Index: src/gpu/GrTessellator.cpp |
diff --git a/src/gpu/batches/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellator.cpp |
similarity index 73% |
copy from src/gpu/batches/GrTessellatingPathRenderer.cpp |
copy to src/gpu/GrTessellator.cpp |
index 27e287e9c6bceb6b48c7e500ef338fcc7b259775..df8b5eeed2442e95c76569ab9ec6d51c974ee58a 100644 |
--- a/src/gpu/batches/GrTessellatingPathRenderer.cpp |
+++ b/src/gpu/GrTessellator.cpp |
@@ -5,7 +5,7 @@ |
* found in the LICENSE file. |
*/ |
-#include "GrTessellatingPathRenderer.h" |
+#include "GrTessellator.h" |
#include "GrBatchFlushState.h" |
#include "GrBatchTest.h" |
@@ -14,7 +14,6 @@ |
#include "GrVertices.h" |
#include "GrResourceCache.h" |
#include "GrResourceProvider.h" |
-#include "SkChunkAlloc.h" |
#include "SkGeometry.h" |
#include "batches/GrVertexBatch.h" |
@@ -22,10 +21,6 @@ |
#include <stdio.h> |
/* |
- * This path renderer tessellates the path into triangles, uploads the triangles to a |
- * vertex buffer, and renders them with a single draw call. It does not currently do |
- * antialiasing, so it must be used in conjunction with multisampling. |
- * |
* There are six stages to the algorithm: |
* |
* 1) Linearize the path contours into piecewise linear segments (path_to_contours()). |
@@ -80,8 +75,8 @@ |
* increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 |
* degrees counterclockwise, rather that transposing. |
*/ |
+ |
#define LOGGING_ENABLED 0 |
-#define WIREFRAME 0 |
#if LOGGING_ENABLED |
#define LOG printf |
@@ -91,10 +86,140 @@ |
#define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args |
-namespace { |
+namespace GrTessellator { |
Stephen White
2016/01/05 16:36:22
Now that they're no longer public, can these thing
|
+struct Poly; |
+struct EdgeList; |
struct Vertex; |
-struct Edge; |
+ |
+struct Edge { |
+ Edge(Vertex* top, Vertex* bottom, int winding) |
+ : fTop(top) |
+ , fBottom(bottom) |
+ , fWinding(winding) |
+ , fLeft(nullptr) |
+ , fRight(nullptr) |
+ , fPrevEdgeAbove(nullptr) |
+ , fNextEdgeAbove(nullptr) |
+ , fPrevEdgeBelow(nullptr) |
+ , fNextEdgeBelow(nullptr) |
+ , fLeftPoly(nullptr) |
+ , fRightPoly(nullptr) { |
+ recompute(); |
+ } |
+ Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt). |
+ Vertex* fBottom; // The bottom vertex in vertex-sort-order. |
+ int fWinding; // 1 == edge goes downward; -1 = edge goes upward. |
+ Edge* fLeft; // The linked list of edges in the active edge list. |
+ Edge* fRight; // " |
+ Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above". |
+ Edge* fNextEdgeAbove; // " |
+ Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". |
+ Edge* fNextEdgeBelow; // " |
+ Poly* fLeftPoly; // The Poly to the left of this edge, if any. |
+ Poly* fRightPoly; // The Poly to the right of this edge, if any. |
+ double fDX; // The line equation for this edge, in implicit form. |
+ double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line. |
+ double fC; |
+ double dist(const SkPoint& p) const; |
+ bool isRightOf(Vertex* v) const; |
+ bool isLeftOf(Vertex* v) const; |
+ void recompute(); |
+ bool intersect(const Edge& other, SkPoint* p); |
+ bool isActive(EdgeList* activeEdges) const; |
+}; |
+ |
+struct EdgeList { |
+ EdgeList() : fHead(nullptr), fTail(nullptr) {} |
+ Edge* fHead; |
+ Edge* fTail; |
+}; |
+ |
+/** |
+ * Vertices are used in three ways: first, the path contours are converted into a circularly-linked |
+ * list of vertices for each contour. After edge construction, the same vertices are re-ordered by |
+ * the merge sort according to the sweep_lt comparator (usually, increasing in Y) using the same |
+ * fPrev/fNext pointers that were used for the contours, to avoid reallocation. Finally, |
+ * MonotonePolys are built containing a circularly-linked list of vertices. Currently, those |
+ * Vertices are newly-allocated for the MonotonePolys, since an individual vertex from the path mesh |
+ * may belong to multiple MonotonePolys, so the original vertices cannot be re-used. |
+ */ |
+struct Vertex { |
+ Vertex(const SkPoint& point) |
+ : fPoint(point), fPrev(nullptr), fNext(nullptr) |
+ , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr) |
+ , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr) |
+ , fProcessed(false) |
+#if LOGGING_ENABLED |
+ , fID (-1.0f) |
+#endif |
+ {} |
+ SkPoint fPoint; // Vertex position |
+ Vertex* fPrev; // Linked list of contours, then Y-sorted vertices. |
+ Vertex* fNext; // " |
+ Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. |
+ Edge* fLastEdgeAbove; // " |
+ Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. |
+ Edge* fLastEdgeBelow; // " |
+ bool fProcessed; // Has this vertex been seen in simplify()? |
+#if LOGGING_ENABLED |
+ float fID; // Identifier used for logging. |
+#endif |
+}; |
+ |
+double Edge::dist(const SkPoint& p) const { |
+ return fDY * p.fX - fDX * p.fY + fC; |
+} |
+ |
+bool Edge::isRightOf(Vertex* v) const { |
+ return dist(v->fPoint) < 0.0; |
+} |
+ |
+bool Edge::isLeftOf(Vertex* v) const { |
+ return dist(v->fPoint) > 0.0; |
+} |
+ |
+void Edge::recompute() { |
+ fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; |
+ fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; |
+ fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - |
+ static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; |
+} |
+ |
+bool Edge::intersect(const Edge& other, SkPoint* p) { |
+#if LOGGING_ENABLED |
+ LOG("intersecting %g -> %g with %g -> %g\n", |
+ fTop->fID, fBottom->fID, |
+ other.fTop->fID, other.fBottom->fID); |
+#endif |
+ if (fTop == other.fTop || fBottom == other.fBottom) { |
+ return false; |
+ } |
+ double denom = fDX * other.fDY - fDY * other.fDX; |
+ if (denom == 0.0) { |
+ return false; |
+ } |
+ double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX; |
+ double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY; |
+ double sNumer = dy * other.fDX - dx * other.fDY; |
+ double tNumer = dy * fDX - dx * fDY; |
+ // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. |
+ // This saves us doing the divide below unless absolutely necessary. |
+ if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) |
+ : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { |
+ return false; |
+ } |
+ double s = sNumer / denom; |
+ SkASSERT(s >= 0.0 && s <= 1.0); |
+ p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); |
+ p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); |
+ return true; |
+} |
+ |
+bool Edge::isActive(EdgeList* activeEdges) const { |
+ return activeEdges && (fLeft || fRight || activeEdges->fHead == this); |
+} |
+ |
struct Poly; |
template <class T, T* T::*Prev, T* T::*Next> |
@@ -128,40 +253,6 @@ void remove(T* t, T** head, T** tail) { |
t->*Prev = t->*Next = nullptr; |
} |
-/** |
- * Vertices are used in three ways: first, the path contours are converted into a |
- * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices |
- * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing |
- * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid |
- * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of |
- * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since |
- * an individual Vertex from the path mesh may belong to multiple |
- * MonotonePolys, so the original Vertices cannot be re-used. |
- */ |
- |
-struct Vertex { |
- Vertex(const SkPoint& point) |
- : fPoint(point), fPrev(nullptr), fNext(nullptr) |
- , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr) |
- , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr) |
- , fProcessed(false) |
-#if LOGGING_ENABLED |
- , fID (-1.0f) |
-#endif |
- {} |
- SkPoint fPoint; // Vertex position |
- Vertex* fPrev; // Linked list of contours, then Y-sorted vertices. |
- Vertex* fNext; // " |
- Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. |
- Edge* fLastEdgeAbove; // " |
- Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. |
- Edge* fLastEdgeBelow; // " |
- bool fProcessed; // Has this vertex been seen in simplify()? |
-#if LOGGING_ENABLED |
- float fID; // Identifier used for logging. |
-#endif |
-}; |
- |
/***************************************************************************************/ |
typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b); |
@@ -193,7 +284,7 @@ inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) { |
} |
SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) { |
-#if WIREFRAME |
+#if TESSELLATOR_WIREFRAME |
data = emit_vertex(v0, data); |
data = emit_vertex(v1, data); |
data = emit_vertex(v1, data); |
@@ -208,12 +299,6 @@ SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) { |
return data; |
} |
-struct EdgeList { |
- EdgeList() : fHead(nullptr), fTail(nullptr) {} |
- Edge* fHead; |
- Edge* fTail; |
-}; |
- |
/** |
* An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and |
* "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf(). |
@@ -232,82 +317,6 @@ struct EdgeList { |
* this file). |
*/ |
-struct Edge { |
- Edge(Vertex* top, Vertex* bottom, int winding) |
- : fWinding(winding) |
- , fTop(top) |
- , fBottom(bottom) |
- , fLeft(nullptr) |
- , fRight(nullptr) |
- , fPrevEdgeAbove(nullptr) |
- , fNextEdgeAbove(nullptr) |
- , fPrevEdgeBelow(nullptr) |
- , fNextEdgeBelow(nullptr) |
- , fLeftPoly(nullptr) |
- , fRightPoly(nullptr) { |
- recompute(); |
- } |
- int fWinding; // 1 == edge goes downward; -1 = edge goes upward. |
- Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt). |
- Vertex* fBottom; // The bottom vertex in vertex-sort-order. |
- Edge* fLeft; // The linked list of edges in the active edge list. |
- Edge* fRight; // " |
- Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above". |
- Edge* fNextEdgeAbove; // " |
- Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". |
- Edge* fNextEdgeBelow; // " |
- Poly* fLeftPoly; // The Poly to the left of this edge, if any. |
- Poly* fRightPoly; // The Poly to the right of this edge, if any. |
- double fDX; // The line equation for this edge, in implicit form. |
- double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line. |
- double fC; |
- double dist(const SkPoint& p) const { |
- return fDY * p.fX - fDX * p.fY + fC; |
- } |
- bool isRightOf(Vertex* v) const { |
- return dist(v->fPoint) < 0.0; |
- } |
- bool isLeftOf(Vertex* v) const { |
- return dist(v->fPoint) > 0.0; |
- } |
- void recompute() { |
- fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; |
- fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; |
- fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - |
- static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; |
- } |
- bool intersect(const Edge& other, SkPoint* p) { |
- LOG("intersecting %g -> %g with %g -> %g\n", |
- fTop->fID, fBottom->fID, |
- other.fTop->fID, other.fBottom->fID); |
- if (fTop == other.fTop || fBottom == other.fBottom) { |
- return false; |
- } |
- double denom = fDX * other.fDY - fDY * other.fDX; |
- if (denom == 0.0) { |
- return false; |
- } |
- double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX; |
- double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY; |
- double sNumer = dy * other.fDX - dx * other.fDY; |
- double tNumer = dy * fDX - dx * fDY; |
- // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. |
- // This saves us doing the divide below unless absolutely necessary. |
- if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) |
- : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { |
- return false; |
- } |
- double s = sNumer / denom; |
- SkASSERT(s >= 0.0 && s <= 1.0); |
- p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); |
- p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); |
- return true; |
- } |
- bool isActive(EdgeList* activeEdges) const { |
- return activeEdges && (fLeft || fRight || activeEdges->fHead == this); |
- } |
-}; |
- |
/***************************************************************************************/ |
struct Poly { |
@@ -361,7 +370,7 @@ struct Poly { |
return done; |
} |
- SkPoint* emit(SkPoint* data) { |
+ SkPoint* emit(int winding, SkPoint* data) { |
Vertex* first = fHead; |
Vertex* v = first->fNext; |
while (v != fTail) { |
@@ -435,7 +444,7 @@ struct Poly { |
} |
LOG("emit() %d, size %d\n", fID, fCount); |
for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) { |
- data = m->emit(data); |
+ data = m->emit(fWinding, data); |
} |
return data; |
} |
@@ -465,8 +474,8 @@ Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { |
return poly; |
} |
-Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, |
- SkChunkAlloc& alloc) { |
+Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, |
+ Vertex** head, SkChunkAlloc& alloc) { |
Vertex* v = ALLOC_NEW(Vertex, (p), alloc); |
#if LOGGING_ENABLED |
static float gID = 0.0f; |
@@ -541,7 +550,6 @@ Vertex* generate_cubic_points(const SkPoint& p0, |
void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) { |
- |
SkScalar toleranceSqd = tolerance * tolerance; |
SkPoint pts[4]; |
@@ -850,7 +858,8 @@ void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) { |
} |
} |
-void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc); |
+void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, |
+ SkChunkAlloc& alloc); |
void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) { |
Vertex* top = edge->fTop; |
@@ -921,7 +930,7 @@ void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkCh |
remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr); |
} |
-Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c, |
+Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c, |
SkChunkAlloc& alloc) { |
SkPoint p; |
if (!edge || !other) { |
@@ -1151,7 +1160,7 @@ void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) { |
} |
} |
} else { |
- if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge, |
+ if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge, |
&activeEdges, c, alloc)) { |
if (c.sweep_lt(pv->fPoint, v->fPoint)) { |
v = pv; |
@@ -1293,7 +1302,15 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { |
// This is a driver function which calls stages 2-5 in turn. |
-Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) { |
+Poly* contours_to_polys(Vertex** contours, int contourCnt, SkRect pathBounds, SkChunkAlloc& alloc) { |
+ Comparator c; |
+ if (pathBounds.width() > pathBounds.height()) { |
+ c.sweep_lt = sweep_lt_horiz; |
+ c.sweep_gt = sweep_gt_horiz; |
+ } else { |
+ c.sweep_lt = sweep_lt_vert; |
+ c.sweep_gt = sweep_gt_vert; |
+ } |
#if LOGGING_ENABLED |
for (int i = 0; i < contourCnt; ++i) { |
Vertex* v = contours[i]; |
@@ -1323,349 +1340,120 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChun |
return tessellate(vertices, alloc); |
} |
-// Stage 6: Triangulate the monotone polygons into a vertex buffer. |
- |
-SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) { |
- SkPoint* d = data; |
- for (Poly* poly = polys; poly; poly = poly->fNext) { |
- if (apply_fill_type(fillType, poly->fWinding)) { |
- d = poly->emit(d); |
- } |
+Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
+ bool* isLinear) { |
+ int contourCnt; |
+ int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance); |
+ if (maxPts <= 0) { |
+ return nullptr; |
} |
- return d; |
-} |
- |
-struct TessInfo { |
- SkScalar fTolerance; |
- int fCount; |
-}; |
- |
-bool cache_match(GrVertexBuffer* vertexBuffer, SkScalar tol, int* actualCount) { |
- if (!vertexBuffer) { |
- return false; |
+ if (maxPts > ((int)SK_MaxU16 + 1)) { |
+ SkDebugf("Path not rendered, too many verts (%d)\n", maxPts); |
+ return nullptr; |
} |
- const SkData* data = vertexBuffer->getUniqueKey().getCustomData(); |
- SkASSERT(data); |
- const TessInfo* info = static_cast<const TessInfo*>(data->data()); |
- if (info->fTolerance == 0 || info->fTolerance < 3.0f * tol) { |
- *actualCount = info->fCount; |
- return true; |
+ SkPath::FillType fillType = path.getFillType(); |
+ if (SkPath::IsInverseFillType(fillType)) { |
+ contourCnt++; |
} |
- return false; |
-} |
- |
-}; |
+ SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]); |
-GrTessellatingPathRenderer::GrTessellatingPathRenderer() { |
+ // For the initial size of the chunk allocator, estimate based on the point count: |
+ // one vertex per point for the initial passes, plus two for the vertices in the |
+ // resulting Polys, since the same point may end up in two Polys. Assume minimal |
+ // connectivity of one Edge per Vertex (will grow for intersections). |
+ SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); |
+ path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear); |
+ return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc); |
Stephen White
2016/01/05 16:36:22
We're now returning a pointer to Polys which were
|
} |
-namespace { |
- |
-// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. |
-class PathInvalidator : public SkPathRef::GenIDChangeListener { |
-public: |
- explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {} |
-private: |
- GrUniqueKeyInvalidatedMessage fMsg; |
+// Stage 6: Triangulate the monotone polygons into a vertex buffer. |
- void onChange() override { |
- SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); |
+int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
+ GrResourceProvider* resourceProvider, |
+ SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB, bool* isLinear) { |
+ Poly* polys = path_to_polys(path, tolerance, clipBounds, isLinear); |
+ SkPath::FillType fillType = path.getFillType(); |
+ int count = 0; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { |
+ count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3); |
+ } |
} |
-}; |
- |
-} // namespace |
- |
-bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { |
- // This path renderer can draw all fill styles, all stroke styles except hairlines, but does |
- // not do antialiasing. It can do convex and concave paths, but we'll leave the convex ones to |
- // simpler algorithms. |
- return !IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr) && |
- !args.fAntiAlias && !args.fPath->isConvex(); |
-} |
- |
-class TessellatingPathBatch : public GrVertexBatch { |
-public: |
- DEFINE_BATCH_CLASS_ID |
- |
- static GrDrawBatch* Create(const GrColor& color, |
- const SkPath& path, |
- const GrStrokeInfo& stroke, |
- const SkMatrix& viewMatrix, |
- SkRect clipBounds) { |
- return new TessellatingPathBatch(color, path, stroke, viewMatrix, clipBounds); |
+ if (0 == count) { |
+ return 0; |
} |
- const char* name() const override { return "TessellatingPathBatch"; } |
- |
- void computePipelineOptimizations(GrInitInvariantOutput* color, |
- GrInitInvariantOutput* coverage, |
- GrBatchToXPOverrides* overrides) const override { |
- color->setKnownFourComponents(fColor); |
- coverage->setUnknownSingleComponent(); |
- overrides->fUsePLSDstRead = false; |
+ size_t size = count * sizeof(SkPoint); |
+ if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) { |
+ vertexBuffer.reset(resourceProvider->createVertexBuffer( |
+ size, GrResourceProvider::kStatic_BufferUsage, 0)); |
} |
- |
-private: |
- void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
- // Handle any color overrides |
- if (!overrides.readsColor()) { |
- fColor = GrColor_ILLEGAL; |
- } |
- overrides.getOverrideColorIfSet(&fColor); |
- fPipelineInfo = overrides; |
- } |
- |
- int tessellate(GrUniqueKey* key, |
- GrResourceProvider* resourceProvider, |
- SkAutoTUnref<GrVertexBuffer>& vertexBuffer, |
- bool canMapVB) const { |
- SkPath path; |
- GrStrokeInfo stroke(fStroke); |
- if (stroke.isDashed()) { |
- if (!stroke.applyDashToPath(&path, &stroke, fPath)) { |
- return 0; |
- } |
- } else { |
- path = fPath; |
- } |
- if (!stroke.isFillStyle()) { |
- stroke.setResScale(SkScalarAbs(fViewMatrix.getMaxScale())); |
- if (!stroke.applyToPath(&path, path)) { |
- return 0; |
- } |
- stroke.setFillStyle(); |
- } |
- SkRect pathBounds = path.getBounds(); |
- Comparator c; |
- if (pathBounds.width() > pathBounds.height()) { |
- c.sweep_lt = sweep_lt_horiz; |
- c.sweep_gt = sweep_gt_horiz; |
- } else { |
- c.sweep_lt = sweep_lt_vert; |
- c.sweep_gt = sweep_gt_vert; |
- } |
- SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance; |
- SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds); |
- int contourCnt; |
- int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol); |
- if (maxPts <= 0) { |
- return 0; |
- } |
- if (maxPts > ((int)SK_MaxU16 + 1)) { |
- SkDebugf("Path not rendered, too many verts (%d)\n", maxPts); |
- return 0; |
- } |
- SkPath::FillType fillType = path.getFillType(); |
- if (SkPath::IsInverseFillType(fillType)) { |
- contourCnt++; |
- } |
- |
- LOG("got %d pts, %d contours\n", maxPts, contourCnt); |
- SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]); |
- |
- // For the initial size of the chunk allocator, estimate based on the point count: |
- // one vertex per point for the initial passes, plus two for the vertices in the |
- // resulting Polys, since the same point may end up in two Polys. Assume minimal |
- // connectivity of one Edge per Vertex (will grow for intersections). |
- SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); |
- bool isLinear; |
- path_to_contours(path, tol, fClipBounds, contours.get(), alloc, &isLinear); |
- Poly* polys; |
- polys = contours_to_polys(contours.get(), contourCnt, c, alloc); |
- int count = 0; |
- for (Poly* poly = polys; poly; poly = poly->fNext) { |
- if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { |
- count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3); |
- } |
- } |
- if (0 == count) { |
- return 0; |
- } |
- |
- size_t size = count * sizeof(SkPoint); |
- if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) { |
- vertexBuffer.reset(resourceProvider->createVertexBuffer( |
- size, GrResourceProvider::kStatic_BufferUsage, 0)); |
- } |
- if (!vertexBuffer.get()) { |
- SkDebugf("Could not allocate vertices\n"); |
- return 0; |
- } |
- SkPoint* verts; |
- if (canMapVB) { |
- verts = static_cast<SkPoint*>(vertexBuffer->map()); |
- } else { |
- verts = new SkPoint[count]; |
- } |
- SkPoint* end = polys_to_triangles(polys, fillType, verts); |
- int actualCount = static_cast<int>(end - verts); |
- LOG("actual count: %d\n", actualCount); |
- SkASSERT(actualCount <= count); |
- if (canMapVB) { |
- vertexBuffer->unmap(); |
- } else { |
- vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint)); |
- delete[] verts; |
- } |
- |
- |
- if (!fPath.isVolatile()) { |
- TessInfo info; |
- info.fTolerance = isLinear ? 0 : tol; |
- info.fCount = actualCount; |
- SkAutoTUnref<SkData> data(SkData::NewWithCopy(&info, sizeof(info))); |
- key->setCustomData(data.get()); |
- resourceProvider->assignUniqueKeyToResource(*key, vertexBuffer.get()); |
- SkPathPriv::AddGenIDChangeListener(fPath, new PathInvalidator(*key)); |
- } |
- return actualCount; |
- } |
- |
- void onPrepareDraws(Target* target) const override { |
- // construct a cache key from the path's genID and the view matrix |
- static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); |
- GrUniqueKey key; |
- int clipBoundsSize32 = |
- fPath.isInverseFillType() ? sizeof(fClipBounds) / sizeof(uint32_t) : 0; |
- int strokeDataSize32 = fStroke.computeUniqueKeyFragmentData32Cnt(); |
- GrUniqueKey::Builder builder(&key, kDomain, 2 + clipBoundsSize32 + strokeDataSize32); |
- builder[0] = fPath.getGenerationID(); |
- builder[1] = fPath.getFillType(); |
- // For inverse fills, the tessellation is dependent on clip bounds. |
- if (fPath.isInverseFillType()) { |
- memcpy(&builder[2], &fClipBounds, sizeof(fClipBounds)); |
- } |
- fStroke.asUniqueKeyFragment(&builder[2 + clipBoundsSize32]); |
- builder.finish(); |
- GrResourceProvider* rp = target->resourceProvider(); |
- SkAutoTUnref<GrVertexBuffer> vertexBuffer(rp->findAndRefTByUniqueKey<GrVertexBuffer>(key)); |
- int actualCount; |
- SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance; |
- SkScalar tol = GrPathUtils::scaleToleranceToSrc( |
- screenSpaceTol, fViewMatrix, fPath.getBounds()); |
- if (!cache_match(vertexBuffer.get(), tol, &actualCount)) { |
- bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags(); |
- actualCount = this->tessellate(&key, rp, vertexBuffer, canMapVB); |
- } |
- |
- if (actualCount == 0) { |
- return; |
+ if (!vertexBuffer.get()) { |
+ SkDebugf("Could not allocate vertices\n"); |
+ return 0; |
+ } |
+ SkPoint* verts; |
+ if (canMapVB) { |
+ verts = static_cast<SkPoint*>(vertexBuffer->map()); |
+ } else { |
+ verts = new SkPoint[count]; |
+ } |
+ SkPoint* end = verts; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding)) { |
+ end = poly->emit(end); |
} |
+ } |
+ int actualCount = static_cast<int>(end - verts); |
+ LOG("actual count: %d\n", actualCount); |
+ SkASSERT(actualCount <= count); |
+ if (canMapVB) { |
+ vertexBuffer->unmap(); |
+ } else { |
+ vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint)); |
+ delete[] verts; |
+ } |
- SkAutoTUnref<const GrGeometryProcessor> gp; |
- { |
- using namespace GrDefaultGeoProcFactory; |
- |
- Color color(fColor); |
- LocalCoords localCoords(fPipelineInfo.readsLocalCoords() ? |
- LocalCoords::kUsePosition_Type : |
- LocalCoords::kUnused_Type); |
- Coverage::Type coverageType; |
- if (fPipelineInfo.readsCoverage()) { |
- coverageType = Coverage::kSolid_Type; |
- } else { |
- coverageType = Coverage::kNone_Type; |
- } |
- Coverage coverage(coverageType); |
- gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords, |
- fViewMatrix)); |
- } |
+ return actualCount; |
+} |
- target->initDraw(gp, this->pipeline()); |
- SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); |
- |
- GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType |
- : kTriangles_GrPrimitiveType; |
- GrVertices vertices; |
- vertices.init(primitiveType, vertexBuffer.get(), 0, actualCount); |
- target->draw(vertices); |
- } |
- |
- bool onCombineIfPossible(GrBatch*, const GrCaps&) override { return false; } |
- |
- TessellatingPathBatch(const GrColor& color, |
- const SkPath& path, |
- const GrStrokeInfo& stroke, |
- const SkMatrix& viewMatrix, |
- const SkRect& clipBounds) |
- : INHERITED(ClassID()) |
- , fColor(color) |
- , fPath(path) |
- , fStroke(stroke) |
- , fViewMatrix(viewMatrix) { |
- const SkRect& pathBounds = path.getBounds(); |
- fClipBounds = clipBounds; |
- // Because the clip bounds are used to add a contour for inverse fills, they must also |
- // include the path bounds. |
- fClipBounds.join(pathBounds); |
- if (path.isInverseFillType()) { |
- fBounds = fClipBounds; |
- } else { |
- fBounds = path.getBounds(); |
- } |
- if (!stroke.isFillStyle()) { |
- SkScalar radius = SkScalarHalf(stroke.getWidth()); |
- if (stroke.getJoin() == SkPaint::kMiter_Join) { |
- SkScalar scale = stroke.getMiter(); |
- if (scale > SK_Scalar1) { |
- radius = SkScalarMul(radius, scale); |
- } |
- } |
- fBounds.outset(radius, radius); |
+int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, |
+ WindingVertex** verts) { |
+ bool isLinear; |
+ Poly* polys = path_to_polys(path, tolerance, clipBounds, &isLinear); |
+ SkPath::FillType fillType = path.getFillType(); |
+ int count = 0; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { |
+ count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3); |
} |
- viewMatrix.mapRect(&fBounds); |
} |
- |
- GrColor fColor; |
- SkPath fPath; |
- GrStrokeInfo fStroke; |
- SkMatrix fViewMatrix; |
- SkRect fClipBounds; // in source space |
- GrXPOverridesForBatch fPipelineInfo; |
- |
- typedef GrVertexBatch INHERITED; |
-}; |
- |
-bool GrTessellatingPathRenderer::onDrawPath(const DrawPathArgs& args) { |
- SkASSERT(!args.fAntiAlias); |
- const GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget(); |
- if (nullptr == rt) { |
- return false; |
+ if (0 == count) { |
+ *verts = nullptr; |
+ return 0; |
} |
- SkIRect clipBoundsI; |
- args.fPipelineBuilder->clip().getConservativeBounds(rt->width(), rt->height(), &clipBoundsI); |
- SkRect clipBounds = SkRect::Make(clipBoundsI); |
- SkMatrix vmi; |
- if (!args.fViewMatrix->invert(&vmi)) { |
- return false; |
+ *verts = new WindingVertex[count]; |
+ WindingVertex* vertsEnd = *verts; |
+ SkPoint* points = new SkPoint[count]; |
+ SkPoint* pointsEnd = points; |
+ for (Poly* poly = polys; poly; poly = poly->fNext) { |
+ if (apply_fill_type(fillType, poly->fWinding)) { |
+ SkPoint* start = pointsEnd; |
+ pointsEnd = poly->emit(pointsEnd); |
+ while (start != pointsEnd) { |
+ vertsEnd->fPos = *start; |
+ vertsEnd->fWinding = poly->fWinding; |
+ ++start; |
+ ++vertsEnd; |
+ } |
+ } |
} |
- vmi.mapRect(&clipBounds); |
- SkAutoTUnref<GrDrawBatch> batch(TessellatingPathBatch::Create(args.fColor, *args.fPath, |
- *args.fStroke, *args.fViewMatrix, |
- clipBounds)); |
- args.fTarget->drawBatch(*args.fPipelineBuilder, batch); |
- |
- return true; |
+ int actualCount = static_cast<int>(vertsEnd - *verts); |
+ SkASSERT(actualCount <= count); |
+ SkASSERT(pointsEnd - points == actualCount); |
+ delete[] points; |
+ return actualCount; |
} |
-/////////////////////////////////////////////////////////////////////////////////////////////////// |
- |
-#ifdef GR_TEST_UTILS |
- |
-DRAW_BATCH_TEST_DEFINE(TesselatingPathBatch) { |
- GrColor color = GrRandomColor(random); |
- SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); |
- SkPath path = GrTest::TestPath(random); |
- SkRect clipBounds = GrTest::TestRect(random); |
- SkMatrix vmi; |
- bool result = viewMatrix.invert(&vmi); |
- if (!result) { |
- SkFAIL("Cannot invert matrix\n"); |
- } |
- vmi.mapRect(&clipBounds); |
- GrStrokeInfo strokeInfo = GrTest::TestStrokeInfo(random); |
- return TessellatingPathBatch::Create(color, path, strokeInfo, viewMatrix, clipBounds); |
} |
- |
-#endif |