = segBB.bottom() + 1;
602
603 SkASSERT((startColumn >= 0) && "StartColumn < 0!");
604 SkASSERT((endColumn <= width) && "endColumn > width!");
605 SkASSERT((startRow >= 0) && "StartRow < 0!");
606 SkASSERT((endRow <= height) && "EndRow > height!");
607
608 for (int row = startRow; row < endRow; ++row) {
609 SegSide prevSide = kNA_SegSide;
610 const float pY = row + 0.5f;
611 RowData rowData;
612
613 const SkPoint pointLeft = SkPoint::Make(startColumn, pY);
614 const SkPoint pointRight = SkPoint::Make(endColumn, pY);
615
616 precomputation_for_row(&rowData, segment, pointLeft, pointRight);
617
618 for (int col = startColumn; col < endColumn; ++col) {
619 int idx = (row * width) + col;
620
621 const float pX = col + 0.5f;
622 const SkPoint point = SkPoint::Make(pX, pY);
623
624 const float distSq = dataPtr[idx].fDistSq;
625 int dilation = distSq < 1.5 * 1.5 ? 1 :
626 distSq < 2.5 * 2.5 ? 2 :
627 distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
628 if (dilation > SK_DistanceFieldPad) {
629 dilation = SK_DistanceFieldPad;
630 }
631
632 // Optimisation for not calculating some points.
633 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.rou ndOut()
634 .makeOutset(dilation, dilation).contains(col, row)) {
635 continue;
636 }
637
638 SegSide side = kNA_SegSide;
639 int deltaWindingScore = 0;
640 float currDistSq = distance_to_segment(point, segment, rowData , &side);
641 if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
642 deltaWindingScore = -1;
643 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
644 deltaWindingScore = 1;
645 }
646
647 prevSide = side;
648
649 if (currDistSq < distSq) {
650 dataPtr[idx].fDistSq = currDistSq;
651 }
652
653 dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
654 }
655 }
656 }
657 }
658
659 static unsigned char pack_distance_field_val(float dist, float distanceMagnitude ) {
660 // The distance field is constructed as unsigned char values, so that the ze ro value is at 128,
661 // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
662 // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
663 dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 1 28.0f);
664
665 // Scale into the positive range for unsigned distance
666 dist += distanceMagnitude;
667
668 // Scale into unsigned char range
669 return (unsigned char)(dist / (2 * distanceMagnitude) * 256.0f);
670 }
671
672 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
673 const SkPath& path, const SkMatrix& drawMat rix,
674 int width, int height, size_t rowBytes) {
675 SkASSERT(distanceField);
676
677 SkMatrix m = drawMatrix;
678 m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
679
680 // create temp data
681 size_t dataSize = width * height * sizeof(DFData);
682 SkAutoSMalloc<1024> dfStorage(dataSize);
683 DFData* dataPtr = (DFData*) dfStorage.get();
684
685 // create initial distance data
686 init_distances(dataPtr, width * height);
687
688 SkPath::Iter iter(path, true);
689 SkSTArray<15, PathSegment, true> segments;
690
691 SkPathPriv::FirstDirection dir;
692 // get_direction can fail for some degenerate paths.
693 if (path.getSegmentMasks() & SkPath::kCubic_SegmentMask &&
694 !get_direction(path, m, &dir)) {
695 // Clear distance field for degenerate paths.
Joel.Liang 2016/02/06 06:16:00 To avoid "return false" and then fallback to old a
bsalomon 2016/02/06 13:22:06 My understanding is that this can fail for non-emp
Joel.Liang 2016/02/15 08:36:48 If this can fail for non-empty paths, then there i
bsalomon 2016/02/16 14:59:34 Specifying dir is only required if true is passed
Joel.Liang 2016/02/17 10:42:41 ok, I'm now pass false as the third param. And wil
696 if (width * sizeof(unsigned char) == rowBytes) {
697 memset(distanceField, 0, rowBytes * height);
698 } else {
699 for (int row = 0; row < height; ++row) {
700 memset(distanceField + row * rowBytes, 0, width * sizeof(unsigne d char));
701 }
702 }
703 return true;
704 }
705
706 for (;;) {
707 SkPoint pts[4];
708 SkPath::Verb verb = iter.next(pts);
709 switch (verb) {
710 case SkPath::kMove_Verb:
711 // m.mapPoints(pts, 1);
712 break;
713 case SkPath::kLine_Verb: {
714 m.mapPoints(pts, 2);
715 add_line_to_segment(pts, &segments);
716 break;
717 }
718 case SkPath::kQuad_Verb:
719 m.mapPoints(pts, 3);
720 add_quad_segment(pts, &segments);
721 break;
722 case SkPath::kConic_Verb: {
723 m.mapPoints(pts, 3);
724 SkScalar weight = iter.conicWeight();
725 SkAutoConicToQuads converter;
726 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5 f);
727 for (int i = 0; i < converter.countQuads(); ++i) {
728 add_quad_segment(quadPts + 2*i, &segments);
729 }
730 break;
731 }
732 case SkPath::kCubic_Verb: {
733 m.mapPoints(pts, 4);
734 add_cubic_segments(pts, dir, &segments);
735 break;
736 };
737 default:
738 break;
739 }
740 if (verb == SkPath::kDone_Verb) {
741 break;
742 }
743 }
744
745 calculate_distance_field_data(&segments, dataPtr, width, height);
746
747 for (int row = 0; row < height; ++row) {
748 int windingNumber = 0; // Winding number start from zero for each scanli ne
749 for (int col = 0; col < width; ++col) {
750 int idx = (row * width) + col;
751 windingNumber += dataPtr[idx].fDeltaWindingScore;
752
753 enum DFSign {
754 kInside = -1,
755 kOutside = 1
756 } dfSign;
757
758 if (path.getFillType() == SkPath::kWinding_FillType) {
759 dfSign = windingNumber ? kInside : kOutside;
760 } else if (path.getFillType() == SkPath::kInverseWinding_FillType) {
761 dfSign = windingNumber ? kOutside : kInside;
762 } else if (path.getFillType() == SkPath::kEvenOdd_FillType) {
763 dfSign = (windingNumber % 2) ? kInside : kOutside;
764 } else {
765 SkASSERT(path.getFillType() == SkPath::kInverseEvenOdd_FillType) ;
766 dfSign = (windingNumber % 2) ? kOutside : kInside;
767 }
768
769 // The winding number at the end of a scanline should be zero.
770 if ((col == width - 1) && (windingNumber != 0)) {
771 SkASSERT(0 && "Winding number should be zero at the end of a sca n line.");
772 return false;
773 }
774
775 const float miniDist = sqrt(dataPtr[idx].fDistSq);
776 const float dist = dfSign * miniDist;
777
778 unsigned char pixelVal =
779 pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude);
780
781 distanceField[(row * rowBytes) + col] = pixelVal;
782 }
783 }
784 return true;
785 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698