Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(380)

Unified Diff: third_party/WebKit/Source/wtf/dtoa/double.h

Issue 1611343002: wtf reformat test Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: pydent Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/WebKit/Source/wtf/dtoa/diy-fp.h ('k') | third_party/WebKit/Source/wtf/dtoa/double-conversion.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/WebKit/Source/wtf/dtoa/double.h
diff --git a/third_party/WebKit/Source/wtf/dtoa/double.h b/third_party/WebKit/Source/wtf/dtoa/double.h
index d0f449d20f0669586ef7c5ea48918b9223cde83c..9aa2df72f39df0dc220093c18f68cb991a9ff90f 100644
--- a/third_party/WebKit/Source/wtf/dtoa/double.h
+++ b/third_party/WebKit/Source/wtf/dtoa/double.h
@@ -34,216 +34,216 @@ namespace WTF {
namespace double_conversion {
- // We assume that doubles and uint64_t have the same endianness.
- static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
- static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
-
- // Helper functions for doubles.
- class Double {
- public:
- static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
- static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
- static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
- static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
- static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
- static const int kSignificandSize = 53;
-
- Double() : d64_(0) {}
- explicit Double(double d) : d64_(double_to_uint64(d)) {}
- explicit Double(uint64_t d64) : d64_(d64) {}
- explicit Double(DiyFp diy_fp)
- : d64_(DiyFpToUint64(diy_fp)) {}
-
- // The value encoded by this Double must be greater or equal to +0.0.
- // It must not be special (infinity, or NaN).
- DiyFp AsDiyFp() const {
- ASSERT(Sign() > 0);
- ASSERT(!IsSpecial());
- return DiyFp(Significand(), Exponent());
- }
-
- // The value encoded by this Double must be strictly greater than 0.
- DiyFp AsNormalizedDiyFp() const {
- ASSERT(value() > 0.0);
- uint64_t f = Significand();
- int e = Exponent();
-
- // The current double could be a denormal.
- while ((f & kHiddenBit) == 0) {
- f <<= 1;
- e--;
- }
- // Do the final shifts in one go.
- f <<= DiyFp::kSignificandSize - kSignificandSize;
- e -= DiyFp::kSignificandSize - kSignificandSize;
- return DiyFp(f, e);
- }
-
- // Returns the double's bit as uint64.
- uint64_t AsUint64() const {
- return d64_;
- }
-
- // Returns the next greater double. Returns +infinity on input +infinity.
- double NextDouble() const {
- if (d64_ == kInfinity) return Double(kInfinity).value();
- if (Sign() < 0 && Significand() == 0) {
- // -0.0
- return 0.0;
- }
- if (Sign() < 0) {
- return Double(d64_ - 1).value();
- } else {
- return Double(d64_ + 1).value();
- }
- }
-
- int Exponent() const {
- if (IsDenormal()) return kDenormalExponent;
-
- uint64_t d64 = AsUint64();
- int biased_e =
- static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
- return biased_e - kExponentBias;
- }
-
- uint64_t Significand() const {
- uint64_t d64 = AsUint64();
- uint64_t significand = d64 & kSignificandMask;
- if (!IsDenormal()) {
- return significand + kHiddenBit;
- } else {
- return significand;
- }
- }
-
- // Returns true if the double is a denormal.
- bool IsDenormal() const {
- uint64_t d64 = AsUint64();
- return (d64 & kExponentMask) == 0;
- }
-
- // We consider denormals not to be special.
- // Hence only Infinity and NaN are special.
- bool IsSpecial() const {
- uint64_t d64 = AsUint64();
- return (d64 & kExponentMask) == kExponentMask;
- }
-
- bool IsNan() const {
- uint64_t d64 = AsUint64();
- return ((d64 & kExponentMask) == kExponentMask) &&
- ((d64 & kSignificandMask) != 0);
- }
-
- bool IsInfinite() const {
- uint64_t d64 = AsUint64();
- return ((d64 & kExponentMask) == kExponentMask) &&
- ((d64 & kSignificandMask) == 0);
- }
-
- int Sign() const {
- uint64_t d64 = AsUint64();
- return (d64 & kSignMask) == 0? 1: -1;
- }
-
- // Precondition: the value encoded by this Double must be greater or equal
- // than +0.0.
- DiyFp UpperBoundary() const {
- ASSERT(Sign() > 0);
- return DiyFp(Significand() * 2 + 1, Exponent() - 1);
- }
-
- // Computes the two boundaries of this.
- // The bigger boundary (m_plus) is normalized. The lower boundary has the same
- // exponent as m_plus.
- // Precondition: the value encoded by this Double must be greater than 0.
- void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
- ASSERT(value() > 0.0);
- DiyFp v = this->AsDiyFp();
- bool significand_is_zero = (v.f() == kHiddenBit);
- DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
- DiyFp m_minus;
- if (significand_is_zero && v.e() != kDenormalExponent) {
- // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
- // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
- // at a distance of 1e8.
- // The only exception is for the smallest normal: the largest denormal is
- // at the same distance as its successor.
- // Note: denormals have the same exponent as the smallest normals.
- m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
- } else {
- m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
- }
- m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
- m_minus.set_e(m_plus.e());
- *out_m_plus = m_plus;
- *out_m_minus = m_minus;
- }
-
- double value() const { return uint64_to_double(d64_); }
-
- // Returns the significand size for a given order of magnitude.
- // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
- // This function returns the number of significant binary digits v will have
- // once it's encoded into a double. In almost all cases this is equal to
- // kSignificandSize. The only exceptions are denormals. They start with
- // leading zeroes and their effective significand-size is hence smaller.
- static int SignificandSizeForOrderOfMagnitude(int order) {
- if (order >= (kDenormalExponent + kSignificandSize)) {
- return kSignificandSize;
- }
- if (order <= kDenormalExponent) return 0;
- return order - kDenormalExponent;
- }
-
- static double Infinity() {
- return Double(kInfinity).value();
- }
-
- static double NaN() {
- return Double(kNaN).value();
- }
-
- private:
- static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
- static const int kDenormalExponent = -kExponentBias + 1;
- static const int kMaxExponent = 0x7FF - kExponentBias;
- static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
- static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
-
- const uint64_t d64_;
-
- static uint64_t DiyFpToUint64(DiyFp diy_fp) {
- uint64_t significand = diy_fp.f();
- int exponent = diy_fp.e();
- while (significand > kHiddenBit + kSignificandMask) {
- significand >>= 1;
- exponent++;
- }
- if (exponent >= kMaxExponent) {
- return kInfinity;
- }
- if (exponent < kDenormalExponent) {
- return 0;
- }
- while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
- significand <<= 1;
- exponent--;
- }
- uint64_t biased_exponent;
- if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
- biased_exponent = 0;
- } else {
- biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
- }
- return (significand & kSignificandMask) |
- (biased_exponent << kPhysicalSignificandSize);
- }
- };
+// We assume that doubles and uint64_t have the same endianness.
+static uint64_t double_to_uint64(double d) {
+ return BitCast<uint64_t>(d);
+}
+static double uint64_to_double(uint64_t d64) {
+ return BitCast<double>(d64);
+}
+
+// Helper functions for doubles.
+class Double {
+ public:
+ static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
+ static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
+ static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
+ static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
+ static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
+ static const int kSignificandSize = 53;
+
+ Double() : d64_(0) {}
+ explicit Double(double d) : d64_(double_to_uint64(d)) {}
+ explicit Double(uint64_t d64) : d64_(d64) {}
+ explicit Double(DiyFp diy_fp) : d64_(DiyFpToUint64(diy_fp)) {}
+
+ // The value encoded by this Double must be greater or equal to +0.0.
+ // It must not be special (infinity, or NaN).
+ DiyFp AsDiyFp() const {
+ ASSERT(Sign() > 0);
+ ASSERT(!IsSpecial());
+ return DiyFp(Significand(), Exponent());
+ }
+
+ // The value encoded by this Double must be strictly greater than 0.
+ DiyFp AsNormalizedDiyFp() const {
+ ASSERT(value() > 0.0);
+ uint64_t f = Significand();
+ int e = Exponent();
+
+ // The current double could be a denormal.
+ while ((f & kHiddenBit) == 0) {
+ f <<= 1;
+ e--;
+ }
+ // Do the final shifts in one go.
+ f <<= DiyFp::kSignificandSize - kSignificandSize;
+ e -= DiyFp::kSignificandSize - kSignificandSize;
+ return DiyFp(f, e);
+ }
+
+ // Returns the double's bit as uint64.
+ uint64_t AsUint64() const { return d64_; }
+
+ // Returns the next greater double. Returns +infinity on input +infinity.
+ double NextDouble() const {
+ if (d64_ == kInfinity)
+ return Double(kInfinity).value();
+ if (Sign() < 0 && Significand() == 0) {
+ // -0.0
+ return 0.0;
+ }
+ if (Sign() < 0) {
+ return Double(d64_ - 1).value();
+ } else {
+ return Double(d64_ + 1).value();
+ }
+ }
+
+ int Exponent() const {
+ if (IsDenormal())
+ return kDenormalExponent;
+
+ uint64_t d64 = AsUint64();
+ int biased_e =
+ static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
+ return biased_e - kExponentBias;
+ }
+
+ uint64_t Significand() const {
+ uint64_t d64 = AsUint64();
+ uint64_t significand = d64 & kSignificandMask;
+ if (!IsDenormal()) {
+ return significand + kHiddenBit;
+ } else {
+ return significand;
+ }
+ }
+
+ // Returns true if the double is a denormal.
+ bool IsDenormal() const {
+ uint64_t d64 = AsUint64();
+ return (d64 & kExponentMask) == 0;
+ }
+
+ // We consider denormals not to be special.
+ // Hence only Infinity and NaN are special.
+ bool IsSpecial() const {
+ uint64_t d64 = AsUint64();
+ return (d64 & kExponentMask) == kExponentMask;
+ }
+
+ bool IsNan() const {
+ uint64_t d64 = AsUint64();
+ return ((d64 & kExponentMask) == kExponentMask) &&
+ ((d64 & kSignificandMask) != 0);
+ }
+
+ bool IsInfinite() const {
+ uint64_t d64 = AsUint64();
+ return ((d64 & kExponentMask) == kExponentMask) &&
+ ((d64 & kSignificandMask) == 0);
+ }
+
+ int Sign() const {
+ uint64_t d64 = AsUint64();
+ return (d64 & kSignMask) == 0 ? 1 : -1;
+ }
+
+ // Precondition: the value encoded by this Double must be greater or equal
+ // than +0.0.
+ DiyFp UpperBoundary() const {
+ ASSERT(Sign() > 0);
+ return DiyFp(Significand() * 2 + 1, Exponent() - 1);
+ }
+
+ // Computes the two boundaries of this.
+ // The bigger boundary (m_plus) is normalized. The lower boundary has the same
+ // exponent as m_plus.
+ // Precondition: the value encoded by this Double must be greater than 0.
+ void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
+ ASSERT(value() > 0.0);
+ DiyFp v = this->AsDiyFp();
+ bool significand_is_zero = (v.f() == kHiddenBit);
+ DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
+ DiyFp m_minus;
+ if (significand_is_zero && v.e() != kDenormalExponent) {
+ // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
+ // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
+ // at a distance of 1e8.
+ // The only exception is for the smallest normal: the largest denormal is
+ // at the same distance as its successor.
+ // Note: denormals have the same exponent as the smallest normals.
+ m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
+ } else {
+ m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
+ }
+ m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
+ m_minus.set_e(m_plus.e());
+ *out_m_plus = m_plus;
+ *out_m_minus = m_minus;
+ }
+
+ double value() const { return uint64_to_double(d64_); }
+
+ // Returns the significand size for a given order of magnitude.
+ // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
+ // This function returns the number of significant binary digits v will have
+ // once it's encoded into a double. In almost all cases this is equal to
+ // kSignificandSize. The only exceptions are denormals. They start with
+ // leading zeroes and their effective significand-size is hence smaller.
+ static int SignificandSizeForOrderOfMagnitude(int order) {
+ if (order >= (kDenormalExponent + kSignificandSize)) {
+ return kSignificandSize;
+ }
+ if (order <= kDenormalExponent)
+ return 0;
+ return order - kDenormalExponent;
+ }
+
+ static double Infinity() { return Double(kInfinity).value(); }
+
+ static double NaN() { return Double(kNaN).value(); }
+
+ private:
+ static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
+ static const int kDenormalExponent = -kExponentBias + 1;
+ static const int kMaxExponent = 0x7FF - kExponentBias;
+ static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
+ static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
+
+ const uint64_t d64_;
+
+ static uint64_t DiyFpToUint64(DiyFp diy_fp) {
+ uint64_t significand = diy_fp.f();
+ int exponent = diy_fp.e();
+ while (significand > kHiddenBit + kSignificandMask) {
+ significand >>= 1;
+ exponent++;
+ }
+ if (exponent >= kMaxExponent) {
+ return kInfinity;
+ }
+ if (exponent < kDenormalExponent) {
+ return 0;
+ }
+ while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
+ significand <<= 1;
+ exponent--;
+ }
+ uint64_t biased_exponent;
+ if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
+ biased_exponent = 0;
+ } else {
+ biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
+ }
+ return (significand & kSignificandMask) |
+ (biased_exponent << kPhysicalSignificandSize);
+ }
+};
} // namespace double_conversion
-} // namespace WTF
+} // namespace WTF
#endif // DOUBLE_CONVERSION_DOUBLE_H_
« no previous file with comments | « third_party/WebKit/Source/wtf/dtoa/diy-fp.h ('k') | third_party/WebKit/Source/wtf/dtoa/double-conversion.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698