| Index: content/browser/indexed_db/leveldb/avltree.h
|
| diff --git a/content/browser/indexed_db/leveldb/avltree.h b/content/browser/indexed_db/leveldb/avltree.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..c22f45eb686d8193cc25f69aa2dd909220ca4489
|
| --- /dev/null
|
| +++ b/content/browser/indexed_db/leveldb/avltree.h
|
| @@ -0,0 +1,976 @@
|
| +/*
|
| + * Copyright (C) 2008 Apple Inc. All rights reserved.
|
| + *
|
| + * Based on Abstract AVL Tree Template v1.5 by Walt Karas
|
| + * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>.
|
| + *
|
| + * Redistribution and use in source and binary forms, with or without
|
| + * modification, are permitted provided that the following conditions
|
| + * are met:
|
| + *
|
| + * 1. Redistributions of source code must retain the above copyright
|
| + * notice, this list of conditions and the following disclaimer.
|
| + * 2. Redistributions in binary form must reproduce the above copyright
|
| + * notice, this list of conditions and the following disclaimer in the
|
| + * documentation and/or other materials provided with the distribution.
|
| + * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
| + * its contributors may be used to endorse or promote products derived
|
| + * from this software without specific prior written permission.
|
| + *
|
| + * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
| + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
| + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| + * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
| + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
| + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
| + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
| + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
| + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| + */
|
| +
|
| +#ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
|
| +#define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
|
| +
|
| +#include "base/logging.h"
|
| +#include "content/browser/indexed_db/leveldb/fixed_array.h"
|
| +
|
| +namespace content {
|
| +
|
| +// Here is the reference class for BSet.
|
| +//
|
| +// class BSet
|
| +// {
|
| +// public:
|
| +//
|
| +// class ANY_bitref
|
| +// {
|
| +// public:
|
| +// operator bool ();
|
| +// void operator = (bool b);
|
| +// };
|
| +//
|
| +// // Does not have to initialize bits.
|
| +// BSet();
|
| +//
|
| +// // Must return a valid value for index when 0 <= index < maxDepth
|
| +// ANY_bitref operator [] (unsigned index);
|
| +//
|
| +// // Set all bits to 1.
|
| +// void set();
|
| +//
|
| +// // Set all bits to 0.
|
| +// void reset();
|
| +// };
|
| +
|
| +template <unsigned maxDepth> class AVLTreeDefaultBSet {
|
| + public:
|
| + bool& operator[](unsigned i) {
|
| +#if defined(ADDRESS_SANITIZER)
|
| + CHECK(i < maxDepth);
|
| +#endif
|
| + return m_data[i];
|
| + }
|
| + void set() {
|
| + for (unsigned i = 0; i < maxDepth; ++i)
|
| + m_data[i] = true;
|
| + }
|
| + void reset() {
|
| + for (unsigned i = 0; i < maxDepth; ++i)
|
| + m_data[i] = false;
|
| + }
|
| +
|
| + private:
|
| + FixedArray<bool, maxDepth> m_data;
|
| +};
|
| +
|
| +// How to determine maxDepth:
|
| +// d Minimum number of nodes
|
| +// 2 2
|
| +// 3 4
|
| +// 4 7
|
| +// 5 12
|
| +// 6 20
|
| +// 7 33
|
| +// 8 54
|
| +// 9 88
|
| +// 10 143
|
| +// 11 232
|
| +// 12 376
|
| +// 13 609
|
| +// 14 986
|
| +// 15 1,596
|
| +// 16 2,583
|
| +// 17 4,180
|
| +// 18 6,764
|
| +// 19 10,945
|
| +// 20 17,710
|
| +// 21 28,656
|
| +// 22 46,367
|
| +// 23 75,024
|
| +// 24 121,392
|
| +// 25 196,417
|
| +// 26 317,810
|
| +// 27 514,228
|
| +// 28 832,039
|
| +// 29 1,346,268
|
| +// 30 2,178,308
|
| +// 31 3,524,577
|
| +// 32 5,702,886
|
| +// 33 9,227,464
|
| +// 34 14,930,351
|
| +// 35 24,157,816
|
| +// 36 39,088,168
|
| +// 37 63,245,985
|
| +// 38 102,334,154
|
| +// 39 165,580,140
|
| +// 40 267,914,295
|
| +// 41 433,494,436
|
| +// 42 701,408,732
|
| +// 43 1,134,903,169
|
| +// 44 1,836,311,902
|
| +// 45 2,971,215,072
|
| +//
|
| +// E.g., if, in a particular instantiation, the maximum number of nodes in a
|
| +// tree instance is 1,000,000, the maximum depth should be 28.
|
| +// You pick 28 because MN(28) is 832,039, which is less than or equal to
|
| +// 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000.
|
| +
|
| +template <class Abstractor,
|
| + unsigned maxDepth = 32,
|
| + class BSet = AVLTreeDefaultBSet<maxDepth> >
|
| +class AVLTree {
|
| + public:
|
| +
|
| + typedef typename Abstractor::key key;
|
| + typedef typename Abstractor::handle handle;
|
| + typedef typename Abstractor::size size;
|
| +
|
| + enum SearchType {
|
| + EQUAL = 1,
|
| + LESS = 2,
|
| + GREATER = 4,
|
| + LESS_EQUAL = EQUAL | LESS,
|
| + GREATER_EQUAL = EQUAL | GREATER
|
| + };
|
| +
|
| + Abstractor& abstractor() { return abs; }
|
| +
|
| + inline handle insert(handle h);
|
| +
|
| + inline handle search(key k, SearchType st = EQUAL);
|
| + inline handle search_least();
|
| + inline handle search_greatest();
|
| +
|
| + inline handle remove(key k);
|
| +
|
| + inline handle subst(handle new_node);
|
| +
|
| + void purge() { abs.root = null(); }
|
| +
|
| + bool is_empty() { return abs.root == null(); }
|
| +
|
| + AVLTree() { abs.root = null(); }
|
| +
|
| + class Iterator {
|
| + public:
|
| +
|
| + // Initialize depth to invalid value, to indicate iterator is
|
| + // invalid. (Depth is zero-base.)
|
| + Iterator() { depth = ~0U; }
|
| +
|
| + void start_iter(AVLTree& tree, key k, SearchType st = EQUAL) {
|
| + // Mask of high bit in an int.
|
| + const int MASK_HIGH_BIT = (int) ~((~(unsigned) 0) >> 1);
|
| +
|
| + // Save the tree that we're going to iterate through in a
|
| + // member variable.
|
| + tree_ = &tree;
|
| +
|
| + int cmp, target_cmp;
|
| + handle h = tree_->abs.root;
|
| + unsigned d = 0;
|
| +
|
| + depth = ~0U;
|
| +
|
| + if (h == null()) {
|
| + // Tree is empty.
|
| + return;
|
| + }
|
| +
|
| + if (st & LESS) {
|
| + // Key can be greater than key of starting node.
|
| + target_cmp = 1;
|
| + } else if (st & GREATER) {
|
| + // Key can be less than key of starting node.
|
| + target_cmp = -1;
|
| + } else {
|
| + // Key must be same as key of starting node.
|
| + target_cmp = 0;
|
| + }
|
| +
|
| + for (;;) {
|
| + cmp = cmp_k_n(k, h);
|
| + if (cmp == 0) {
|
| + if (st & EQUAL) {
|
| + // Equal node was sought and found as starting node.
|
| + depth = d;
|
| + break;
|
| + }
|
| + cmp = -target_cmp;
|
| + } else if (target_cmp != 0) {
|
| + if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) {
|
| + // cmp and target_cmp are both negative or both positive.
|
| + depth = d;
|
| + }
|
| + }
|
| + h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| + if (h == null())
|
| + break;
|
| + branch[d] = cmp > 0;
|
| + path_h[d++] = h;
|
| + }
|
| + }
|
| +
|
| + void start_iter_least(AVLTree& tree) {
|
| + tree_ = &tree;
|
| +
|
| + handle h = tree_->abs.root;
|
| +
|
| + depth = ~0U;
|
| +
|
| + branch.reset();
|
| +
|
| + while (h != null()) {
|
| + if (depth != ~0U)
|
| + path_h[depth] = h;
|
| + depth++;
|
| + h = get_lt(h);
|
| + }
|
| + }
|
| +
|
| + void start_iter_greatest(AVLTree& tree) {
|
| + tree_ = &tree;
|
| +
|
| + handle h = tree_->abs.root;
|
| +
|
| + depth = ~0U;
|
| +
|
| + branch.set();
|
| +
|
| + while (h != null()) {
|
| + if (depth != ~0U)
|
| + path_h[depth] = h;
|
| + depth++;
|
| + h = get_gt(h);
|
| + }
|
| + }
|
| +
|
| + handle operator*() {
|
| + if (depth == ~0U)
|
| + return null();
|
| +
|
| + return depth == 0 ? tree_->abs.root : path_h[depth - 1];
|
| + }
|
| +
|
| + void operator++() {
|
| + if (depth != ~0U) {
|
| + handle h = get_gt(**this);
|
| + if (h == null()) {
|
| + do {
|
| + if (depth == 0) {
|
| + depth = ~0U;
|
| + break;
|
| + }
|
| + depth--;
|
| + } while (branch[depth]);
|
| + } else {
|
| + branch[depth] = true;
|
| + path_h[depth++] = h;
|
| + for (;;) {
|
| + h = get_lt(h);
|
| + if (h == null())
|
| + break;
|
| + branch[depth] = false;
|
| + path_h[depth++] = h;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + void operator--() {
|
| + if (depth != ~0U) {
|
| + handle h = get_lt(**this);
|
| + if (h == null()) {
|
| + do {
|
| + if (depth == 0) {
|
| + depth = ~0U;
|
| + break;
|
| + }
|
| + depth--;
|
| + } while (!branch[depth]);
|
| + } else {
|
| + branch[depth] = false;
|
| + path_h[depth++] = h;
|
| + for (;;) {
|
| + h = get_gt(h);
|
| + if (h == null())
|
| + break;
|
| + branch[depth] = true;
|
| + path_h[depth++] = h;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + void operator++(int) { ++(*this); }
|
| + void operator--(int) { --(*this); }
|
| +
|
| + protected:
|
| +
|
| + // Tree being iterated over.
|
| + AVLTree* tree_;
|
| +
|
| + // Records a path into the tree. If branch[n] is true, indicates
|
| + // take greater branch from the nth node in the path, otherwise
|
| + // take the less branch. branch[0] gives branch from root, and
|
| + // so on.
|
| + BSet branch;
|
| +
|
| + // Zero-based depth of path into tree.
|
| + unsigned depth;
|
| +
|
| + // Handles of nodes in path from root to current node (returned by *).
|
| + handle path_h[maxDepth - 1];
|
| +
|
| + int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); }
|
| + int cmp_n_n(handle h1, handle h2) {
|
| + return tree_->abs.compare_node_node(h1, h2);
|
| + }
|
| + handle get_lt(handle h) { return tree_->abs.get_less(h); }
|
| + handle get_gt(handle h) { return tree_->abs.get_greater(h); }
|
| + handle null() { return tree_->abs.null(); }
|
| + };
|
| +
|
| + template <typename fwd_iter> bool build(fwd_iter p, size num_nodes) {
|
| + if (num_nodes == 0) {
|
| + abs.root = null();
|
| + return true;
|
| + }
|
| +
|
| + // Gives path to subtree being built. If branch[N] is false, branch
|
| + // less from the node at depth N, if true branch greater.
|
| + BSet branch;
|
| +
|
| + // If rem[N] is true, then for the current subtree at depth N, it's
|
| + // greater subtree has one more node than it's less subtree.
|
| + BSet rem;
|
| +
|
| + // Depth of root node of current subtree.
|
| + unsigned depth = 0;
|
| +
|
| + // Number of nodes in current subtree.
|
| + size num_sub = num_nodes;
|
| +
|
| + // The algorithm relies on a stack of nodes whose less subtree has
|
| + // been built, but whose right subtree has not yet been built. The
|
| + // stack is implemented as linked list. The nodes are linked
|
| + // together by having the "greater" handle of a node set to the
|
| + // next node in the list. "less_parent" is the handle of the first
|
| + // node in the list.
|
| + handle less_parent = null();
|
| +
|
| + // h is root of current subtree, child is one of its children.
|
| + handle h, child;
|
| +
|
| + for (;;) {
|
| + while (num_sub > 2) {
|
| + // Subtract one for root of subtree.
|
| + num_sub--;
|
| + rem[depth] = !!(num_sub & 1);
|
| + branch[depth++] = false;
|
| + num_sub >>= 1;
|
| + }
|
| +
|
| + if (num_sub == 2) {
|
| + // Build a subtree with two nodes, slanting to greater.
|
| + // I arbitrarily chose to always have the extra node in the
|
| + // greater subtree when there is an odd number of nodes to
|
| + // split between the two subtrees.
|
| +
|
| + h = *p;
|
| + p++;
|
| + child = *p;
|
| + p++;
|
| + set_lt(child, null());
|
| + set_gt(child, null());
|
| + set_bf(child, 0);
|
| + set_gt(h, child);
|
| + set_lt(h, null());
|
| + set_bf(h, 1);
|
| + } else { // num_sub == 1
|
| + // Build a subtree with one node.
|
| +
|
| + h = *p;
|
| + p++;
|
| + set_lt(h, null());
|
| + set_gt(h, null());
|
| + set_bf(h, 0);
|
| + }
|
| +
|
| + while (depth) {
|
| + depth--;
|
| + if (!branch[depth]) {
|
| + // We've completed a less subtree.
|
| + break;
|
| + }
|
| +
|
| + // We've completed a greater subtree, so attach it to
|
| + // its parent (that is less than it). We pop the parent
|
| + // off the stack of less parents.
|
| + child = h;
|
| + h = less_parent;
|
| + less_parent = get_gt(h);
|
| + set_gt(h, child);
|
| + // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1
|
| + num_sub <<= 1;
|
| + num_sub += 1 - rem[depth];
|
| + if (num_sub & (num_sub - 1)) {
|
| + // num_sub is not a power of 2
|
| + set_bf(h, 0);
|
| + } else {
|
| + // num_sub is a power of 2
|
| + set_bf(h, 1);
|
| + }
|
| + }
|
| +
|
| + if (num_sub == num_nodes) {
|
| + // We've completed the full tree.
|
| + break;
|
| + }
|
| +
|
| + // The subtree we've completed is the less subtree of the
|
| + // next node in the sequence.
|
| +
|
| + child = h;
|
| + h = *p;
|
| + p++;
|
| + set_lt(h, child);
|
| +
|
| + // Put h into stack of less parents.
|
| + set_gt(h, less_parent);
|
| + less_parent = h;
|
| +
|
| + // Proceed to creating greater than subtree of h.
|
| + branch[depth] = true;
|
| + num_sub += rem[depth++];
|
| +
|
| + } // end for (;;)
|
| +
|
| + abs.root = h;
|
| +
|
| + return true;
|
| + }
|
| +
|
| + protected:
|
| +
|
| + friend class Iterator;
|
| +
|
| + // Create a class whose sole purpose is to take advantage of
|
| + // the "empty member" optimization.
|
| + struct abs_plus_root : public Abstractor {
|
| + // The handle of the root element in the AVL tree.
|
| + handle root;
|
| + };
|
| +
|
| + abs_plus_root abs;
|
| +
|
| + handle get_lt(handle h) { return abs.get_less(h); }
|
| + void set_lt(handle h, handle lh) { abs.set_less(h, lh); }
|
| +
|
| + handle get_gt(handle h) { return abs.get_greater(h); }
|
| + void set_gt(handle h, handle gh) { abs.set_greater(h, gh); }
|
| +
|
| + int get_bf(handle h) { return abs.get_balance_factor(h); }
|
| + void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); }
|
| +
|
| + int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); }
|
| + int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); }
|
| +
|
| + handle null() { return abs.null(); }
|
| +
|
| + private:
|
| +
|
| + // Balances subtree, returns handle of root node of subtree
|
| + // after balancing.
|
| + handle balance(handle bal_h) {
|
| + handle deep_h;
|
| +
|
| + // Either the "greater than" or the "less than" subtree of
|
| + // this node has to be 2 levels deeper (or else it wouldn't
|
| + // need balancing).
|
| +
|
| + if (get_bf(bal_h) > 0) {
|
| + // "Greater than" subtree is deeper.
|
| +
|
| + deep_h = get_gt(bal_h);
|
| +
|
| + if (get_bf(deep_h) < 0) {
|
| + handle old_h = bal_h;
|
| + bal_h = get_lt(deep_h);
|
| +
|
| + set_gt(old_h, get_lt(bal_h));
|
| + set_lt(deep_h, get_gt(bal_h));
|
| + set_lt(bal_h, old_h);
|
| + set_gt(bal_h, deep_h);
|
| +
|
| + int bf = get_bf(bal_h);
|
| + if (bf != 0) {
|
| + if (bf > 0) {
|
| + set_bf(old_h, -1);
|
| + set_bf(deep_h, 0);
|
| + } else {
|
| + set_bf(deep_h, 1);
|
| + set_bf(old_h, 0);
|
| + }
|
| + set_bf(bal_h, 0);
|
| + } else {
|
| + set_bf(old_h, 0);
|
| + set_bf(deep_h, 0);
|
| + }
|
| + } else {
|
| + set_gt(bal_h, get_lt(deep_h));
|
| + set_lt(deep_h, bal_h);
|
| + if (get_bf(deep_h) == 0) {
|
| + set_bf(deep_h, -1);
|
| + set_bf(bal_h, 1);
|
| + } else {
|
| + set_bf(deep_h, 0);
|
| + set_bf(bal_h, 0);
|
| + }
|
| + bal_h = deep_h;
|
| + }
|
| + } else {
|
| + // "Less than" subtree is deeper.
|
| +
|
| + deep_h = get_lt(bal_h);
|
| +
|
| + if (get_bf(deep_h) > 0) {
|
| + handle old_h = bal_h;
|
| + bal_h = get_gt(deep_h);
|
| + set_lt(old_h, get_gt(bal_h));
|
| + set_gt(deep_h, get_lt(bal_h));
|
| + set_gt(bal_h, old_h);
|
| + set_lt(bal_h, deep_h);
|
| +
|
| + int bf = get_bf(bal_h);
|
| + if (bf != 0) {
|
| + if (bf < 0) {
|
| + set_bf(old_h, 1);
|
| + set_bf(deep_h, 0);
|
| + } else {
|
| + set_bf(deep_h, -1);
|
| + set_bf(old_h, 0);
|
| + }
|
| + set_bf(bal_h, 0);
|
| + } else {
|
| + set_bf(old_h, 0);
|
| + set_bf(deep_h, 0);
|
| + }
|
| + } else {
|
| + set_lt(bal_h, get_gt(deep_h));
|
| + set_gt(deep_h, bal_h);
|
| + if (get_bf(deep_h) == 0) {
|
| + set_bf(deep_h, 1);
|
| + set_bf(bal_h, -1);
|
| + } else {
|
| + set_bf(deep_h, 0);
|
| + set_bf(bal_h, 0);
|
| + }
|
| + bal_h = deep_h;
|
| + }
|
| + }
|
| +
|
| + return bal_h;
|
| + }
|
| +
|
| +};
|
| +
|
| +template <class Abstractor, unsigned maxDepth, class BSet>
|
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| +AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) {
|
| + set_lt(h, null());
|
| + set_gt(h, null());
|
| + set_bf(h, 0);
|
| +
|
| + if (abs.root == null()) {
|
| + abs.root = h;
|
| + } else {
|
| + // Last unbalanced node encountered in search for insertion point.
|
| + handle unbal = null();
|
| + // Parent of last unbalanced node.
|
| + handle parent_unbal = null();
|
| + // Balance factor of last unbalanced node.
|
| + int unbal_bf;
|
| +
|
| + // Zero-based depth in tree.
|
| + unsigned depth = 0, unbal_depth = 0;
|
| +
|
| + // Records a path into the tree. If branch[n] is true, indicates
|
| + // take greater branch from the nth node in the path, otherwise
|
| + // take the less branch. branch[0] gives branch from root, and
|
| + // so on.
|
| + BSet branch;
|
| +
|
| + handle hh = abs.root;
|
| + handle parent = null();
|
| + int cmp;
|
| +
|
| + do {
|
| + if (get_bf(hh) != 0) {
|
| + unbal = hh;
|
| + parent_unbal = parent;
|
| + unbal_depth = depth;
|
| + }
|
| + cmp = cmp_n_n(h, hh);
|
| + if (cmp == 0) {
|
| + // Duplicate key.
|
| + return hh;
|
| + }
|
| + parent = hh;
|
| + hh = cmp < 0 ? get_lt(hh) : get_gt(hh);
|
| + branch[depth++] = cmp > 0;
|
| + } while (hh != null());
|
| +
|
| + // Add node to insert as leaf of tree.
|
| + if (cmp < 0)
|
| + set_lt(parent, h);
|
| + else
|
| + set_gt(parent, h);
|
| +
|
| + depth = unbal_depth;
|
| +
|
| + if (unbal == null()) {
|
| + hh = abs.root;
|
| + } else {
|
| + cmp = branch[depth++] ? 1 : -1;
|
| + unbal_bf = get_bf(unbal);
|
| + if (cmp < 0)
|
| + unbal_bf--;
|
| + else // cmp > 0
|
| + unbal_bf++;
|
| + hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal);
|
| + if ((unbal_bf != -2) && (unbal_bf != 2)) {
|
| + // No rebalancing of tree is necessary.
|
| + set_bf(unbal, unbal_bf);
|
| + unbal = null();
|
| + }
|
| + }
|
| +
|
| + if (hh != null())
|
| + while (h != hh) {
|
| + cmp = branch[depth++] ? 1 : -1;
|
| + if (cmp < 0) {
|
| + set_bf(hh, -1);
|
| + hh = get_lt(hh);
|
| + } else { // cmp > 0
|
| + set_bf(hh, 1);
|
| + hh = get_gt(hh);
|
| + }
|
| + }
|
| +
|
| + if (unbal != null()) {
|
| + unbal = balance(unbal);
|
| + if (parent_unbal == null()) {
|
| + abs.root = unbal;
|
| + } else {
|
| + depth = unbal_depth - 1;
|
| + cmp = branch[depth] ? 1 : -1;
|
| + if (cmp < 0)
|
| + set_lt(parent_unbal, unbal);
|
| + else // cmp > 0
|
| + set_gt(parent_unbal, unbal);
|
| + }
|
| + }
|
| + }
|
| +
|
| + return h;
|
| +}
|
| +
|
| +template <class Abstractor, unsigned maxDepth, class BSet>
|
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| +AVLTree<Abstractor, maxDepth, BSet>::search(
|
| + key k,
|
| + typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) {
|
| + const int MASK_HIGH_BIT = (int) ~((~(unsigned) 0) >> 1);
|
| +
|
| + int cmp, target_cmp;
|
| + handle match_h = null();
|
| + handle h = abs.root;
|
| +
|
| + if (st & LESS)
|
| + target_cmp = 1;
|
| + else if (st & GREATER)
|
| + target_cmp = -1;
|
| + else
|
| + target_cmp = 0;
|
| +
|
| + while (h != null()) {
|
| + cmp = cmp_k_n(k, h);
|
| + if (cmp == 0) {
|
| + if (st & EQUAL) {
|
| + match_h = h;
|
| + break;
|
| + }
|
| + cmp = -target_cmp;
|
| + } else if (target_cmp != 0) {
|
| + if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) {
|
| + // cmp and target_cmp are both positive or both negative.
|
| + match_h = h;
|
| + }
|
| + }
|
| + h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| + }
|
| +
|
| + return match_h;
|
| +}
|
| +
|
| +template <class Abstractor, unsigned maxDepth, class BSet>
|
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| +AVLTree<Abstractor, maxDepth, BSet>::search_least() {
|
| + handle h = abs.root, parent = null();
|
| +
|
| + while (h != null()) {
|
| + parent = h;
|
| + h = get_lt(h);
|
| + }
|
| +
|
| + return parent;
|
| +}
|
| +
|
| +template <class Abstractor, unsigned maxDepth, class BSet>
|
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| +AVLTree<Abstractor, maxDepth, BSet>::search_greatest() {
|
| + handle h = abs.root, parent = null();
|
| +
|
| + while (h != null()) {
|
| + parent = h;
|
| + h = get_gt(h);
|
| + }
|
| +
|
| + return parent;
|
| +}
|
| +
|
| +template <class Abstractor, unsigned maxDepth, class BSet>
|
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| +AVLTree<Abstractor, maxDepth, BSet>::remove(key k) {
|
| + // Zero-based depth in tree.
|
| + unsigned depth = 0, rm_depth;
|
| +
|
| + // Records a path into the tree. If branch[n] is true, indicates
|
| + // take greater branch from the nth node in the path, otherwise
|
| + // take the less branch. branch[0] gives branch from root, and
|
| + // so on.
|
| + BSet branch;
|
| +
|
| + handle h = abs.root;
|
| + handle parent = null(), child;
|
| + int cmp, cmp_shortened_sub_with_path = 0;
|
| +
|
| + for (;;) {
|
| + if (h == null()) {
|
| + // No node in tree with given key.
|
| + return null();
|
| + }
|
| + cmp = cmp_k_n(k, h);
|
| + if (cmp == 0) {
|
| + // Found node to remove.
|
| + break;
|
| + }
|
| + parent = h;
|
| + h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| + branch[depth++] = cmp > 0;
|
| + cmp_shortened_sub_with_path = cmp;
|
| + }
|
| + handle rm = h;
|
| + handle parent_rm = parent;
|
| + rm_depth = depth;
|
| +
|
| + // If the node to remove is not a leaf node, we need to get a
|
| + // leaf node, or a node with a single leaf as its child, to put
|
| + // in the place of the node to remove. We will get the greatest
|
| + // node in the less subtree (of the node to remove), or the least
|
| + // node in the greater subtree. We take the leaf node from the
|
| + // deeper subtree, if there is one.
|
| +
|
| + if (get_bf(h) < 0) {
|
| + child = get_lt(h);
|
| + branch[depth] = false;
|
| + cmp = -1;
|
| + } else {
|
| + child = get_gt(h);
|
| + branch[depth] = true;
|
| + cmp = 1;
|
| + }
|
| + depth++;
|
| +
|
| + if (child != null()) {
|
| + cmp = -cmp;
|
| + do {
|
| + parent = h;
|
| + h = child;
|
| + if (cmp < 0) {
|
| + child = get_lt(h);
|
| + branch[depth] = false;
|
| + } else {
|
| + child = get_gt(h);
|
| + branch[depth] = true;
|
| + }
|
| + depth++;
|
| + } while (child != null());
|
| +
|
| + if (parent == rm) {
|
| + // Only went through do loop once. Deleted node will be replaced
|
| + // in the tree structure by one of its immediate children.
|
| + cmp_shortened_sub_with_path = -cmp;
|
| + } else {
|
| + cmp_shortened_sub_with_path = cmp;
|
| + }
|
| +
|
| + // Get the handle of the opposite child, which may not be null.
|
| + child = cmp > 0 ? get_lt(h) : get_gt(h);
|
| + }
|
| +
|
| + if (parent == null()) {
|
| + // There were only 1 or 2 nodes in this tree.
|
| + abs.root = child;
|
| + } else if (cmp_shortened_sub_with_path < 0) {
|
| + set_lt(parent, child);
|
| + } else {
|
| + set_gt(parent, child);
|
| + }
|
| +
|
| + // "path" is the parent of the subtree being eliminated or reduced
|
| + // from a depth of 2 to 1. If "path" is the node to be removed, we
|
| + // set path to the node we're about to poke into the position of the
|
| + // node to be removed.
|
| + handle path = parent == rm ? h : parent;
|
| +
|
| + if (h != rm) {
|
| + // Poke in the replacement for the node to be removed.
|
| + set_lt(h, get_lt(rm));
|
| + set_gt(h, get_gt(rm));
|
| + set_bf(h, get_bf(rm));
|
| + if (parent_rm == null()) {
|
| + abs.root = h;
|
| + } else {
|
| + depth = rm_depth - 1;
|
| + if (branch[depth])
|
| + set_gt(parent_rm, h);
|
| + else
|
| + set_lt(parent_rm, h);
|
| + }
|
| + }
|
| +
|
| + if (path != null()) {
|
| + // Create a temporary linked list from the parent of the path node
|
| + // to the root node.
|
| + h = abs.root;
|
| + parent = null();
|
| + depth = 0;
|
| + while (h != path) {
|
| + if (branch[depth++]) {
|
| + child = get_gt(h);
|
| + set_gt(h, parent);
|
| + } else {
|
| + child = get_lt(h);
|
| + set_lt(h, parent);
|
| + }
|
| + parent = h;
|
| + h = child;
|
| + }
|
| +
|
| + // Climb from the path node to the root node using the linked
|
| + // list, restoring the tree structure and rebalancing as necessary.
|
| + bool reduced_depth = true;
|
| + int bf;
|
| + cmp = cmp_shortened_sub_with_path;
|
| + for (;;) {
|
| + if (reduced_depth) {
|
| + bf = get_bf(h);
|
| + if (cmp < 0)
|
| + bf++;
|
| + else // cmp > 0
|
| + bf--;
|
| + if ((bf == -2) || (bf == 2)) {
|
| + h = balance(h);
|
| + bf = get_bf(h);
|
| + } else {
|
| + set_bf(h, bf);
|
| + }
|
| + reduced_depth = (bf == 0);
|
| + }
|
| + if (parent == null())
|
| + break;
|
| + child = h;
|
| + h = parent;
|
| + cmp = branch[--depth] ? 1 : -1;
|
| + if (cmp < 0) {
|
| + parent = get_lt(h);
|
| + set_lt(h, child);
|
| + } else {
|
| + parent = get_gt(h);
|
| + set_gt(h, child);
|
| + }
|
| + }
|
| + abs.root = h;
|
| + }
|
| +
|
| + return rm;
|
| +}
|
| +
|
| +template <class Abstractor, unsigned maxDepth, class BSet>
|
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| +AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) {
|
| + handle h = abs.root;
|
| + handle parent = null();
|
| + int cmp, last_cmp;
|
| +
|
| + // Search for node already in tree with same key.
|
| + for (;;) {
|
| + if (h == null()) {
|
| + // No node in tree with same key as new node.
|
| + return null();
|
| + }
|
| + cmp = cmp_n_n(new_node, h);
|
| + if (cmp == 0) {
|
| + // Found the node to substitute new one for.
|
| + break;
|
| + }
|
| + last_cmp = cmp;
|
| + parent = h;
|
| + h = cmp < 0 ? get_lt(h) : get_gt(h);
|
| + }
|
| +
|
| + // Copy tree housekeeping fields from node in tree to new node.
|
| + set_lt(new_node, get_lt(h));
|
| + set_gt(new_node, get_gt(h));
|
| + set_bf(new_node, get_bf(h));
|
| +
|
| + if (parent == null()) {
|
| + // New node is also new root.
|
| + abs.root = new_node;
|
| + } else {
|
| + // Make parent point to new node.
|
| + if (last_cmp < 0)
|
| + set_lt(parent, new_node);
|
| + else
|
| + set_gt(parent, new_node);
|
| + }
|
| +
|
| + return h;
|
| +}
|
| +
|
| +} // namespace content
|
| +
|
| +#endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
|
|
|