OLD | NEW |
(Empty) | |
| 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */ |
| 2 /* |
| 3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 * |
| 5 * Permission to use, copy, modify, and distribute this software for any |
| 6 * purpose with or without fee is hereby granted, provided that the above |
| 7 * copyright notice and this permission notice appear in all copies. |
| 8 * |
| 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 */ |
| 17 /* |
| 18 * Gamma function |
| 19 * |
| 20 * |
| 21 * SYNOPSIS: |
| 22 * |
| 23 * long double x, y, tgammal(); |
| 24 * |
| 25 * y = tgammal( x ); |
| 26 * |
| 27 * |
| 28 * DESCRIPTION: |
| 29 * |
| 30 * Returns gamma function of the argument. The result is |
| 31 * correctly signed. |
| 32 * |
| 33 * Arguments |x| <= 13 are reduced by recurrence and the function |
| 34 * approximated by a rational function of degree 7/8 in the |
| 35 * interval (2,3). Large arguments are handled by Stirling's |
| 36 * formula. Large negative arguments are made positive using |
| 37 * a reflection formula. |
| 38 * |
| 39 * |
| 40 * ACCURACY: |
| 41 * |
| 42 * Relative error: |
| 43 * arithmetic domain # trials peak rms |
| 44 * IEEE -40,+40 10000 3.6e-19 7.9e-20 |
| 45 * IEEE -1755,+1755 10000 4.8e-18 6.5e-19 |
| 46 * |
| 47 * Accuracy for large arguments is dominated by error in powl(). |
| 48 * |
| 49 */ |
| 50 |
| 51 #include "libm.h" |
| 52 |
| 53 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 54 long double tgammal(long double x) |
| 55 { |
| 56 return tgamma(x); |
| 57 } |
| 58 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 59 /* |
| 60 tgamma(x+2) = tgamma(x+2) P(x)/Q(x) |
| 61 0 <= x <= 1 |
| 62 Relative error |
| 63 n=7, d=8 |
| 64 Peak error = 1.83e-20 |
| 65 Relative error spread = 8.4e-23 |
| 66 */ |
| 67 static const long double P[8] = { |
| 68 4.212760487471622013093E-5L, |
| 69 4.542931960608009155600E-4L, |
| 70 4.092666828394035500949E-3L, |
| 71 2.385363243461108252554E-2L, |
| 72 1.113062816019361559013E-1L, |
| 73 3.629515436640239168939E-1L, |
| 74 8.378004301573126728826E-1L, |
| 75 1.000000000000000000009E0L, |
| 76 }; |
| 77 static const long double Q[9] = { |
| 78 -1.397148517476170440917E-5L, |
| 79 2.346584059160635244282E-4L, |
| 80 -1.237799246653152231188E-3L, |
| 81 -7.955933682494738320586E-4L, |
| 82 2.773706565840072979165E-2L, |
| 83 -4.633887671244534213831E-2L, |
| 84 -2.243510905670329164562E-1L, |
| 85 4.150160950588455434583E-1L, |
| 86 9.999999999999999999908E-1L, |
| 87 }; |
| 88 |
| 89 /* |
| 90 static const long double P[] = { |
| 91 -3.01525602666895735709e0L, |
| 92 -3.25157411956062339893e1L, |
| 93 -2.92929976820724030353e2L, |
| 94 -1.70730828800510297666e3L, |
| 95 -7.96667499622741999770e3L, |
| 96 -2.59780216007146401957e4L, |
| 97 -5.99650230220855581642e4L, |
| 98 -7.15743521530849602425e4L |
| 99 }; |
| 100 static const long double Q[] = { |
| 101 1.00000000000000000000e0L, |
| 102 -1.67955233807178858919e1L, |
| 103 8.85946791747759881659e1L, |
| 104 5.69440799097468430177e1L, |
| 105 -1.98526250512761318471e3L, |
| 106 3.31667508019495079814e3L, |
| 107 1.60577839621734713377e4L, |
| 108 -2.97045081369399940529e4L, |
| 109 -7.15743521530849602412e4L |
| 110 }; |
| 111 */ |
| 112 #define MAXGAML 1755.455L |
| 113 /*static const long double LOGPI = 1.14472988584940017414L;*/ |
| 114 |
| 115 /* Stirling's formula for the gamma function |
| 116 tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x)) |
| 117 z(x) = x |
| 118 13 <= x <= 1024 |
| 119 Relative error |
| 120 n=8, d=0 |
| 121 Peak error = 9.44e-21 |
| 122 Relative error spread = 8.8e-4 |
| 123 */ |
| 124 static const long double STIR[9] = { |
| 125 7.147391378143610789273E-4L, |
| 126 -2.363848809501759061727E-5L, |
| 127 -5.950237554056330156018E-4L, |
| 128 6.989332260623193171870E-5L, |
| 129 7.840334842744753003862E-4L, |
| 130 -2.294719747873185405699E-4L, |
| 131 -2.681327161876304418288E-3L, |
| 132 3.472222222230075327854E-3L, |
| 133 8.333333333333331800504E-2L, |
| 134 }; |
| 135 |
| 136 #define MAXSTIR 1024.0L |
| 137 static const long double SQTPI = 2.50662827463100050242E0L; |
| 138 |
| 139 /* 1/tgamma(x) = z P(z) |
| 140 * z(x) = 1/x |
| 141 * 0 < x < 0.03125 |
| 142 * Peak relative error 4.2e-23 |
| 143 */ |
| 144 static const long double S[9] = { |
| 145 -1.193945051381510095614E-3L, |
| 146 7.220599478036909672331E-3L, |
| 147 -9.622023360406271645744E-3L, |
| 148 -4.219773360705915470089E-2L, |
| 149 1.665386113720805206758E-1L, |
| 150 -4.200263503403344054473E-2L, |
| 151 -6.558780715202540684668E-1L, |
| 152 5.772156649015328608253E-1L, |
| 153 1.000000000000000000000E0L, |
| 154 }; |
| 155 |
| 156 /* 1/tgamma(-x) = z P(z) |
| 157 * z(x) = 1/x |
| 158 * 0 < x < 0.03125 |
| 159 * Peak relative error 5.16e-23 |
| 160 * Relative error spread = 2.5e-24 |
| 161 */ |
| 162 static const long double SN[9] = { |
| 163 1.133374167243894382010E-3L, |
| 164 7.220837261893170325704E-3L, |
| 165 9.621911155035976733706E-3L, |
| 166 -4.219773343731191721664E-2L, |
| 167 -1.665386113944413519335E-1L, |
| 168 -4.200263503402112910504E-2L, |
| 169 6.558780715202536547116E-1L, |
| 170 5.772156649015328608727E-1L, |
| 171 -1.000000000000000000000E0L, |
| 172 }; |
| 173 |
| 174 static const long double PIL = 3.1415926535897932384626L; |
| 175 |
| 176 /* Gamma function computed by Stirling's formula. |
| 177 */ |
| 178 static long double stirf(long double x) |
| 179 { |
| 180 long double y, w, v; |
| 181 |
| 182 w = 1.0/x; |
| 183 /* For large x, use rational coefficients from the analytical expansion.
*/ |
| 184 if (x > 1024.0) |
| 185 w = (((((6.97281375836585777429E-5L * w |
| 186 + 7.84039221720066627474E-4L) * w |
| 187 - 2.29472093621399176955E-4L) * w |
| 188 - 2.68132716049382716049E-3L) * w |
| 189 + 3.47222222222222222222E-3L) * w |
| 190 + 8.33333333333333333333E-2L) * w |
| 191 + 1.0; |
| 192 else |
| 193 w = 1.0 + w * __polevll(w, STIR, 8); |
| 194 y = expl(x); |
| 195 if (x > MAXSTIR) { /* Avoid overflow in pow() */ |
| 196 v = powl(x, 0.5L * x - 0.25L); |
| 197 y = v * (v / y); |
| 198 } else { |
| 199 y = powl(x, x - 0.5L) / y; |
| 200 } |
| 201 y = SQTPI * y * w; |
| 202 return y; |
| 203 } |
| 204 |
| 205 long double tgammal(long double x) |
| 206 { |
| 207 long double p, q, z; |
| 208 |
| 209 if (!isfinite(x)) |
| 210 return x + INFINITY; |
| 211 |
| 212 q = fabsl(x); |
| 213 if (q > 13.0) { |
| 214 if (x < 0.0) { |
| 215 p = floorl(q); |
| 216 z = q - p; |
| 217 if (z == 0) |
| 218 return 0 / z; |
| 219 if (q > MAXGAML) { |
| 220 z = 0; |
| 221 } else { |
| 222 if (z > 0.5) { |
| 223 p += 1.0; |
| 224 z = q - p; |
| 225 } |
| 226 z = q * sinl(PIL * z); |
| 227 z = fabsl(z) * stirf(q); |
| 228 z = PIL/z; |
| 229 } |
| 230 if (0.5 * p == floorl(q * 0.5)) |
| 231 z = -z; |
| 232 } else if (x > MAXGAML) { |
| 233 z = x * 0x1p16383L; |
| 234 } else { |
| 235 z = stirf(x); |
| 236 } |
| 237 return z; |
| 238 } |
| 239 |
| 240 z = 1.0; |
| 241 while (x >= 3.0) { |
| 242 x -= 1.0; |
| 243 z *= x; |
| 244 } |
| 245 while (x < -0.03125L) { |
| 246 z /= x; |
| 247 x += 1.0; |
| 248 } |
| 249 if (x <= 0.03125L) |
| 250 goto small; |
| 251 while (x < 2.0) { |
| 252 z /= x; |
| 253 x += 1.0; |
| 254 } |
| 255 if (x == 2.0) |
| 256 return z; |
| 257 |
| 258 x -= 2.0; |
| 259 p = __polevll(x, P, 7); |
| 260 q = __polevll(x, Q, 8); |
| 261 z = z * p / q; |
| 262 return z; |
| 263 |
| 264 small: |
| 265 /* z==1 if x was originally +-0 */ |
| 266 if (x == 0 && z != 1) |
| 267 return x / x; |
| 268 if (x < 0.0) { |
| 269 x = -x; |
| 270 q = z / (x * __polevll(x, SN, 8)); |
| 271 } else |
| 272 q = z / (x * __polevll(x, S, 8)); |
| 273 return q; |
| 274 } |
| 275 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| 276 // TODO: broken implementation to make things compile |
| 277 long double tgammal(long double x) |
| 278 { |
| 279 return tgamma(x); |
| 280 } |
| 281 #endif |
OLD | NEW |