OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2016 ARM Ltd. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "GrDistanceFieldGenFromVector.h" | |
9 #include "SkPoint.h" | |
10 #include "SkGeometry.h" | |
11 #include "GrPathUtils.h" | |
12 #include "GrConfig.h" | |
13 | |
14 /** | |
15 * If a scanline (a row of texel) cross from the kRight_SegSide | |
16 * of a segment to the kLeft_SegSide, the winding score should | |
17 * add 1. | |
18 * And winding score should subtract 1 if the scanline cross | |
19 * from kLeft_SegSide to kRight_SegSide. | |
20 * Always return kNA_SegSide if the scanline does not cross over | |
21 * the segment. Winding score should be zero in this case. | |
22 * You can get the winding number for each texel of the scanline | |
23 * by adding the winding score from left to right. | |
24 * Assuming we always start from outside, so the winding number | |
25 * should always start from zero. | |
26 * ________ ________ | |
27 * | | | | | |
28 * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment | |
29 * |+1 |-1 |-1 |+1 <= Winding score | |
30 * 0 | 1 ^ 0 ^ -1 |0 <= Winding number | |
31 * |________| |________| | |
32 * | |
33 * .......NA................NA.......... | |
34 * 0 0 | |
35 */ | |
36 enum SegSide { | |
37 kLeft_SegSide = -1, | |
38 kOn_SegSide = 0, | |
39 kRight_SegSide = 1, | |
40 kNA_SegSide = 2, | |
41 }; | |
42 | |
43 struct DFData { | |
44 float fDistSq; // distance squared to nearest (so far) edge | |
45 int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segme nt | |
46 }; | |
47 | |
48 /////////////////////////////////////////////////////////////////////////////// | |
49 | |
50 /* | |
51 * Type definition for double precision DPoint and DAffineMatrix | |
52 */ | |
53 | |
54 // Point with double precision | |
55 struct DPoint { | |
56 double fX, fY; | |
57 | |
58 static DPoint Make(double x, double y) { | |
59 DPoint pt; | |
60 pt.set(x, y); | |
61 return pt; | |
62 } | |
63 | |
64 double x() const { return fX; } | |
65 double y() const { return fY; } | |
66 | |
67 void set(double x, double y) { fX = x; fY = y; } | |
68 | |
69 /** Returns the euclidian distance from (0,0) to (x,y) | |
70 */ | |
71 static double Length(double x, double y) { | |
72 return sqrt(x * x + y * y); | |
73 } | |
74 | |
75 /** Returns the euclidian distance between a and b | |
76 */ | |
77 static double Distance(const DPoint& a, const DPoint& b) { | |
78 return Length(a.fX - b.fX, a.fY - b.fY); | |
79 } | |
80 | |
81 double distanceToSqd(const DPoint& pt) const { | |
82 double dx = fX - pt.fX; | |
83 double dy = fY - pt.fY; | |
84 return dx * dx + dy * dy; | |
85 } | |
86 }; | |
87 | |
88 // Matrix with double precision for affine transformation. | |
89 // We don't store row 3 because its always (0, 0, 1). | |
90 class DAffineMatrix { | |
91 public: | |
92 double operator[](int index) const { | |
93 SkASSERT((unsigned)index < 6); | |
94 return fMat[index]; | |
95 } | |
96 | |
97 double& operator[](int index) { | |
98 SkASSERT((unsigned)index < 6); | |
99 return fMat[index]; | |
100 } | |
101 | |
102 void setAffine(double m11, double m12, double m13, | |
103 double m21, double m22, double m23) { | |
104 fMat[0] = m11; | |
105 fMat[1] = m12; | |
106 fMat[2] = m13; | |
107 fMat[3] = m21; | |
108 fMat[4] = m22; | |
109 fMat[5] = m23; | |
110 } | |
111 | |
112 /** Set the matrix to identity | |
113 */ | |
114 void reset() { | |
115 fMat[0] = fMat[4] = 1.0; | |
116 fMat[1] = fMat[3] = | |
117 fMat[2] = fMat[5] = 0.0; | |
118 } | |
119 | |
120 // alias for reset() | |
121 void setIdentity() { this->reset(); } | |
122 | |
123 DPoint mapPoint(const SkPoint& src) const { | |
124 DPoint pt = DPoint::Make(src.x(), src.y()); | |
125 return this->mapPoint(pt); | |
126 } | |
127 | |
128 DPoint mapPoint(const DPoint& src) const { | |
129 return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2], | |
130 fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]); | |
131 } | |
132 private: | |
133 double fMat[6]; | |
134 }; | |
135 | |
136 /////////////////////////////////////////////////////////////////////////////// | |
137 | |
138 static const double kClose = (SK_Scalar1 / 16.0); | |
139 static const double kCloseSqd = SkScalarMul(kClose, kClose); | |
140 static const double kNearlyZero = (SK_Scalar1 / (1 << 15)); | |
141 | |
142 static inline bool between_closed_open(double a, double b, double c, | |
143 double tolerance = kNearlyZero) { | |
144 SkASSERT(tolerance >= 0.f); | |
145 return b < c ? (a >= b - tolerance && a < c - tolerance) : | |
146 (a >= c - tolerance && a < b - tolerance); | |
147 } | |
148 | |
149 static inline bool between_closed(double a, double b, double c, | |
150 double tolerance = kNearlyZero) { | |
151 SkASSERT(tolerance >= 0.f); | |
152 return b < c ? (a >= b - tolerance && a <= c + tolerance) : | |
153 (a >= c - tolerance && a <= b + tolerance); | |
154 } | |
155 | |
156 static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { | |
157 SkASSERT(tolerance >= 0.f); | |
158 return fabs(x) <= tolerance; | |
159 } | |
160 | |
161 static inline bool nearly_equal(double x, double y, double tolerance = kNearlyZe ro) { | |
162 SkASSERT(tolerance >= 0.f); | |
163 return fabs(x - y) <= tolerance; | |
164 } | |
165 | |
166 static inline float sign_of(const float &val) { | |
167 return (val < 0.f) ? -1.f : 1.f; | |
168 } | |
169 | |
170 static bool is_colinear(const SkPoint pts[3]) { | |
171 return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - | |
172 (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x())); | |
173 } | |
174 | |
175 class PathSegment { | |
176 public: | |
177 enum { | |
178 // These enum values are assumed in member functions below. | |
179 kLine = 0, | |
180 kQuad = 1, | |
181 } fType; | |
182 | |
183 // line uses 2 pts, quad uses 3 pts | |
184 SkPoint fPts[3]; | |
185 | |
186 DPoint fP0T, fP2T; | |
187 DAffineMatrix fXformMatrix; | |
188 double fScalingFactor; | |
189 SkRect fBoundingBox; | |
190 | |
191 void init(); | |
192 | |
193 int countPoints() { | |
194 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); | |
195 return fType + 2; | |
196 } | |
197 | |
198 const SkPoint& endPt() const { | |
199 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); | |
200 return fPts[fType + 1]; | |
201 }; | |
202 }; | |
203 | |
204 typedef SkTArray<PathSegment, true> PathSegmentArray; | |
205 | |
206 void PathSegment::init() { | |
207 const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y()); | |
208 const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y()); | |
209 const double p0x = p0.x(); | |
210 const double p0y = p0.y(); | |
211 const double p2x = p2.x(); | |
212 const double p2y = p2.y(); | |
213 | |
214 fBoundingBox.set(fPts[0], this->endPt()); | |
215 | |
216 if (fType == PathSegment::kLine) { | |
217 fScalingFactor = DPoint::Distance(p0, p2); | |
218 | |
219 const double cosTheta = (p2x - p0x) / fScalingFactor; | |
220 const double sinTheta = (p2y - p0y) / fScalingFactor; | |
221 | |
222 fXformMatrix.setAffine( | |
223 cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), | |
224 -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) | |
225 ); | |
226 } else { | |
227 SkASSERT(fType == PathSegment::kQuad); | |
228 | |
229 // Calculate bounding box | |
230 const SkPoint _P1mP0 = fPts[1] - fPts[0]; | |
231 SkPoint t = _P1mP0 - fPts[2] + fPts[1]; | |
232 t.fX = _P1mP0.x() / t.x(); | |
233 t.fY = _P1mP0.y() / t.y(); | |
234 t.fX = SkScalarClampMax(t.x(), 1.0); | |
235 t.fY = SkScalarClampMax(t.y(), 1.0); | |
236 t.fX = _P1mP0.x() * t.x(); | |
237 t.fY = _P1mP0.y() * t.y(); | |
238 const SkPoint m = fPts[0] + t; | |
239 fBoundingBox.growToInclude(&m, 1); | |
240 | |
241 const double p1x = fPts[1].x(); | |
242 const double p1y = fPts[1].y(); | |
243 | |
244 const double p0xSqd = p0x * p0x; | |
245 const double p0ySqd = p0y * p0y; | |
246 const double p2xSqd = p2x * p2x; | |
247 const double p2ySqd = p2y * p2y; | |
248 const double p1xSqd = p1x * p1x; | |
249 const double p1ySqd = p1y * p1y; | |
250 | |
251 const double p01xProd = p0x * p1x; | |
252 const double p02xProd = p0x * p2x; | |
253 const double b12xProd = p1x * p2x; | |
254 const double p01yProd = p0y * p1y; | |
255 const double p02yProd = p0y * p2y; | |
256 const double b12yProd = p1y * p2y; | |
257 | |
258 const double sqrtA = p0y - (2.0 * p1y) + p2y; | |
259 const double a = sqrtA * sqrtA; | |
260 const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); | |
261 const double sqrtB = p0x - (2.0 * p1x) + p2x; | |
262 const double b = sqrtB * sqrtB; | |
263 const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) | |
264 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) | |
265 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) | |
266 + (p2xSqd * p0ySqd); | |
267 const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) | |
268 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) | |
269 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) | |
270 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) | |
271 + (2.0 * p2x * p01yProd) + (p2x * p02yProd) | |
272 - (2.0 * p2x * p1ySqd); | |
273 const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) | |
274 - (2.0 * p01xProd * p2y) - (p02xProd * p0y) | |
275 + (4.0 * p02xProd * p1y) - (p02xProd * p2y) | |
276 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) | |
277 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) | |
278 + (p2xSqd * p0y)); | |
279 | |
280 const double cosTheta = sqrt(a / (a + b)); | |
281 const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); | |
282 | |
283 const double gDef = cosTheta * g - sinTheta * f; | |
284 const double fDef = sinTheta * g + cosTheta * f; | |
285 | |
286 | |
287 const double x0 = gDef / (a + b); | |
288 const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); | |
289 | |
290 | |
291 const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); | |
292 fScalingFactor = (1.0 / lambda); | |
293 fScalingFactor *= fScalingFactor; | |
294 | |
295 const double lambda_cosTheta = lambda * cosTheta; | |
296 const double lambda_sinTheta = lambda * sinTheta; | |
297 | |
298 fXformMatrix.setAffine( | |
299 lambda_cosTheta, -lambda_sinTheta, lambda * x0, | |
300 lambda_sinTheta, lambda_cosTheta, lambda * y0 | |
301 ); | |
302 } | |
303 | |
304 fP0T = fXformMatrix.mapPoint(p0); | |
305 fP2T = fXformMatrix.mapPoint(p2); | |
306 } | |
307 | |
308 static void init_distances(DFData* data, int size) { | |
309 DFData* currData = data; | |
310 | |
311 for (int i = 0; i < size; ++i) { | |
312 // init distance to "far away" | |
313 currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitud e; | |
314 currData->fDeltaWindingScore = 0; | |
315 ++currData; | |
316 } | |
317 } | |
318 | |
319 static inline bool get_direction(const SkPath& path, const SkMatrix& m, | |
320 SkPathPriv::FirstDirection* dir) { | |
321 if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { | |
322 return false; | |
323 } | |
324 | |
325 // check whether m reverses the orientation | |
326 SkASSERT(!m.hasPerspective()); | |
327 SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMS caleY)) - | |
328 SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSk ewY)); | |
329 | |
330 if (det2x2 < 0) { | |
331 *dir = SkPathPriv::OppositeFirstDirection(*dir); | |
332 } | |
333 return true; | |
334 } | |
335 | |
336 static inline void add_line_to_segment(const SkPoint pts[2], | |
337 PathSegmentArray* segments) { | |
338 segments->push_back(); | |
339 segments->back().fType = PathSegment::kLine; | |
340 segments->back().fPts[0] = pts[0]; | |
341 segments->back().fPts[1] = pts[1]; | |
342 | |
343 segments->back().init(); | |
344 } | |
345 | |
346 static inline void add_quad_segment(const SkPoint pts[3], | |
347 PathSegmentArray* segments) { | |
348 if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || | |
349 pts[1].distanceToSqd(pts[2]) < kCloseSqd || | |
350 is_colinear(pts)) { | |
351 if (pts[0] != pts[2]) { | |
352 SkPoint line_pts[2]; | |
353 line_pts[0] = pts[0]; | |
354 line_pts[1] = pts[2]; | |
355 add_line_to_segment(line_pts, segments); | |
356 } | |
357 } else { | |
358 segments->push_back(); | |
359 segments->back().fType = PathSegment::kQuad; | |
360 segments->back().fPts[0] = pts[0]; | |
361 segments->back().fPts[1] = pts[1]; | |
362 segments->back().fPts[2] = pts[2]; | |
363 | |
364 segments->back().init(); | |
365 } | |
366 } | |
367 | |
368 static inline void add_cubic_segments(const SkPoint pts[4], | |
369 SkPathPriv::FirstDirection dir, | |
370 PathSegmentArray* segments) { | |
371 SkSTArray<15, SkPoint, true> quads; | |
372 GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); | |
373 int count = quads.count(); | |
374 for (int q = 0; q < count; q += 3) { | |
375 add_quad_segment(&quads[q], segments); | |
376 } | |
377 } | |
378 | |
379 static float calculate_nearest_point_for_quad( | |
380 const PathSegment& segment, | |
381 const DPoint &xFormPt) { | |
382 static const float kThird = 0.33333333333f; | |
383 static const float kTwentySeventh = 0.037037037f; | |
384 | |
385 const float a = 0.5f - xFormPt.y(); | |
386 const float b = -0.5f * xFormPt.x(); | |
387 | |
388 const float a3 = a * a * a; | |
389 const float b2 = b * b; | |
390 | |
391 const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); | |
392 | |
393 if (c >= 0.f) { | |
394 const float sqrtC = sqrt(c); | |
395 const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); | |
396 return result; | |
397 } else { | |
398 const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); | |
399 const float phi = (float)acos(cosPhi); | |
400 float result; | |
401 if (xFormPt.x() > 0.f) { | |
402 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); | |
403 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { | |
404 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThi rd) + (SK_ScalarPI * 2.f * kThird)); | |
405 } | |
406 } else { | |
407 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); | |
408 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { | |
409 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThir d); | |
410 } | |
411 } | |
412 return result; | |
413 } | |
414 } | |
415 | |
416 // This structure contains some intermediate values shared by the same row. | |
417 // It is used to calculate segment side of a quadratic bezier. | |
418 struct RowData { | |
419 // The intersection type of a scanline and y = x * x parabola in canonical s pace. | |
420 enum IntersectionType { | |
421 kNoIntersection, | |
422 kVerticalLine, | |
423 kTangentLine, | |
424 kTwoPointsIntersect | |
425 } fIntersectionType; | |
426 | |
427 // The direction of the quadratic segment in the canonical space. | |
428 // 1: The quadratic segment going from negative x-axis to positive x-axis. | |
429 // -1: The quadratic segment going from positive x-axis to negative x-axis. | |
430 int fQuadXDirection; | |
431 | |
432 // The y-value(equal to x*x) of intersection point for the kVerticalLine int ersection type. | |
433 double fYAtIntersection; | |
434 | |
435 // The x-value for two intersection points. | |
436 double fXAtIntersection1; | |
437 double fXAtIntersection2; | |
438 }; | |
439 | |
440 void precomputation_for_row( | |
441 RowData *rowData, | |
442 const PathSegment& segment, | |
443 const SkPoint& pointLeft, | |
444 const SkPoint& pointRight | |
445 ) { | |
446 if (segment.fType != PathSegment::kQuad) { | |
447 return; | |
448 } | |
449 | |
450 const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); | |
451 const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);; | |
452 | |
453 rowData->fQuadXDirection = sign_of(segment.fP2T.x() - segment.fP0T.x()); | |
454 | |
455 const double x1 = xFormPtLeft.x(); | |
456 const double y1 = xFormPtLeft.y(); | |
457 const double x2 = xFormPtRight.x(); | |
458 const double y2 = xFormPtRight.y(); | |
459 | |
460 if (nearly_equal(x1, x2)) { | |
461 rowData->fIntersectionType = RowData::kVerticalLine; | |
462 rowData->fYAtIntersection = x1 * x1; | |
463 return; | |
464 } | |
465 | |
466 // Line y = mx + b | |
467 const double m = (y2 - y1) / (x2 - x1); | |
468 const double b = -m * x1 + y1; | |
469 | |
470 const double c = m * m + 4.0 * b; | |
471 | |
472 if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) { | |
473 rowData->fIntersectionType = RowData::kTangentLine; | |
474 rowData->fXAtIntersection1 = m / 2.0; | |
475 rowData->fXAtIntersection2 = m / 2.0; | |
476 } else if (c < 0.0) { | |
477 rowData->fIntersectionType = RowData::kNoIntersection; | |
478 return; | |
479 } else { | |
480 rowData->fIntersectionType = RowData::kTwoPointsIntersect; | |
481 const double d = sqrt(c); | |
482 rowData->fXAtIntersection1 = (m + d) / 2.0; | |
483 rowData->fXAtIntersection2 = (m - d) / 2.0; | |
484 } | |
485 } | |
486 | |
487 SegSide calculate_side_of_quad( | |
488 const PathSegment& segment, | |
489 const SkPoint& point, | |
490 const DPoint& xFormPt, | |
491 const RowData& rowData) { | |
492 SegSide side = kNA_SegSide; | |
493 | |
494 if (RowData::kVerticalLine == rowData.fIntersectionType) { | |
495 side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection); | |
496 } | |
497 else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType || | |
498 RowData::kTangentLine == rowData.fIntersectionType) { | |
499 const double p1 = rowData.fXAtIntersection1; | |
500 const double p2 = rowData.fXAtIntersection2; | |
501 | |
502 int signP1 = sign_of(p1 - xFormPt.x()); | |
503 if (between_closed(p1, segment.fP0T.x(), segment.fP2T.x())) { | |
504 side = (SegSide)((-signP1) * rowData.fQuadXDirection); | |
505 } | |
506 if (between_closed(p2, segment.fP0T.x(), segment.fP2T.x())) { | |
507 int signP2 = sign_of(p2 - xFormPt.x()); | |
508 if (side == kNA_SegSide || signP2 == 1) { | |
509 side = (SegSide)(signP2 * rowData.fQuadXDirection); | |
510 } | |
511 } | |
512 | |
513 // The scanline is the tangent line of current quadratic segment. | |
514 if (RowData::kTangentLine == rowData.fIntersectionType) { | |
515 // The path start at the tangent point. | |
516 if (nearly_equal(p1, segment.fP0T.x())) { | |
517 side = (SegSide)(side * (-signP1) * rowData.fQuadXDirection); | |
518 } | |
519 | |
520 // The path end at the tangent point. | |
521 if (nearly_equal(p1, segment.fP2T.x())) { | |
522 side = (SegSide)(side * signP1 * rowData.fQuadXDirection); | |
523 } | |
524 } | |
525 } | |
526 | |
527 return side; | |
528 } | |
529 | |
530 static float distance_to_segment(const SkPoint& point, | |
531 const PathSegment& segment, | |
532 const RowData& rowData, | |
533 SegSide* side) { | |
534 SkASSERT(side); | |
535 | |
536 const DPoint xformPt = segment.fXformMatrix.mapPoint(point); | |
537 | |
538 if (segment.fType == PathSegment::kLine) { | |
539 float result = SK_DistanceFieldPad * SK_DistanceFieldPad; | |
540 | |
541 if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) { | |
542 result = xformPt.y() * xformPt.y(); | |
543 } else if (xformPt.x() < segment.fP0T.x()) { | |
544 result = (xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y()); | |
545 } else { | |
546 result = ((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment. fP2T.x()) | |
547 + xformPt.y() * xformPt.y()); | |
548 } | |
549 | |
550 if (between_closed_open(point.y(), segment.fBoundingBox.top(), | |
551 segment.fBoundingBox.bottom())) { | |
552 *side = (SegSide)(int)sign_of(-xformPt.y()); | |
553 } else { | |
554 *side = kNA_SegSide; | |
555 } | |
556 return result; | |
557 } else { | |
558 SkASSERT(segment.fType == PathSegment::kQuad); | |
559 | |
560 const float nearestPoint = calculate_nearest_point_for_quad(segment, xfo rmPt); | |
561 | |
562 float dist; | |
563 | |
564 if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) { | |
565 DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); | |
566 dist = xformPt.distanceToSqd(x); | |
567 } else { | |
568 const float distToB0T = xformPt.distanceToSqd(segment.fP0T); | |
569 const float distToB2T = xformPt.distanceToSqd(segment.fP2T); | |
570 | |
571 if (distToB0T < distToB2T) { | |
572 dist = distToB0T; | |
573 } else { | |
574 dist = distToB2T; | |
575 } | |
576 } | |
577 | |
578 if (between_closed_open(point.y(), segment.fBoundingBox.top(), | |
579 segment.fBoundingBox.bottom())) { | |
580 *side = calculate_side_of_quad(segment, point, xformPt, rowData); | |
581 } else { | |
582 *side = kNA_SegSide; | |
583 } | |
584 | |
585 return dist * segment.fScalingFactor; | |
586 } | |
587 } | |
588 | |
589 static void calculate_distance_field_data(PathSegmentArray* segments, | |
590 DFData* dataPtr, | |
591 int width, int height) { | |
592 int count = segments->count(); | |
593 for (int a = 0; a < count; ++a) { | |
594 PathSegment& segment = (*segments)[a]; | |
595 const SkRect& segBB = segment.fBoundingBox.makeOutset( | |
596 SK_DistanceFieldPad, SK_DistanceFieldPad); | |
597 int startColumn = segBB.left(); | |
598 int endColumn = segBB.right() + 1; | |
599 | |
600 int startRow = segBB.top(); | |
601 int endRow = segBB.bottom() + 1; | |
602 | |
603 SkASSERT((startColumn >= 0) && "StartColumn < 0!"); | |
604 SkASSERT((endColumn <= width) && "endColumn > width!"); | |
605 SkASSERT((startRow >= 0) && "StartRow < 0!"); | |
606 SkASSERT((endRow <= height) && "EndRow > height!"); | |
607 | |
608 for (int row = startRow; row < endRow; ++row) { | |
609 SegSide prevSide = kNA_SegSide; | |
610 const float pY = row + 0.5f; | |
611 RowData rowData; | |
612 | |
613 const SkPoint pointLeft = SkPoint::Make(startColumn, pY); | |
614 const SkPoint pointRight = SkPoint::Make(endColumn, pY); | |
615 | |
616 precomputation_for_row(&rowData, segment, pointLeft, pointRight); | |
617 | |
618 for (int col = startColumn; col < endColumn; ++col) { | |
619 int idx = (row * width) + col; | |
620 | |
621 const float pX = col + 0.5f; | |
622 const SkPoint point = SkPoint::Make(pX, pY); | |
623 | |
624 const float distSq = dataPtr[idx].fDistSq; | |
625 int dilation = distSq < 1.5 * 1.5 ? 1 : | |
626 distSq < 2.5 * 2.5 ? 2 : | |
627 distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; | |
628 if (dilation > SK_DistanceFieldPad) { | |
629 dilation = SK_DistanceFieldPad; | |
630 } | |
631 | |
632 // Optimisation for not calculating some points. | |
633 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.rou ndOut() | |
634 .makeOutset(dilation, dilation).contains(col, row)) { | |
635 continue; | |
636 } | |
637 | |
638 SegSide side = kNA_SegSide; | |
639 int deltaWindingScore = 0; | |
640 float currDistSq = distance_to_segment(point, segment, rowData , &side); | |
641 if (prevSide == kLeft_SegSide && side == kRight_SegSide) { | |
642 deltaWindingScore = -1; | |
643 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { | |
644 deltaWindingScore = 1; | |
645 } | |
646 | |
647 prevSide = side; | |
648 | |
649 if (currDistSq < distSq) { | |
650 dataPtr[idx].fDistSq = currDistSq; | |
651 } | |
652 | |
653 dataPtr[idx].fDeltaWindingScore += deltaWindingScore; | |
654 } | |
655 } | |
656 } | |
657 } | |
658 | |
659 static unsigned char pack_distance_field_val(float dist, float distanceMagnitude ) { | |
660 // The distance field is constructed as unsigned char values, so that the ze ro value is at 128, | |
661 // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. | |
662 // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. | |
663 dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 1 28.0f); | |
664 | |
665 // Scale into the positive range for unsigned distance | |
666 dist += distanceMagnitude; | |
667 | |
668 // Scale into unsigned char range | |
669 return (unsigned char)(dist / (2 * distanceMagnitude) * 256.0f); | |
670 } | |
671 | |
672 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, | |
673 const SkPath& path, const SkMatrix& drawMat rix, | |
674 int width, int height, size_t rowBytes) { | |
675 SkASSERT(distanceField); | |
676 | |
677 SkMatrix m = drawMatrix; | |
678 m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); | |
679 | |
680 // create temp data | |
681 size_t dataSize = width * height * sizeof(DFData); | |
682 SkAutoSMalloc<1024> dfStorage(dataSize); | |
683 DFData* dataPtr = (DFData*) dfStorage.get(); | |
684 | |
685 // create initial distance data | |
686 init_distances(dataPtr, width * height); | |
687 | |
688 SkPath::Iter iter(path, true); | |
689 SkSTArray<15, PathSegment, true> segments; | |
690 | |
691 SkPathPriv::FirstDirection dir; | |
692 // get_direction can fail for some degenerate paths. | |
693 if (path.getSegmentMasks() & SkPath::kCubic_SegmentMask && | |
694 !get_direction(path, m, &dir)) { | |
695 // Clear distance field for degenerate paths. | |
Joel.Liang
2016/02/06 06:16:00
To avoid "return false" and then fallback to old a
bsalomon
2016/02/06 13:22:06
My understanding is that this can fail for non-emp
Joel.Liang
2016/02/15 08:36:48
If this can fail for non-empty paths, then there i
bsalomon
2016/02/16 14:59:34
Specifying dir is only required if true is passed
Joel.Liang
2016/02/17 10:42:41
ok, I'm now pass false as the third param. And wil
| |
696 if (width * sizeof(unsigned char) == rowBytes) { | |
697 memset(distanceField, 0, rowBytes * height); | |
698 } else { | |
699 for (int row = 0; row < height; ++row) { | |
700 memset(distanceField + row * rowBytes, 0, width * sizeof(unsigne d char)); | |
701 } | |
702 } | |
703 return true; | |
704 } | |
705 | |
706 for (;;) { | |
707 SkPoint pts[4]; | |
708 SkPath::Verb verb = iter.next(pts); | |
709 switch (verb) { | |
710 case SkPath::kMove_Verb: | |
711 // m.mapPoints(pts, 1); | |
712 break; | |
713 case SkPath::kLine_Verb: { | |
714 m.mapPoints(pts, 2); | |
715 add_line_to_segment(pts, &segments); | |
716 break; | |
717 } | |
718 case SkPath::kQuad_Verb: | |
719 m.mapPoints(pts, 3); | |
720 add_quad_segment(pts, &segments); | |
721 break; | |
722 case SkPath::kConic_Verb: { | |
723 m.mapPoints(pts, 3); | |
724 SkScalar weight = iter.conicWeight(); | |
725 SkAutoConicToQuads converter; | |
726 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5 f); | |
727 for (int i = 0; i < converter.countQuads(); ++i) { | |
728 add_quad_segment(quadPts + 2*i, &segments); | |
729 } | |
730 break; | |
731 } | |
732 case SkPath::kCubic_Verb: { | |
733 m.mapPoints(pts, 4); | |
734 add_cubic_segments(pts, dir, &segments); | |
735 break; | |
736 }; | |
737 default: | |
738 break; | |
739 } | |
740 if (verb == SkPath::kDone_Verb) { | |
741 break; | |
742 } | |
743 } | |
744 | |
745 calculate_distance_field_data(&segments, dataPtr, width, height); | |
746 | |
747 for (int row = 0; row < height; ++row) { | |
748 int windingNumber = 0; // Winding number start from zero for each scanli ne | |
749 for (int col = 0; col < width; ++col) { | |
750 int idx = (row * width) + col; | |
751 windingNumber += dataPtr[idx].fDeltaWindingScore; | |
752 | |
753 enum DFSign { | |
754 kInside = -1, | |
755 kOutside = 1 | |
756 } dfSign; | |
757 | |
758 if (path.getFillType() == SkPath::kWinding_FillType) { | |
759 dfSign = windingNumber ? kInside : kOutside; | |
760 } else if (path.getFillType() == SkPath::kInverseWinding_FillType) { | |
761 dfSign = windingNumber ? kOutside : kInside; | |
762 } else if (path.getFillType() == SkPath::kEvenOdd_FillType) { | |
763 dfSign = (windingNumber % 2) ? kInside : kOutside; | |
764 } else { | |
765 SkASSERT(path.getFillType() == SkPath::kInverseEvenOdd_FillType) ; | |
766 dfSign = (windingNumber % 2) ? kOutside : kInside; | |
767 } | |
768 | |
769 // The winding number at the end of a scanline should be zero. | |
770 if ((col == width - 1) && (windingNumber != 0)) { | |
771 SkASSERT(0 && "Winding number should be zero at the end of a sca n line."); | |
772 return false; | |
773 } | |
774 | |
775 const float miniDist = sqrt(dataPtr[idx].fDistSq); | |
776 const float dist = dfSign * miniDist; | |
777 | |
778 unsigned char pixelVal = | |
779 pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude); | |
780 | |
781 distanceField[(row * rowBytes) + col] = pixelVal; | |
782 } | |
783 } | |
784 return true; | |
785 } | |
OLD | NEW |