Index: fusl/src/math/log.c |
diff --git a/fusl/src/math/log.c b/fusl/src/math/log.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e61e113d41af91f86d4482a979c84966be66fe33 |
--- /dev/null |
+++ b/fusl/src/math/log.c |
@@ -0,0 +1,118 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */ |
+/* |
+ * ==================================================== |
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+ * |
+ * Developed at SunSoft, a Sun Microsystems, Inc. business. |
+ * Permission to use, copy, modify, and distribute this |
+ * software is freely granted, provided that this notice |
+ * is preserved. |
+ * ==================================================== |
+ */ |
+/* log(x) |
+ * Return the logarithm of x |
+ * |
+ * Method : |
+ * 1. Argument Reduction: find k and f such that |
+ * x = 2^k * (1+f), |
+ * where sqrt(2)/2 < 1+f < sqrt(2) . |
+ * |
+ * 2. Approximation of log(1+f). |
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
+ * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
+ * = 2s + s*R |
+ * We use a special Remez algorithm on [0,0.1716] to generate |
+ * a polynomial of degree 14 to approximate R The maximum error |
+ * of this polynomial approximation is bounded by 2**-58.45. In |
+ * other words, |
+ * 2 4 6 8 10 12 14 |
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
+ * (the values of Lg1 to Lg7 are listed in the program) |
+ * and |
+ * | 2 14 | -58.45 |
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
+ * | | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
+ * In order to guarantee error in log below 1ulp, we compute log |
+ * by |
+ * log(1+f) = f - s*(f - R) (if f is not too large) |
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
+ * |
+ * 3. Finally, log(x) = k*ln2 + log(1+f). |
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
+ * Here ln2 is split into two floating point number: |
+ * ln2_hi + ln2_lo, |
+ * where n*ln2_hi is always exact for |n| < 2000. |
+ * |
+ * Special cases: |
+ * log(x) is NaN with signal if x < 0 (including -INF) ; |
+ * log(+INF) is +INF; log(0) is -INF with signal; |
+ * log(NaN) is that NaN with no signal. |
+ * |
+ * Accuracy: |
+ * according to an error analysis, the error is always less than |
+ * 1 ulp (unit in the last place). |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ */ |
+ |
+#include <math.h> |
+#include <stdint.h> |
+ |
+static const double |
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
+ |
+double log(double x) |
+{ |
+ union {double f; uint64_t i;} u = {x}; |
+ double_t hfsq,f,s,z,R,w,t1,t2,dk; |
+ uint32_t hx; |
+ int k; |
+ |
+ hx = u.i>>32; |
+ k = 0; |
+ if (hx < 0x00100000 || hx>>31) { |
+ if (u.i<<1 == 0) |
+ return -1/(x*x); /* log(+-0)=-inf */ |
+ if (hx>>31) |
+ return (x-x)/0.0; /* log(-#) = NaN */ |
+ /* subnormal number, scale x up */ |
+ k -= 54; |
+ x *= 0x1p54; |
+ u.f = x; |
+ hx = u.i>>32; |
+ } else if (hx >= 0x7ff00000) { |
+ return x; |
+ } else if (hx == 0x3ff00000 && u.i<<32 == 0) |
+ return 0; |
+ |
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */ |
+ hx += 0x3ff00000 - 0x3fe6a09e; |
+ k += (int)(hx>>20) - 0x3ff; |
+ hx = (hx&0x000fffff) + 0x3fe6a09e; |
+ u.i = (uint64_t)hx<<32 | (u.i&0xffffffff); |
+ x = u.f; |
+ |
+ f = x - 1.0; |
+ hfsq = 0.5*f*f; |
+ s = f/(2.0+f); |
+ z = s*s; |
+ w = z*z; |
+ t1 = w*(Lg2+w*(Lg4+w*Lg6)); |
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
+ R = t2 + t1; |
+ dk = k; |
+ return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi; |
+} |