Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1045)

Side by Side Diff: third_party/WebKit/Source/wtf/dtoa/double.h

Issue 1611343002: wtf reformat test Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: pydent Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2010 the V8 project authors. All rights reserved. 1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 16 matching lines...) Expand all
27 27
28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_ 28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_
29 #define DOUBLE_CONVERSION_DOUBLE_H_ 29 #define DOUBLE_CONVERSION_DOUBLE_H_
30 30
31 #include "diy-fp.h" 31 #include "diy-fp.h"
32 32
33 namespace WTF { 33 namespace WTF {
34 34
35 namespace double_conversion { 35 namespace double_conversion {
36 36
37 // We assume that doubles and uint64_t have the same endianness. 37 // We assume that doubles and uint64_t have the same endianness.
38 static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } 38 static uint64_t double_to_uint64(double d) {
39 static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } 39 return BitCast<uint64_t>(d);
40 40 }
41 // Helper functions for doubles. 41 static double uint64_to_double(uint64_t d64) {
42 class Double { 42 return BitCast<double>(d64);
43 public: 43 }
44 static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); 44
45 static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 0000000 0); 45 // Helper functions for doubles.
46 static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFF FFFF); 46 class Double {
47 static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); 47 public:
48 static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. 48 static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
49 static const int kSignificandSize = 53; 49 static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
50 50 static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
51 Double() : d64_(0) {} 51 static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
52 explicit Double(double d) : d64_(double_to_uint64(d)) {} 52 static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
53 explicit Double(uint64_t d64) : d64_(d64) {} 53 static const int kSignificandSize = 53;
54 explicit Double(DiyFp diy_fp) 54
55 : d64_(DiyFpToUint64(diy_fp)) {} 55 Double() : d64_(0) {}
56 56 explicit Double(double d) : d64_(double_to_uint64(d)) {}
57 // The value encoded by this Double must be greater or equal to +0.0. 57 explicit Double(uint64_t d64) : d64_(d64) {}
58 // It must not be special (infinity, or NaN). 58 explicit Double(DiyFp diy_fp) : d64_(DiyFpToUint64(diy_fp)) {}
59 DiyFp AsDiyFp() const { 59
60 ASSERT(Sign() > 0); 60 // The value encoded by this Double must be greater or equal to +0.0.
61 ASSERT(!IsSpecial()); 61 // It must not be special (infinity, or NaN).
62 return DiyFp(Significand(), Exponent()); 62 DiyFp AsDiyFp() const {
63 } 63 ASSERT(Sign() > 0);
64 64 ASSERT(!IsSpecial());
65 // The value encoded by this Double must be strictly greater than 0. 65 return DiyFp(Significand(), Exponent());
66 DiyFp AsNormalizedDiyFp() const { 66 }
67 ASSERT(value() > 0.0); 67
68 uint64_t f = Significand(); 68 // The value encoded by this Double must be strictly greater than 0.
69 int e = Exponent(); 69 DiyFp AsNormalizedDiyFp() const {
70 70 ASSERT(value() > 0.0);
71 // The current double could be a denormal. 71 uint64_t f = Significand();
72 while ((f & kHiddenBit) == 0) { 72 int e = Exponent();
73 f <<= 1; 73
74 e--; 74 // The current double could be a denormal.
75 } 75 while ((f & kHiddenBit) == 0) {
76 // Do the final shifts in one go. 76 f <<= 1;
77 f <<= DiyFp::kSignificandSize - kSignificandSize; 77 e--;
78 e -= DiyFp::kSignificandSize - kSignificandSize; 78 }
79 return DiyFp(f, e); 79 // Do the final shifts in one go.
80 } 80 f <<= DiyFp::kSignificandSize - kSignificandSize;
81 81 e -= DiyFp::kSignificandSize - kSignificandSize;
82 // Returns the double's bit as uint64. 82 return DiyFp(f, e);
83 uint64_t AsUint64() const { 83 }
84 return d64_; 84
85 } 85 // Returns the double's bit as uint64.
86 86 uint64_t AsUint64() const { return d64_; }
87 // Returns the next greater double. Returns +infinity on input +infinity . 87
88 double NextDouble() const { 88 // Returns the next greater double. Returns +infinity on input +infinity.
89 if (d64_ == kInfinity) return Double(kInfinity).value(); 89 double NextDouble() const {
90 if (Sign() < 0 && Significand() == 0) { 90 if (d64_ == kInfinity)
91 // -0.0 91 return Double(kInfinity).value();
92 return 0.0; 92 if (Sign() < 0 && Significand() == 0) {
93 } 93 // -0.0
94 if (Sign() < 0) { 94 return 0.0;
95 return Double(d64_ - 1).value(); 95 }
96 } else { 96 if (Sign() < 0) {
97 return Double(d64_ + 1).value(); 97 return Double(d64_ - 1).value();
98 } 98 } else {
99 } 99 return Double(d64_ + 1).value();
100 100 }
101 int Exponent() const { 101 }
102 if (IsDenormal()) return kDenormalExponent; 102
103 103 int Exponent() const {
104 uint64_t d64 = AsUint64(); 104 if (IsDenormal())
105 int biased_e = 105 return kDenormalExponent;
106 static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); 106
107 return biased_e - kExponentBias; 107 uint64_t d64 = AsUint64();
108 } 108 int biased_e =
109 109 static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
110 uint64_t Significand() const { 110 return biased_e - kExponentBias;
111 uint64_t d64 = AsUint64(); 111 }
112 uint64_t significand = d64 & kSignificandMask; 112
113 if (!IsDenormal()) { 113 uint64_t Significand() const {
114 return significand + kHiddenBit; 114 uint64_t d64 = AsUint64();
115 } else { 115 uint64_t significand = d64 & kSignificandMask;
116 return significand; 116 if (!IsDenormal()) {
117 } 117 return significand + kHiddenBit;
118 } 118 } else {
119 119 return significand;
120 // Returns true if the double is a denormal. 120 }
121 bool IsDenormal() const { 121 }
122 uint64_t d64 = AsUint64(); 122
123 return (d64 & kExponentMask) == 0; 123 // Returns true if the double is a denormal.
124 } 124 bool IsDenormal() const {
125 125 uint64_t d64 = AsUint64();
126 // We consider denormals not to be special. 126 return (d64 & kExponentMask) == 0;
127 // Hence only Infinity and NaN are special. 127 }
128 bool IsSpecial() const { 128
129 uint64_t d64 = AsUint64(); 129 // We consider denormals not to be special.
130 return (d64 & kExponentMask) == kExponentMask; 130 // Hence only Infinity and NaN are special.
131 } 131 bool IsSpecial() const {
132 132 uint64_t d64 = AsUint64();
133 bool IsNan() const { 133 return (d64 & kExponentMask) == kExponentMask;
134 uint64_t d64 = AsUint64(); 134 }
135 return ((d64 & kExponentMask) == kExponentMask) && 135
136 ((d64 & kSignificandMask) != 0); 136 bool IsNan() const {
137 } 137 uint64_t d64 = AsUint64();
138 138 return ((d64 & kExponentMask) == kExponentMask) &&
139 bool IsInfinite() const { 139 ((d64 & kSignificandMask) != 0);
140 uint64_t d64 = AsUint64(); 140 }
141 return ((d64 & kExponentMask) == kExponentMask) && 141
142 ((d64 & kSignificandMask) == 0); 142 bool IsInfinite() const {
143 } 143 uint64_t d64 = AsUint64();
144 144 return ((d64 & kExponentMask) == kExponentMask) &&
145 int Sign() const { 145 ((d64 & kSignificandMask) == 0);
146 uint64_t d64 = AsUint64(); 146 }
147 return (d64 & kSignMask) == 0? 1: -1; 147
148 } 148 int Sign() const {
149 149 uint64_t d64 = AsUint64();
150 // Precondition: the value encoded by this Double must be greater or equ al 150 return (d64 & kSignMask) == 0 ? 1 : -1;
151 // than +0.0. 151 }
152 DiyFp UpperBoundary() const { 152
153 ASSERT(Sign() > 0); 153 // Precondition: the value encoded by this Double must be greater or equal
154 return DiyFp(Significand() * 2 + 1, Exponent() - 1); 154 // than +0.0.
155 } 155 DiyFp UpperBoundary() const {
156 156 ASSERT(Sign() > 0);
157 // Computes the two boundaries of this. 157 return DiyFp(Significand() * 2 + 1, Exponent() - 1);
158 // The bigger boundary (m_plus) is normalized. The lower boundary has th e same 158 }
159 // exponent as m_plus. 159
160 // Precondition: the value encoded by this Double must be greater than 0 . 160 // Computes the two boundaries of this.
161 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { 161 // The bigger boundary (m_plus) is normalized. The lower boundary has the same
162 ASSERT(value() > 0.0); 162 // exponent as m_plus.
163 DiyFp v = this->AsDiyFp(); 163 // Precondition: the value encoded by this Double must be greater than 0.
164 bool significand_is_zero = (v.f() == kHiddenBit); 164 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
165 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); 165 ASSERT(value() > 0.0);
166 DiyFp m_minus; 166 DiyFp v = this->AsDiyFp();
167 if (significand_is_zero && v.e() != kDenormalExponent) { 167 bool significand_is_zero = (v.f() == kHiddenBit);
168 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. 168 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
169 // Then the boundary (== (v - v-)/2) is not just at a distance o f 1e9 but 169 DiyFp m_minus;
170 // at a distance of 1e8. 170 if (significand_is_zero && v.e() != kDenormalExponent) {
171 // The only exception is for the smallest normal: the largest de normal is 171 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
172 // at the same distance as its successor. 172 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
173 // Note: denormals have the same exponent as the smallest normal s. 173 // at a distance of 1e8.
174 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); 174 // The only exception is for the smallest normal: the largest denormal is
175 } else { 175 // at the same distance as its successor.
176 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); 176 // Note: denormals have the same exponent as the smallest normals.
177 } 177 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
178 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); 178 } else {
179 m_minus.set_e(m_plus.e()); 179 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
180 *out_m_plus = m_plus; 180 }
181 *out_m_minus = m_minus; 181 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
182 } 182 m_minus.set_e(m_plus.e());
183 183 *out_m_plus = m_plus;
184 double value() const { return uint64_to_double(d64_); } 184 *out_m_minus = m_minus;
185 185 }
186 // Returns the significand size for a given order of magnitude. 186
187 // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitud e. 187 double value() const { return uint64_to_double(d64_); }
188 // This function returns the number of significant binary digits v will have 188
189 // once it's encoded into a double. In almost all cases this is equal to 189 // Returns the significand size for a given order of magnitude.
190 // kSignificandSize. The only exceptions are denormals. They start with 190 // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
191 // leading zeroes and their effective significand-size is hence smaller. 191 // This function returns the number of significant binary digits v will have
192 static int SignificandSizeForOrderOfMagnitude(int order) { 192 // once it's encoded into a double. In almost all cases this is equal to
193 if (order >= (kDenormalExponent + kSignificandSize)) { 193 // kSignificandSize. The only exceptions are denormals. They start with
194 return kSignificandSize; 194 // leading zeroes and their effective significand-size is hence smaller.
195 } 195 static int SignificandSizeForOrderOfMagnitude(int order) {
196 if (order <= kDenormalExponent) return 0; 196 if (order >= (kDenormalExponent + kSignificandSize)) {
197 return order - kDenormalExponent; 197 return kSignificandSize;
198 } 198 }
199 199 if (order <= kDenormalExponent)
200 static double Infinity() { 200 return 0;
201 return Double(kInfinity).value(); 201 return order - kDenormalExponent;
202 } 202 }
203 203
204 static double NaN() { 204 static double Infinity() { return Double(kInfinity).value(); }
205 return Double(kNaN).value(); 205
206 } 206 static double NaN() { return Double(kNaN).value(); }
207 207
208 private: 208 private:
209 static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; 209 static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
210 static const int kDenormalExponent = -kExponentBias + 1; 210 static const int kDenormalExponent = -kExponentBias + 1;
211 static const int kMaxExponent = 0x7FF - kExponentBias; 211 static const int kMaxExponent = 0x7FF - kExponentBias;
212 static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); 212 static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
213 static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); 213 static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
214 214
215 const uint64_t d64_; 215 const uint64_t d64_;
216 216
217 static uint64_t DiyFpToUint64(DiyFp diy_fp) { 217 static uint64_t DiyFpToUint64(DiyFp diy_fp) {
218 uint64_t significand = diy_fp.f(); 218 uint64_t significand = diy_fp.f();
219 int exponent = diy_fp.e(); 219 int exponent = diy_fp.e();
220 while (significand > kHiddenBit + kSignificandMask) { 220 while (significand > kHiddenBit + kSignificandMask) {
221 significand >>= 1; 221 significand >>= 1;
222 exponent++; 222 exponent++;
223 } 223 }
224 if (exponent >= kMaxExponent) { 224 if (exponent >= kMaxExponent) {
225 return kInfinity; 225 return kInfinity;
226 } 226 }
227 if (exponent < kDenormalExponent) { 227 if (exponent < kDenormalExponent) {
228 return 0; 228 return 0;
229 } 229 }
230 while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { 230 while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
231 significand <<= 1; 231 significand <<= 1;
232 exponent--; 232 exponent--;
233 } 233 }
234 uint64_t biased_exponent; 234 uint64_t biased_exponent;
235 if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0 ) { 235 if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
236 biased_exponent = 0; 236 biased_exponent = 0;
237 } else { 237 } else {
238 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias ); 238 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
239 } 239 }
240 return (significand & kSignificandMask) | 240 return (significand & kSignificandMask) |
241 (biased_exponent << kPhysicalSignificandSize); 241 (biased_exponent << kPhysicalSignificandSize);
242 } 242 }
243 }; 243 };
244 244
245 } // namespace double_conversion 245 } // namespace double_conversion
246 246
247 } // namespace WTF 247 } // namespace WTF
248 248
249 #endif // DOUBLE_CONVERSION_DOUBLE_H_ 249 #endif // DOUBLE_CONVERSION_DOUBLE_H_
OLDNEW
« no previous file with comments | « third_party/WebKit/Source/wtf/dtoa/diy-fp.h ('k') | third_party/WebKit/Source/wtf/dtoa/double-conversion.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698