OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtl.c */ |
| 2 /*- |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz. |
| 6 * |
| 7 * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 8 * Permission to use, copy, modify, and distribute this |
| 9 * software is freely granted, provided that this notice |
| 10 * is preserved. |
| 11 * ==================================================== |
| 12 * |
| 13 * The argument reduction and testing for exceptional cases was |
| 14 * written by Steven G. Kargl with input from Bruce D. Evans |
| 15 * and David A. Schultz. |
| 16 */ |
| 17 |
| 18 #include "libm.h" |
| 19 |
| 20 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 21 long double cbrtl(long double x) |
| 22 { |
| 23 return cbrt(x); |
| 24 } |
| 25 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 |
| 26 static const unsigned B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23
*/ |
| 27 |
| 28 long double cbrtl(long double x) |
| 29 { |
| 30 union ldshape u = {x}, v; |
| 31 union {float f; uint32_t i;} uft; |
| 32 long double r, s, t, w; |
| 33 double_t dr, dt, dx; |
| 34 float_t ft; |
| 35 int e = u.i.se & 0x7fff; |
| 36 int sign = u.i.se & 0x8000; |
| 37 |
| 38 /* |
| 39 * If x = +-Inf, then cbrt(x) = +-Inf. |
| 40 * If x = NaN, then cbrt(x) = NaN. |
| 41 */ |
| 42 if (e == 0x7fff) |
| 43 return x + x; |
| 44 if (e == 0) { |
| 45 /* Adjust subnormal numbers. */ |
| 46 u.f *= 0x1p120; |
| 47 e = u.i.se & 0x7fff; |
| 48 /* If x = +-0, then cbrt(x) = +-0. */ |
| 49 if (e == 0) |
| 50 return x; |
| 51 e -= 120; |
| 52 } |
| 53 e -= 0x3fff; |
| 54 u.i.se = 0x3fff; |
| 55 x = u.f; |
| 56 switch (e % 3) { |
| 57 case 1: |
| 58 case -2: |
| 59 x *= 2; |
| 60 e--; |
| 61 break; |
| 62 case 2: |
| 63 case -1: |
| 64 x *= 4; |
| 65 e -= 2; |
| 66 break; |
| 67 } |
| 68 v.f = 1.0; |
| 69 v.i.se = sign | (0x3fff + e/3); |
| 70 |
| 71 /* |
| 72 * The following is the guts of s_cbrtf, with the handling of |
| 73 * special values removed and extra care for accuracy not taken, |
| 74 * but with most of the extra accuracy not discarded. |
| 75 */ |
| 76 |
| 77 /* ~5-bit estimate: */ |
| 78 uft.f = x; |
| 79 uft.i = (uft.i & 0x7fffffff)/3 + B1; |
| 80 ft = uft.f; |
| 81 |
| 82 /* ~16-bit estimate: */ |
| 83 dx = x; |
| 84 dt = ft; |
| 85 dr = dt * dt * dt; |
| 86 dt = dt * (dx + dx + dr) / (dx + dr + dr); |
| 87 |
| 88 /* ~47-bit estimate: */ |
| 89 dr = dt * dt * dt; |
| 90 dt = dt * (dx + dx + dr) / (dx + dr + dr); |
| 91 |
| 92 #if LDBL_MANT_DIG == 64 |
| 93 /* |
| 94 * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8). |
| 95 * Round it away from zero to 32 bits (32 so that t*t is exact, and |
| 96 * away from zero for technical reasons). |
| 97 */ |
| 98 t = dt + (0x1.0p32L + 0x1.0p-31L) - 0x1.0p32; |
| 99 #elif LDBL_MANT_DIG == 113 |
| 100 /* |
| 101 * Round dt away from zero to 47 bits. Since we don't trust the 47, |
| 102 * add 2 47-bit ulps instead of 1 to round up. Rounding is slow and |
| 103 * might be avoidable in this case, since on most machines dt will |
| 104 * have been evaluated in 53-bit precision and the technical reasons |
| 105 * for rounding up might not apply to either case in cbrtl() since |
| 106 * dt is much more accurate than needed. |
| 107 */ |
| 108 t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60; |
| 109 #endif |
| 110 |
| 111 /* |
| 112 * Final step Newton iteration to 64 or 113 bits with |
| 113 * error < 0.667 ulps |
| 114 */ |
| 115 s = t*t; /* t*t is exact */ |
| 116 r = x/s; /* error <= 0.5 ulps; |r| < |t| */ |
| 117 w = t+t; /* t+t is exact */ |
| 118 r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ |
| 119 t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */ |
| 120 |
| 121 t *= v.f; |
| 122 return t; |
| 123 } |
| 124 #endif |
OLD | NEW |