| Index: fusl/src/math/log.c
|
| diff --git a/fusl/src/math/log.c b/fusl/src/math/log.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e61e113d41af91f86d4482a979c84966be66fe33
|
| --- /dev/null
|
| +++ b/fusl/src/math/log.c
|
| @@ -0,0 +1,118 @@
|
| +/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
|
| +/*
|
| + * ====================================================
|
| + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
| + *
|
| + * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
| + * Permission to use, copy, modify, and distribute this
|
| + * software is freely granted, provided that this notice
|
| + * is preserved.
|
| + * ====================================================
|
| + */
|
| +/* log(x)
|
| + * Return the logarithm of x
|
| + *
|
| + * Method :
|
| + * 1. Argument Reduction: find k and f such that
|
| + * x = 2^k * (1+f),
|
| + * where sqrt(2)/2 < 1+f < sqrt(2) .
|
| + *
|
| + * 2. Approximation of log(1+f).
|
| + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
| + * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
| + * = 2s + s*R
|
| + * We use a special Remez algorithm on [0,0.1716] to generate
|
| + * a polynomial of degree 14 to approximate R The maximum error
|
| + * of this polynomial approximation is bounded by 2**-58.45. In
|
| + * other words,
|
| + * 2 4 6 8 10 12 14
|
| + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
| + * (the values of Lg1 to Lg7 are listed in the program)
|
| + * and
|
| + * | 2 14 | -58.45
|
| + * | Lg1*s +...+Lg7*s - R(z) | <= 2
|
| + * | |
|
| + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
| + * In order to guarantee error in log below 1ulp, we compute log
|
| + * by
|
| + * log(1+f) = f - s*(f - R) (if f is not too large)
|
| + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
| + *
|
| + * 3. Finally, log(x) = k*ln2 + log(1+f).
|
| + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
| + * Here ln2 is split into two floating point number:
|
| + * ln2_hi + ln2_lo,
|
| + * where n*ln2_hi is always exact for |n| < 2000.
|
| + *
|
| + * Special cases:
|
| + * log(x) is NaN with signal if x < 0 (including -INF) ;
|
| + * log(+INF) is +INF; log(0) is -INF with signal;
|
| + * log(NaN) is that NaN with no signal.
|
| + *
|
| + * Accuracy:
|
| + * according to an error analysis, the error is always less than
|
| + * 1 ulp (unit in the last place).
|
| + *
|
| + * Constants:
|
| + * The hexadecimal values are the intended ones for the following
|
| + * constants. The decimal values may be used, provided that the
|
| + * compiler will convert from decimal to binary accurately enough
|
| + * to produce the hexadecimal values shown.
|
| + */
|
| +
|
| +#include <math.h>
|
| +#include <stdint.h>
|
| +
|
| +static const double
|
| +ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
| +ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
| +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
| +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
| +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
| +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
| +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
| +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
| +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
| +
|
| +double log(double x)
|
| +{
|
| + union {double f; uint64_t i;} u = {x};
|
| + double_t hfsq,f,s,z,R,w,t1,t2,dk;
|
| + uint32_t hx;
|
| + int k;
|
| +
|
| + hx = u.i>>32;
|
| + k = 0;
|
| + if (hx < 0x00100000 || hx>>31) {
|
| + if (u.i<<1 == 0)
|
| + return -1/(x*x); /* log(+-0)=-inf */
|
| + if (hx>>31)
|
| + return (x-x)/0.0; /* log(-#) = NaN */
|
| + /* subnormal number, scale x up */
|
| + k -= 54;
|
| + x *= 0x1p54;
|
| + u.f = x;
|
| + hx = u.i>>32;
|
| + } else if (hx >= 0x7ff00000) {
|
| + return x;
|
| + } else if (hx == 0x3ff00000 && u.i<<32 == 0)
|
| + return 0;
|
| +
|
| + /* reduce x into [sqrt(2)/2, sqrt(2)] */
|
| + hx += 0x3ff00000 - 0x3fe6a09e;
|
| + k += (int)(hx>>20) - 0x3ff;
|
| + hx = (hx&0x000fffff) + 0x3fe6a09e;
|
| + u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
|
| + x = u.f;
|
| +
|
| + f = x - 1.0;
|
| + hfsq = 0.5*f*f;
|
| + s = f/(2.0+f);
|
| + z = s*s;
|
| + w = z*z;
|
| + t1 = w*(Lg2+w*(Lg4+w*Lg6));
|
| + t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
| + R = t2 + t1;
|
| + dk = k;
|
| + return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
|
| +}
|
|
|