OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 * Permission to use, copy, modify, and distribute this |
| 8 * software is freely granted, provided that this notice |
| 9 * is preserved. |
| 10 * ==================================================== |
| 11 */ |
| 12 /* log(x) |
| 13 * Return the logarithm of x |
| 14 * |
| 15 * Method : |
| 16 * 1. Argument Reduction: find k and f such that |
| 17 * x = 2^k * (1+f), |
| 18 * where sqrt(2)/2 < 1+f < sqrt(2) . |
| 19 * |
| 20 * 2. Approximation of log(1+f). |
| 21 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| 22 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| 23 * = 2s + s*R |
| 24 * We use a special Remez algorithm on [0,0.1716] to generate |
| 25 * a polynomial of degree 14 to approximate R The maximum error |
| 26 * of this polynomial approximation is bounded by 2**-58.45. In |
| 27 * other words, |
| 28 * 2 4 6 8 10 12 14 |
| 29 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
| 30 * (the values of Lg1 to Lg7 are listed in the program) |
| 31 * and |
| 32 * | 2 14 | -58.45 |
| 33 * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
| 34 * | | |
| 35 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| 36 * In order to guarantee error in log below 1ulp, we compute log |
| 37 * by |
| 38 * log(1+f) = f - s*(f - R) (if f is not too large) |
| 39 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
| 40 * |
| 41 * 3. Finally, log(x) = k*ln2 + log(1+f). |
| 42 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
| 43 * Here ln2 is split into two floating point number: |
| 44 * ln2_hi + ln2_lo, |
| 45 * where n*ln2_hi is always exact for |n| < 2000. |
| 46 * |
| 47 * Special cases: |
| 48 * log(x) is NaN with signal if x < 0 (including -INF) ; |
| 49 * log(+INF) is +INF; log(0) is -INF with signal; |
| 50 * log(NaN) is that NaN with no signal. |
| 51 * |
| 52 * Accuracy: |
| 53 * according to an error analysis, the error is always less than |
| 54 * 1 ulp (unit in the last place). |
| 55 * |
| 56 * Constants: |
| 57 * The hexadecimal values are the intended ones for the following |
| 58 * constants. The decimal values may be used, provided that the |
| 59 * compiler will convert from decimal to binary accurately enough |
| 60 * to produce the hexadecimal values shown. |
| 61 */ |
| 62 |
| 63 #include <math.h> |
| 64 #include <stdint.h> |
| 65 |
| 66 static const double |
| 67 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| 68 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| 69 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| 70 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| 71 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| 72 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| 73 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| 74 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| 75 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| 76 |
| 77 double log(double x) |
| 78 { |
| 79 union {double f; uint64_t i;} u = {x}; |
| 80 double_t hfsq,f,s,z,R,w,t1,t2,dk; |
| 81 uint32_t hx; |
| 82 int k; |
| 83 |
| 84 hx = u.i>>32; |
| 85 k = 0; |
| 86 if (hx < 0x00100000 || hx>>31) { |
| 87 if (u.i<<1 == 0) |
| 88 return -1/(x*x); /* log(+-0)=-inf */ |
| 89 if (hx>>31) |
| 90 return (x-x)/0.0; /* log(-#) = NaN */ |
| 91 /* subnormal number, scale x up */ |
| 92 k -= 54; |
| 93 x *= 0x1p54; |
| 94 u.f = x; |
| 95 hx = u.i>>32; |
| 96 } else if (hx >= 0x7ff00000) { |
| 97 return x; |
| 98 } else if (hx == 0x3ff00000 && u.i<<32 == 0) |
| 99 return 0; |
| 100 |
| 101 /* reduce x into [sqrt(2)/2, sqrt(2)] */ |
| 102 hx += 0x3ff00000 - 0x3fe6a09e; |
| 103 k += (int)(hx>>20) - 0x3ff; |
| 104 hx = (hx&0x000fffff) + 0x3fe6a09e; |
| 105 u.i = (uint64_t)hx<<32 | (u.i&0xffffffff); |
| 106 x = u.f; |
| 107 |
| 108 f = x - 1.0; |
| 109 hfsq = 0.5*f*f; |
| 110 s = f/(2.0+f); |
| 111 z = s*s; |
| 112 w = z*z; |
| 113 t1 = w*(Lg2+w*(Lg4+w*Lg6)); |
| 114 t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
| 115 R = t2 + t1; |
| 116 dk = k; |
| 117 return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi; |
| 118 } |
OLD | NEW |