| Index: third_party/WebKit/Source/wtf/dtoa/diy-fp.h
|
| diff --git a/third_party/WebKit/Source/wtf/dtoa/diy-fp.h b/third_party/WebKit/Source/wtf/dtoa/diy-fp.h
|
| index f6415428975f387c016d1ccadf6792d054d4ef3a..441b389735c570a7fcf7a936c72b1fbe4d64542b 100644
|
| --- a/third_party/WebKit/Source/wtf/dtoa/diy-fp.h
|
| +++ b/third_party/WebKit/Source/wtf/dtoa/diy-fp.h
|
| @@ -34,89 +34,88 @@ namespace WTF {
|
|
|
| namespace double_conversion {
|
|
|
| - // This "Do It Yourself Floating Point" class implements a floating-point number
|
| - // with a uint64 significand and an int exponent. Normalized DiyFp numbers will
|
| - // have the most significant bit of the significand set.
|
| - // Multiplication and Subtraction do not normalize their results.
|
| - // DiyFp are not designed to contain special doubles (NaN and Infinity).
|
| - class DiyFp {
|
| - public:
|
| - static const int kSignificandSize = 64;
|
| -
|
| - DiyFp() : f_(0), e_(0) {}
|
| - DiyFp(uint64_t f, int e) : f_(f), e_(e) {}
|
| -
|
| - // this = this - other.
|
| - // The exponents of both numbers must be the same and the significand of this
|
| - // must be bigger than the significand of other.
|
| - // The result will not be normalized.
|
| - void Subtract(const DiyFp& other) {
|
| - ASSERT(e_ == other.e_);
|
| - ASSERT(f_ >= other.f_);
|
| - f_ -= other.f_;
|
| - }
|
| -
|
| - // Returns a - b.
|
| - // The exponents of both numbers must be the same and this must be bigger
|
| - // than other. The result will not be normalized.
|
| - static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
|
| - DiyFp result = a;
|
| - result.Subtract(b);
|
| - return result;
|
| - }
|
| -
|
| -
|
| - // this = this * other.
|
| - void Multiply(const DiyFp& other);
|
| -
|
| - // returns a * b;
|
| - static DiyFp Times(const DiyFp& a, const DiyFp& b) {
|
| - DiyFp result = a;
|
| - result.Multiply(b);
|
| - return result;
|
| - }
|
| -
|
| - void Normalize() {
|
| - ASSERT(f_ != 0);
|
| - uint64_t f = f_;
|
| - int e = e_;
|
| -
|
| - // This method is mainly called for normalizing boundaries. In general
|
| - // boundaries need to be shifted by 10 bits. We thus optimize for this case.
|
| - const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000);
|
| - while ((f & k10MSBits) == 0) {
|
| - f <<= 10;
|
| - e -= 10;
|
| - }
|
| - while ((f & kUint64MSB) == 0) {
|
| - f <<= 1;
|
| - e--;
|
| - }
|
| - f_ = f;
|
| - e_ = e;
|
| - }
|
| -
|
| - static DiyFp Normalize(const DiyFp& a) {
|
| - DiyFp result = a;
|
| - result.Normalize();
|
| - return result;
|
| - }
|
| -
|
| - uint64_t f() const { return f_; }
|
| - int e() const { return e_; }
|
| -
|
| - void set_f(uint64_t new_value) { f_ = new_value; }
|
| - void set_e(int new_value) { e_ = new_value; }
|
| -
|
| - private:
|
| - static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000);
|
| -
|
| - uint64_t f_;
|
| - int e_;
|
| - };
|
| +// This "Do It Yourself Floating Point" class implements a floating-point number
|
| +// with a uint64 significand and an int exponent. Normalized DiyFp numbers will
|
| +// have the most significant bit of the significand set.
|
| +// Multiplication and Subtraction do not normalize their results.
|
| +// DiyFp are not designed to contain special doubles (NaN and Infinity).
|
| +class DiyFp {
|
| + public:
|
| + static const int kSignificandSize = 64;
|
| +
|
| + DiyFp() : f_(0), e_(0) {}
|
| + DiyFp(uint64_t f, int e) : f_(f), e_(e) {}
|
| +
|
| + // this = this - other.
|
| + // The exponents of both numbers must be the same and the significand of this
|
| + // must be bigger than the significand of other.
|
| + // The result will not be normalized.
|
| + void Subtract(const DiyFp& other) {
|
| + ASSERT(e_ == other.e_);
|
| + ASSERT(f_ >= other.f_);
|
| + f_ -= other.f_;
|
| + }
|
| +
|
| + // Returns a - b.
|
| + // The exponents of both numbers must be the same and this must be bigger
|
| + // than other. The result will not be normalized.
|
| + static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
|
| + DiyFp result = a;
|
| + result.Subtract(b);
|
| + return result;
|
| + }
|
| +
|
| + // this = this * other.
|
| + void Multiply(const DiyFp& other);
|
| +
|
| + // returns a * b;
|
| + static DiyFp Times(const DiyFp& a, const DiyFp& b) {
|
| + DiyFp result = a;
|
| + result.Multiply(b);
|
| + return result;
|
| + }
|
| +
|
| + void Normalize() {
|
| + ASSERT(f_ != 0);
|
| + uint64_t f = f_;
|
| + int e = e_;
|
| +
|
| + // This method is mainly called for normalizing boundaries. In general
|
| + // boundaries need to be shifted by 10 bits. We thus optimize for this case.
|
| + const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000);
|
| + while ((f & k10MSBits) == 0) {
|
| + f <<= 10;
|
| + e -= 10;
|
| + }
|
| + while ((f & kUint64MSB) == 0) {
|
| + f <<= 1;
|
| + e--;
|
| + }
|
| + f_ = f;
|
| + e_ = e;
|
| + }
|
| +
|
| + static DiyFp Normalize(const DiyFp& a) {
|
| + DiyFp result = a;
|
| + result.Normalize();
|
| + return result;
|
| + }
|
| +
|
| + uint64_t f() const { return f_; }
|
| + int e() const { return e_; }
|
| +
|
| + void set_f(uint64_t new_value) { f_ = new_value; }
|
| + void set_e(int new_value) { e_ = new_value; }
|
| +
|
| + private:
|
| + static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000);
|
| +
|
| + uint64_t f_;
|
| + int e_;
|
| +};
|
|
|
| } // namespace double_conversion
|
|
|
| -} // namespace WTF
|
| +} // namespace WTF
|
|
|
| #endif // DOUBLE_CONVERSION_DIY_FP_H_
|
|
|