| Index: fusl/src/math/tgammal.c
|
| diff --git a/fusl/src/math/tgammal.c b/fusl/src/math/tgammal.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..5336c5b194e86c57797562191ad39cd4af7fafe4
|
| --- /dev/null
|
| +++ b/fusl/src/math/tgammal.c
|
| @@ -0,0 +1,281 @@
|
| +/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
|
| +/*
|
| + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
| + *
|
| + * Permission to use, copy, modify, and distribute this software for any
|
| + * purpose with or without fee is hereby granted, provided that the above
|
| + * copyright notice and this permission notice appear in all copies.
|
| + *
|
| + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
| + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
| + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
| + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
| + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
| + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
| + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
| + */
|
| +/*
|
| + * Gamma function
|
| + *
|
| + *
|
| + * SYNOPSIS:
|
| + *
|
| + * long double x, y, tgammal();
|
| + *
|
| + * y = tgammal( x );
|
| + *
|
| + *
|
| + * DESCRIPTION:
|
| + *
|
| + * Returns gamma function of the argument. The result is
|
| + * correctly signed.
|
| + *
|
| + * Arguments |x| <= 13 are reduced by recurrence and the function
|
| + * approximated by a rational function of degree 7/8 in the
|
| + * interval (2,3). Large arguments are handled by Stirling's
|
| + * formula. Large negative arguments are made positive using
|
| + * a reflection formula.
|
| + *
|
| + *
|
| + * ACCURACY:
|
| + *
|
| + * Relative error:
|
| + * arithmetic domain # trials peak rms
|
| + * IEEE -40,+40 10000 3.6e-19 7.9e-20
|
| + * IEEE -1755,+1755 10000 4.8e-18 6.5e-19
|
| + *
|
| + * Accuracy for large arguments is dominated by error in powl().
|
| + *
|
| + */
|
| +
|
| +#include "libm.h"
|
| +
|
| +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| +long double tgammal(long double x)
|
| +{
|
| + return tgamma(x);
|
| +}
|
| +#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
| +/*
|
| +tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
|
| +0 <= x <= 1
|
| +Relative error
|
| +n=7, d=8
|
| +Peak error = 1.83e-20
|
| +Relative error spread = 8.4e-23
|
| +*/
|
| +static const long double P[8] = {
|
| + 4.212760487471622013093E-5L,
|
| + 4.542931960608009155600E-4L,
|
| + 4.092666828394035500949E-3L,
|
| + 2.385363243461108252554E-2L,
|
| + 1.113062816019361559013E-1L,
|
| + 3.629515436640239168939E-1L,
|
| + 8.378004301573126728826E-1L,
|
| + 1.000000000000000000009E0L,
|
| +};
|
| +static const long double Q[9] = {
|
| +-1.397148517476170440917E-5L,
|
| + 2.346584059160635244282E-4L,
|
| +-1.237799246653152231188E-3L,
|
| +-7.955933682494738320586E-4L,
|
| + 2.773706565840072979165E-2L,
|
| +-4.633887671244534213831E-2L,
|
| +-2.243510905670329164562E-1L,
|
| + 4.150160950588455434583E-1L,
|
| + 9.999999999999999999908E-1L,
|
| +};
|
| +
|
| +/*
|
| +static const long double P[] = {
|
| +-3.01525602666895735709e0L,
|
| +-3.25157411956062339893e1L,
|
| +-2.92929976820724030353e2L,
|
| +-1.70730828800510297666e3L,
|
| +-7.96667499622741999770e3L,
|
| +-2.59780216007146401957e4L,
|
| +-5.99650230220855581642e4L,
|
| +-7.15743521530849602425e4L
|
| +};
|
| +static const long double Q[] = {
|
| + 1.00000000000000000000e0L,
|
| +-1.67955233807178858919e1L,
|
| + 8.85946791747759881659e1L,
|
| + 5.69440799097468430177e1L,
|
| +-1.98526250512761318471e3L,
|
| + 3.31667508019495079814e3L,
|
| + 1.60577839621734713377e4L,
|
| +-2.97045081369399940529e4L,
|
| +-7.15743521530849602412e4L
|
| +};
|
| +*/
|
| +#define MAXGAML 1755.455L
|
| +/*static const long double LOGPI = 1.14472988584940017414L;*/
|
| +
|
| +/* Stirling's formula for the gamma function
|
| +tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
|
| +z(x) = x
|
| +13 <= x <= 1024
|
| +Relative error
|
| +n=8, d=0
|
| +Peak error = 9.44e-21
|
| +Relative error spread = 8.8e-4
|
| +*/
|
| +static const long double STIR[9] = {
|
| + 7.147391378143610789273E-4L,
|
| +-2.363848809501759061727E-5L,
|
| +-5.950237554056330156018E-4L,
|
| + 6.989332260623193171870E-5L,
|
| + 7.840334842744753003862E-4L,
|
| +-2.294719747873185405699E-4L,
|
| +-2.681327161876304418288E-3L,
|
| + 3.472222222230075327854E-3L,
|
| + 8.333333333333331800504E-2L,
|
| +};
|
| +
|
| +#define MAXSTIR 1024.0L
|
| +static const long double SQTPI = 2.50662827463100050242E0L;
|
| +
|
| +/* 1/tgamma(x) = z P(z)
|
| + * z(x) = 1/x
|
| + * 0 < x < 0.03125
|
| + * Peak relative error 4.2e-23
|
| + */
|
| +static const long double S[9] = {
|
| +-1.193945051381510095614E-3L,
|
| + 7.220599478036909672331E-3L,
|
| +-9.622023360406271645744E-3L,
|
| +-4.219773360705915470089E-2L,
|
| + 1.665386113720805206758E-1L,
|
| +-4.200263503403344054473E-2L,
|
| +-6.558780715202540684668E-1L,
|
| + 5.772156649015328608253E-1L,
|
| + 1.000000000000000000000E0L,
|
| +};
|
| +
|
| +/* 1/tgamma(-x) = z P(z)
|
| + * z(x) = 1/x
|
| + * 0 < x < 0.03125
|
| + * Peak relative error 5.16e-23
|
| + * Relative error spread = 2.5e-24
|
| + */
|
| +static const long double SN[9] = {
|
| + 1.133374167243894382010E-3L,
|
| + 7.220837261893170325704E-3L,
|
| + 9.621911155035976733706E-3L,
|
| +-4.219773343731191721664E-2L,
|
| +-1.665386113944413519335E-1L,
|
| +-4.200263503402112910504E-2L,
|
| + 6.558780715202536547116E-1L,
|
| + 5.772156649015328608727E-1L,
|
| +-1.000000000000000000000E0L,
|
| +};
|
| +
|
| +static const long double PIL = 3.1415926535897932384626L;
|
| +
|
| +/* Gamma function computed by Stirling's formula.
|
| + */
|
| +static long double stirf(long double x)
|
| +{
|
| + long double y, w, v;
|
| +
|
| + w = 1.0/x;
|
| + /* For large x, use rational coefficients from the analytical expansion. */
|
| + if (x > 1024.0)
|
| + w = (((((6.97281375836585777429E-5L * w
|
| + + 7.84039221720066627474E-4L) * w
|
| + - 2.29472093621399176955E-4L) * w
|
| + - 2.68132716049382716049E-3L) * w
|
| + + 3.47222222222222222222E-3L) * w
|
| + + 8.33333333333333333333E-2L) * w
|
| + + 1.0;
|
| + else
|
| + w = 1.0 + w * __polevll(w, STIR, 8);
|
| + y = expl(x);
|
| + if (x > MAXSTIR) { /* Avoid overflow in pow() */
|
| + v = powl(x, 0.5L * x - 0.25L);
|
| + y = v * (v / y);
|
| + } else {
|
| + y = powl(x, x - 0.5L) / y;
|
| + }
|
| + y = SQTPI * y * w;
|
| + return y;
|
| +}
|
| +
|
| +long double tgammal(long double x)
|
| +{
|
| + long double p, q, z;
|
| +
|
| + if (!isfinite(x))
|
| + return x + INFINITY;
|
| +
|
| + q = fabsl(x);
|
| + if (q > 13.0) {
|
| + if (x < 0.0) {
|
| + p = floorl(q);
|
| + z = q - p;
|
| + if (z == 0)
|
| + return 0 / z;
|
| + if (q > MAXGAML) {
|
| + z = 0;
|
| + } else {
|
| + if (z > 0.5) {
|
| + p += 1.0;
|
| + z = q - p;
|
| + }
|
| + z = q * sinl(PIL * z);
|
| + z = fabsl(z) * stirf(q);
|
| + z = PIL/z;
|
| + }
|
| + if (0.5 * p == floorl(q * 0.5))
|
| + z = -z;
|
| + } else if (x > MAXGAML) {
|
| + z = x * 0x1p16383L;
|
| + } else {
|
| + z = stirf(x);
|
| + }
|
| + return z;
|
| + }
|
| +
|
| + z = 1.0;
|
| + while (x >= 3.0) {
|
| + x -= 1.0;
|
| + z *= x;
|
| + }
|
| + while (x < -0.03125L) {
|
| + z /= x;
|
| + x += 1.0;
|
| + }
|
| + if (x <= 0.03125L)
|
| + goto small;
|
| + while (x < 2.0) {
|
| + z /= x;
|
| + x += 1.0;
|
| + }
|
| + if (x == 2.0)
|
| + return z;
|
| +
|
| + x -= 2.0;
|
| + p = __polevll(x, P, 7);
|
| + q = __polevll(x, Q, 8);
|
| + z = z * p / q;
|
| + return z;
|
| +
|
| +small:
|
| + /* z==1 if x was originally +-0 */
|
| + if (x == 0 && z != 1)
|
| + return x / x;
|
| + if (x < 0.0) {
|
| + x = -x;
|
| + q = z / (x * __polevll(x, SN, 8));
|
| + } else
|
| + q = z / (x * __polevll(x, S, 8));
|
| + return q;
|
| +}
|
| +#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| +// TODO: broken implementation to make things compile
|
| +long double tgammal(long double x)
|
| +{
|
| + return tgamma(x);
|
| +}
|
| +#endif
|
|
|