Index: fusl/src/math/cbrtl.c |
diff --git a/fusl/src/math/cbrtl.c b/fusl/src/math/cbrtl.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ceff9136ebb507a604688ce07f3e6eae0fcd888c |
--- /dev/null |
+++ b/fusl/src/math/cbrtl.c |
@@ -0,0 +1,124 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtl.c */ |
+/*- |
+ * ==================================================== |
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+ * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz. |
+ * |
+ * Developed at SunPro, a Sun Microsystems, Inc. business. |
+ * Permission to use, copy, modify, and distribute this |
+ * software is freely granted, provided that this notice |
+ * is preserved. |
+ * ==================================================== |
+ * |
+ * The argument reduction and testing for exceptional cases was |
+ * written by Steven G. Kargl with input from Bruce D. Evans |
+ * and David A. Schultz. |
+ */ |
+ |
+#include "libm.h" |
+ |
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
+long double cbrtl(long double x) |
+{ |
+ return cbrt(x); |
+} |
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 |
+static const unsigned B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ |
+ |
+long double cbrtl(long double x) |
+{ |
+ union ldshape u = {x}, v; |
+ union {float f; uint32_t i;} uft; |
+ long double r, s, t, w; |
+ double_t dr, dt, dx; |
+ float_t ft; |
+ int e = u.i.se & 0x7fff; |
+ int sign = u.i.se & 0x8000; |
+ |
+ /* |
+ * If x = +-Inf, then cbrt(x) = +-Inf. |
+ * If x = NaN, then cbrt(x) = NaN. |
+ */ |
+ if (e == 0x7fff) |
+ return x + x; |
+ if (e == 0) { |
+ /* Adjust subnormal numbers. */ |
+ u.f *= 0x1p120; |
+ e = u.i.se & 0x7fff; |
+ /* If x = +-0, then cbrt(x) = +-0. */ |
+ if (e == 0) |
+ return x; |
+ e -= 120; |
+ } |
+ e -= 0x3fff; |
+ u.i.se = 0x3fff; |
+ x = u.f; |
+ switch (e % 3) { |
+ case 1: |
+ case -2: |
+ x *= 2; |
+ e--; |
+ break; |
+ case 2: |
+ case -1: |
+ x *= 4; |
+ e -= 2; |
+ break; |
+ } |
+ v.f = 1.0; |
+ v.i.se = sign | (0x3fff + e/3); |
+ |
+ /* |
+ * The following is the guts of s_cbrtf, with the handling of |
+ * special values removed and extra care for accuracy not taken, |
+ * but with most of the extra accuracy not discarded. |
+ */ |
+ |
+ /* ~5-bit estimate: */ |
+ uft.f = x; |
+ uft.i = (uft.i & 0x7fffffff)/3 + B1; |
+ ft = uft.f; |
+ |
+ /* ~16-bit estimate: */ |
+ dx = x; |
+ dt = ft; |
+ dr = dt * dt * dt; |
+ dt = dt * (dx + dx + dr) / (dx + dr + dr); |
+ |
+ /* ~47-bit estimate: */ |
+ dr = dt * dt * dt; |
+ dt = dt * (dx + dx + dr) / (dx + dr + dr); |
+ |
+#if LDBL_MANT_DIG == 64 |
+ /* |
+ * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8). |
+ * Round it away from zero to 32 bits (32 so that t*t is exact, and |
+ * away from zero for technical reasons). |
+ */ |
+ t = dt + (0x1.0p32L + 0x1.0p-31L) - 0x1.0p32; |
+#elif LDBL_MANT_DIG == 113 |
+ /* |
+ * Round dt away from zero to 47 bits. Since we don't trust the 47, |
+ * add 2 47-bit ulps instead of 1 to round up. Rounding is slow and |
+ * might be avoidable in this case, since on most machines dt will |
+ * have been evaluated in 53-bit precision and the technical reasons |
+ * for rounding up might not apply to either case in cbrtl() since |
+ * dt is much more accurate than needed. |
+ */ |
+ t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60; |
+#endif |
+ |
+ /* |
+ * Final step Newton iteration to 64 or 113 bits with |
+ * error < 0.667 ulps |
+ */ |
+ s = t*t; /* t*t is exact */ |
+ r = x/s; /* error <= 0.5 ulps; |r| < |t| */ |
+ w = t+t; /* t+t is exact */ |
+ r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ |
+ t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */ |
+ |
+ t *= v.f; |
+ return t; |
+} |
+#endif |