OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (C) 2008 Apple Inc. All rights reserved. |
| 3 * |
| 4 * Based on Abstract AVL Tree Template v1.5 by Walt Karas |
| 5 * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>. |
| 6 * |
| 7 * Redistribution and use in source and binary forms, with or without |
| 8 * modification, are permitted provided that the following conditions |
| 9 * are met: |
| 10 * |
| 11 * 1. Redistributions of source code must retain the above copyright |
| 12 * notice, this list of conditions and the following disclaimer. |
| 13 * 2. Redistributions in binary form must reproduce the above copyright |
| 14 * notice, this list of conditions and the following disclaimer in the |
| 15 * documentation and/or other materials provided with the distribution. |
| 16 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
| 17 * its contributors may be used to endorse or promote products derived |
| 18 * from this software without specific prior written permission. |
| 19 * |
| 20 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 23 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 24 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 */ |
| 31 |
| 32 #ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
| 33 #define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
| 34 |
| 35 #include "base/logging.h" |
| 36 #include "content/browser/indexed_db/leveldb/fixed_array.h" |
| 37 |
| 38 namespace content { |
| 39 |
| 40 // Here is the reference class for BSet. |
| 41 // |
| 42 // class BSet |
| 43 // { |
| 44 // public: |
| 45 // |
| 46 // class ANY_bitref |
| 47 // { |
| 48 // public: |
| 49 // operator bool (); |
| 50 // void operator = (bool b); |
| 51 // }; |
| 52 // |
| 53 // // Does not have to initialize bits. |
| 54 // BSet(); |
| 55 // |
| 56 // // Must return a valid value for index when 0 <= index < maxDepth |
| 57 // ANY_bitref operator [] (unsigned index); |
| 58 // |
| 59 // // Set all bits to 1. |
| 60 // void set(); |
| 61 // |
| 62 // // Set all bits to 0. |
| 63 // void reset(); |
| 64 // }; |
| 65 |
| 66 template <unsigned maxDepth> class AVLTreeDefaultBSet { |
| 67 public: |
| 68 bool& operator[](unsigned i) { |
| 69 #if defined(ADDRESS_SANITIZER) |
| 70 CHECK(i < maxDepth); |
| 71 #endif |
| 72 return m_data[i]; |
| 73 } |
| 74 void set() { |
| 75 for (unsigned i = 0; i < maxDepth; ++i) |
| 76 m_data[i] = true; |
| 77 } |
| 78 void reset() { |
| 79 for (unsigned i = 0; i < maxDepth; ++i) |
| 80 m_data[i] = false; |
| 81 } |
| 82 |
| 83 private: |
| 84 FixedArray<bool, maxDepth> m_data; |
| 85 }; |
| 86 |
| 87 // How to determine maxDepth: |
| 88 // d Minimum number of nodes |
| 89 // 2 2 |
| 90 // 3 4 |
| 91 // 4 7 |
| 92 // 5 12 |
| 93 // 6 20 |
| 94 // 7 33 |
| 95 // 8 54 |
| 96 // 9 88 |
| 97 // 10 143 |
| 98 // 11 232 |
| 99 // 12 376 |
| 100 // 13 609 |
| 101 // 14 986 |
| 102 // 15 1,596 |
| 103 // 16 2,583 |
| 104 // 17 4,180 |
| 105 // 18 6,764 |
| 106 // 19 10,945 |
| 107 // 20 17,710 |
| 108 // 21 28,656 |
| 109 // 22 46,367 |
| 110 // 23 75,024 |
| 111 // 24 121,392 |
| 112 // 25 196,417 |
| 113 // 26 317,810 |
| 114 // 27 514,228 |
| 115 // 28 832,039 |
| 116 // 29 1,346,268 |
| 117 // 30 2,178,308 |
| 118 // 31 3,524,577 |
| 119 // 32 5,702,886 |
| 120 // 33 9,227,464 |
| 121 // 34 14,930,351 |
| 122 // 35 24,157,816 |
| 123 // 36 39,088,168 |
| 124 // 37 63,245,985 |
| 125 // 38 102,334,154 |
| 126 // 39 165,580,140 |
| 127 // 40 267,914,295 |
| 128 // 41 433,494,436 |
| 129 // 42 701,408,732 |
| 130 // 43 1,134,903,169 |
| 131 // 44 1,836,311,902 |
| 132 // 45 2,971,215,072 |
| 133 // |
| 134 // E.g., if, in a particular instantiation, the maximum number of nodes in a |
| 135 // tree instance is 1,000,000, the maximum depth should be 28. |
| 136 // You pick 28 because MN(28) is 832,039, which is less than or equal to |
| 137 // 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000. |
| 138 |
| 139 template <class Abstractor, |
| 140 unsigned maxDepth = 32, |
| 141 class BSet = AVLTreeDefaultBSet<maxDepth> > |
| 142 class AVLTree { |
| 143 public: |
| 144 |
| 145 typedef typename Abstractor::key key; |
| 146 typedef typename Abstractor::handle handle; |
| 147 typedef typename Abstractor::size size; |
| 148 |
| 149 enum SearchType { |
| 150 EQUAL = 1, |
| 151 LESS = 2, |
| 152 GREATER = 4, |
| 153 LESS_EQUAL = EQUAL | LESS, |
| 154 GREATER_EQUAL = EQUAL | GREATER |
| 155 }; |
| 156 |
| 157 Abstractor& abstractor() { return abs; } |
| 158 |
| 159 inline handle insert(handle h); |
| 160 |
| 161 inline handle search(key k, SearchType st = EQUAL); |
| 162 inline handle search_least(); |
| 163 inline handle search_greatest(); |
| 164 |
| 165 inline handle remove(key k); |
| 166 |
| 167 inline handle subst(handle new_node); |
| 168 |
| 169 void purge() { abs.root = null(); } |
| 170 |
| 171 bool is_empty() { return abs.root == null(); } |
| 172 |
| 173 AVLTree() { abs.root = null(); } |
| 174 |
| 175 class Iterator { |
| 176 public: |
| 177 |
| 178 // Initialize depth to invalid value, to indicate iterator is |
| 179 // invalid. (Depth is zero-base.) |
| 180 Iterator() { depth = ~0U; } |
| 181 |
| 182 void start_iter(AVLTree& tree, key k, SearchType st = EQUAL) { |
| 183 // Mask of high bit in an int. |
| 184 const int MASK_HIGH_BIT = (int) ~((~(unsigned) 0) >> 1); |
| 185 |
| 186 // Save the tree that we're going to iterate through in a |
| 187 // member variable. |
| 188 tree_ = &tree; |
| 189 |
| 190 int cmp, target_cmp; |
| 191 handle h = tree_->abs.root; |
| 192 unsigned d = 0; |
| 193 |
| 194 depth = ~0U; |
| 195 |
| 196 if (h == null()) { |
| 197 // Tree is empty. |
| 198 return; |
| 199 } |
| 200 |
| 201 if (st & LESS) { |
| 202 // Key can be greater than key of starting node. |
| 203 target_cmp = 1; |
| 204 } else if (st & GREATER) { |
| 205 // Key can be less than key of starting node. |
| 206 target_cmp = -1; |
| 207 } else { |
| 208 // Key must be same as key of starting node. |
| 209 target_cmp = 0; |
| 210 } |
| 211 |
| 212 for (;;) { |
| 213 cmp = cmp_k_n(k, h); |
| 214 if (cmp == 0) { |
| 215 if (st & EQUAL) { |
| 216 // Equal node was sought and found as starting node. |
| 217 depth = d; |
| 218 break; |
| 219 } |
| 220 cmp = -target_cmp; |
| 221 } else if (target_cmp != 0) { |
| 222 if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) { |
| 223 // cmp and target_cmp are both negative or both positive. |
| 224 depth = d; |
| 225 } |
| 226 } |
| 227 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 228 if (h == null()) |
| 229 break; |
| 230 branch[d] = cmp > 0; |
| 231 path_h[d++] = h; |
| 232 } |
| 233 } |
| 234 |
| 235 void start_iter_least(AVLTree& tree) { |
| 236 tree_ = &tree; |
| 237 |
| 238 handle h = tree_->abs.root; |
| 239 |
| 240 depth = ~0U; |
| 241 |
| 242 branch.reset(); |
| 243 |
| 244 while (h != null()) { |
| 245 if (depth != ~0U) |
| 246 path_h[depth] = h; |
| 247 depth++; |
| 248 h = get_lt(h); |
| 249 } |
| 250 } |
| 251 |
| 252 void start_iter_greatest(AVLTree& tree) { |
| 253 tree_ = &tree; |
| 254 |
| 255 handle h = tree_->abs.root; |
| 256 |
| 257 depth = ~0U; |
| 258 |
| 259 branch.set(); |
| 260 |
| 261 while (h != null()) { |
| 262 if (depth != ~0U) |
| 263 path_h[depth] = h; |
| 264 depth++; |
| 265 h = get_gt(h); |
| 266 } |
| 267 } |
| 268 |
| 269 handle operator*() { |
| 270 if (depth == ~0U) |
| 271 return null(); |
| 272 |
| 273 return depth == 0 ? tree_->abs.root : path_h[depth - 1]; |
| 274 } |
| 275 |
| 276 void operator++() { |
| 277 if (depth != ~0U) { |
| 278 handle h = get_gt(**this); |
| 279 if (h == null()) { |
| 280 do { |
| 281 if (depth == 0) { |
| 282 depth = ~0U; |
| 283 break; |
| 284 } |
| 285 depth--; |
| 286 } while (branch[depth]); |
| 287 } else { |
| 288 branch[depth] = true; |
| 289 path_h[depth++] = h; |
| 290 for (;;) { |
| 291 h = get_lt(h); |
| 292 if (h == null()) |
| 293 break; |
| 294 branch[depth] = false; |
| 295 path_h[depth++] = h; |
| 296 } |
| 297 } |
| 298 } |
| 299 } |
| 300 |
| 301 void operator--() { |
| 302 if (depth != ~0U) { |
| 303 handle h = get_lt(**this); |
| 304 if (h == null()) { |
| 305 do { |
| 306 if (depth == 0) { |
| 307 depth = ~0U; |
| 308 break; |
| 309 } |
| 310 depth--; |
| 311 } while (!branch[depth]); |
| 312 } else { |
| 313 branch[depth] = false; |
| 314 path_h[depth++] = h; |
| 315 for (;;) { |
| 316 h = get_gt(h); |
| 317 if (h == null()) |
| 318 break; |
| 319 branch[depth] = true; |
| 320 path_h[depth++] = h; |
| 321 } |
| 322 } |
| 323 } |
| 324 } |
| 325 |
| 326 void operator++(int) { ++(*this); } |
| 327 void operator--(int) { --(*this); } |
| 328 |
| 329 protected: |
| 330 |
| 331 // Tree being iterated over. |
| 332 AVLTree* tree_; |
| 333 |
| 334 // Records a path into the tree. If branch[n] is true, indicates |
| 335 // take greater branch from the nth node in the path, otherwise |
| 336 // take the less branch. branch[0] gives branch from root, and |
| 337 // so on. |
| 338 BSet branch; |
| 339 |
| 340 // Zero-based depth of path into tree. |
| 341 unsigned depth; |
| 342 |
| 343 // Handles of nodes in path from root to current node (returned by *). |
| 344 handle path_h[maxDepth - 1]; |
| 345 |
| 346 int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); } |
| 347 int cmp_n_n(handle h1, handle h2) { |
| 348 return tree_->abs.compare_node_node(h1, h2); |
| 349 } |
| 350 handle get_lt(handle h) { return tree_->abs.get_less(h); } |
| 351 handle get_gt(handle h) { return tree_->abs.get_greater(h); } |
| 352 handle null() { return tree_->abs.null(); } |
| 353 }; |
| 354 |
| 355 template <typename fwd_iter> bool build(fwd_iter p, size num_nodes) { |
| 356 if (num_nodes == 0) { |
| 357 abs.root = null(); |
| 358 return true; |
| 359 } |
| 360 |
| 361 // Gives path to subtree being built. If branch[N] is false, branch |
| 362 // less from the node at depth N, if true branch greater. |
| 363 BSet branch; |
| 364 |
| 365 // If rem[N] is true, then for the current subtree at depth N, it's |
| 366 // greater subtree has one more node than it's less subtree. |
| 367 BSet rem; |
| 368 |
| 369 // Depth of root node of current subtree. |
| 370 unsigned depth = 0; |
| 371 |
| 372 // Number of nodes in current subtree. |
| 373 size num_sub = num_nodes; |
| 374 |
| 375 // The algorithm relies on a stack of nodes whose less subtree has |
| 376 // been built, but whose right subtree has not yet been built. The |
| 377 // stack is implemented as linked list. The nodes are linked |
| 378 // together by having the "greater" handle of a node set to the |
| 379 // next node in the list. "less_parent" is the handle of the first |
| 380 // node in the list. |
| 381 handle less_parent = null(); |
| 382 |
| 383 // h is root of current subtree, child is one of its children. |
| 384 handle h, child; |
| 385 |
| 386 for (;;) { |
| 387 while (num_sub > 2) { |
| 388 // Subtract one for root of subtree. |
| 389 num_sub--; |
| 390 rem[depth] = !!(num_sub & 1); |
| 391 branch[depth++] = false; |
| 392 num_sub >>= 1; |
| 393 } |
| 394 |
| 395 if (num_sub == 2) { |
| 396 // Build a subtree with two nodes, slanting to greater. |
| 397 // I arbitrarily chose to always have the extra node in the |
| 398 // greater subtree when there is an odd number of nodes to |
| 399 // split between the two subtrees. |
| 400 |
| 401 h = *p; |
| 402 p++; |
| 403 child = *p; |
| 404 p++; |
| 405 set_lt(child, null()); |
| 406 set_gt(child, null()); |
| 407 set_bf(child, 0); |
| 408 set_gt(h, child); |
| 409 set_lt(h, null()); |
| 410 set_bf(h, 1); |
| 411 } else { // num_sub == 1 |
| 412 // Build a subtree with one node. |
| 413 |
| 414 h = *p; |
| 415 p++; |
| 416 set_lt(h, null()); |
| 417 set_gt(h, null()); |
| 418 set_bf(h, 0); |
| 419 } |
| 420 |
| 421 while (depth) { |
| 422 depth--; |
| 423 if (!branch[depth]) { |
| 424 // We've completed a less subtree. |
| 425 break; |
| 426 } |
| 427 |
| 428 // We've completed a greater subtree, so attach it to |
| 429 // its parent (that is less than it). We pop the parent |
| 430 // off the stack of less parents. |
| 431 child = h; |
| 432 h = less_parent; |
| 433 less_parent = get_gt(h); |
| 434 set_gt(h, child); |
| 435 // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1 |
| 436 num_sub <<= 1; |
| 437 num_sub += 1 - rem[depth]; |
| 438 if (num_sub & (num_sub - 1)) { |
| 439 // num_sub is not a power of 2 |
| 440 set_bf(h, 0); |
| 441 } else { |
| 442 // num_sub is a power of 2 |
| 443 set_bf(h, 1); |
| 444 } |
| 445 } |
| 446 |
| 447 if (num_sub == num_nodes) { |
| 448 // We've completed the full tree. |
| 449 break; |
| 450 } |
| 451 |
| 452 // The subtree we've completed is the less subtree of the |
| 453 // next node in the sequence. |
| 454 |
| 455 child = h; |
| 456 h = *p; |
| 457 p++; |
| 458 set_lt(h, child); |
| 459 |
| 460 // Put h into stack of less parents. |
| 461 set_gt(h, less_parent); |
| 462 less_parent = h; |
| 463 |
| 464 // Proceed to creating greater than subtree of h. |
| 465 branch[depth] = true; |
| 466 num_sub += rem[depth++]; |
| 467 |
| 468 } // end for (;;) |
| 469 |
| 470 abs.root = h; |
| 471 |
| 472 return true; |
| 473 } |
| 474 |
| 475 protected: |
| 476 |
| 477 friend class Iterator; |
| 478 |
| 479 // Create a class whose sole purpose is to take advantage of |
| 480 // the "empty member" optimization. |
| 481 struct abs_plus_root : public Abstractor { |
| 482 // The handle of the root element in the AVL tree. |
| 483 handle root; |
| 484 }; |
| 485 |
| 486 abs_plus_root abs; |
| 487 |
| 488 handle get_lt(handle h) { return abs.get_less(h); } |
| 489 void set_lt(handle h, handle lh) { abs.set_less(h, lh); } |
| 490 |
| 491 handle get_gt(handle h) { return abs.get_greater(h); } |
| 492 void set_gt(handle h, handle gh) { abs.set_greater(h, gh); } |
| 493 |
| 494 int get_bf(handle h) { return abs.get_balance_factor(h); } |
| 495 void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); } |
| 496 |
| 497 int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); } |
| 498 int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); } |
| 499 |
| 500 handle null() { return abs.null(); } |
| 501 |
| 502 private: |
| 503 |
| 504 // Balances subtree, returns handle of root node of subtree |
| 505 // after balancing. |
| 506 handle balance(handle bal_h) { |
| 507 handle deep_h; |
| 508 |
| 509 // Either the "greater than" or the "less than" subtree of |
| 510 // this node has to be 2 levels deeper (or else it wouldn't |
| 511 // need balancing). |
| 512 |
| 513 if (get_bf(bal_h) > 0) { |
| 514 // "Greater than" subtree is deeper. |
| 515 |
| 516 deep_h = get_gt(bal_h); |
| 517 |
| 518 if (get_bf(deep_h) < 0) { |
| 519 handle old_h = bal_h; |
| 520 bal_h = get_lt(deep_h); |
| 521 |
| 522 set_gt(old_h, get_lt(bal_h)); |
| 523 set_lt(deep_h, get_gt(bal_h)); |
| 524 set_lt(bal_h, old_h); |
| 525 set_gt(bal_h, deep_h); |
| 526 |
| 527 int bf = get_bf(bal_h); |
| 528 if (bf != 0) { |
| 529 if (bf > 0) { |
| 530 set_bf(old_h, -1); |
| 531 set_bf(deep_h, 0); |
| 532 } else { |
| 533 set_bf(deep_h, 1); |
| 534 set_bf(old_h, 0); |
| 535 } |
| 536 set_bf(bal_h, 0); |
| 537 } else { |
| 538 set_bf(old_h, 0); |
| 539 set_bf(deep_h, 0); |
| 540 } |
| 541 } else { |
| 542 set_gt(bal_h, get_lt(deep_h)); |
| 543 set_lt(deep_h, bal_h); |
| 544 if (get_bf(deep_h) == 0) { |
| 545 set_bf(deep_h, -1); |
| 546 set_bf(bal_h, 1); |
| 547 } else { |
| 548 set_bf(deep_h, 0); |
| 549 set_bf(bal_h, 0); |
| 550 } |
| 551 bal_h = deep_h; |
| 552 } |
| 553 } else { |
| 554 // "Less than" subtree is deeper. |
| 555 |
| 556 deep_h = get_lt(bal_h); |
| 557 |
| 558 if (get_bf(deep_h) > 0) { |
| 559 handle old_h = bal_h; |
| 560 bal_h = get_gt(deep_h); |
| 561 set_lt(old_h, get_gt(bal_h)); |
| 562 set_gt(deep_h, get_lt(bal_h)); |
| 563 set_gt(bal_h, old_h); |
| 564 set_lt(bal_h, deep_h); |
| 565 |
| 566 int bf = get_bf(bal_h); |
| 567 if (bf != 0) { |
| 568 if (bf < 0) { |
| 569 set_bf(old_h, 1); |
| 570 set_bf(deep_h, 0); |
| 571 } else { |
| 572 set_bf(deep_h, -1); |
| 573 set_bf(old_h, 0); |
| 574 } |
| 575 set_bf(bal_h, 0); |
| 576 } else { |
| 577 set_bf(old_h, 0); |
| 578 set_bf(deep_h, 0); |
| 579 } |
| 580 } else { |
| 581 set_lt(bal_h, get_gt(deep_h)); |
| 582 set_gt(deep_h, bal_h); |
| 583 if (get_bf(deep_h) == 0) { |
| 584 set_bf(deep_h, 1); |
| 585 set_bf(bal_h, -1); |
| 586 } else { |
| 587 set_bf(deep_h, 0); |
| 588 set_bf(bal_h, 0); |
| 589 } |
| 590 bal_h = deep_h; |
| 591 } |
| 592 } |
| 593 |
| 594 return bal_h; |
| 595 } |
| 596 |
| 597 }; |
| 598 |
| 599 template <class Abstractor, unsigned maxDepth, class BSet> |
| 600 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 601 AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) { |
| 602 set_lt(h, null()); |
| 603 set_gt(h, null()); |
| 604 set_bf(h, 0); |
| 605 |
| 606 if (abs.root == null()) { |
| 607 abs.root = h; |
| 608 } else { |
| 609 // Last unbalanced node encountered in search for insertion point. |
| 610 handle unbal = null(); |
| 611 // Parent of last unbalanced node. |
| 612 handle parent_unbal = null(); |
| 613 // Balance factor of last unbalanced node. |
| 614 int unbal_bf; |
| 615 |
| 616 // Zero-based depth in tree. |
| 617 unsigned depth = 0, unbal_depth = 0; |
| 618 |
| 619 // Records a path into the tree. If branch[n] is true, indicates |
| 620 // take greater branch from the nth node in the path, otherwise |
| 621 // take the less branch. branch[0] gives branch from root, and |
| 622 // so on. |
| 623 BSet branch; |
| 624 |
| 625 handle hh = abs.root; |
| 626 handle parent = null(); |
| 627 int cmp; |
| 628 |
| 629 do { |
| 630 if (get_bf(hh) != 0) { |
| 631 unbal = hh; |
| 632 parent_unbal = parent; |
| 633 unbal_depth = depth; |
| 634 } |
| 635 cmp = cmp_n_n(h, hh); |
| 636 if (cmp == 0) { |
| 637 // Duplicate key. |
| 638 return hh; |
| 639 } |
| 640 parent = hh; |
| 641 hh = cmp < 0 ? get_lt(hh) : get_gt(hh); |
| 642 branch[depth++] = cmp > 0; |
| 643 } while (hh != null()); |
| 644 |
| 645 // Add node to insert as leaf of tree. |
| 646 if (cmp < 0) |
| 647 set_lt(parent, h); |
| 648 else |
| 649 set_gt(parent, h); |
| 650 |
| 651 depth = unbal_depth; |
| 652 |
| 653 if (unbal == null()) { |
| 654 hh = abs.root; |
| 655 } else { |
| 656 cmp = branch[depth++] ? 1 : -1; |
| 657 unbal_bf = get_bf(unbal); |
| 658 if (cmp < 0) |
| 659 unbal_bf--; |
| 660 else // cmp > 0 |
| 661 unbal_bf++; |
| 662 hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal); |
| 663 if ((unbal_bf != -2) && (unbal_bf != 2)) { |
| 664 // No rebalancing of tree is necessary. |
| 665 set_bf(unbal, unbal_bf); |
| 666 unbal = null(); |
| 667 } |
| 668 } |
| 669 |
| 670 if (hh != null()) |
| 671 while (h != hh) { |
| 672 cmp = branch[depth++] ? 1 : -1; |
| 673 if (cmp < 0) { |
| 674 set_bf(hh, -1); |
| 675 hh = get_lt(hh); |
| 676 } else { // cmp > 0 |
| 677 set_bf(hh, 1); |
| 678 hh = get_gt(hh); |
| 679 } |
| 680 } |
| 681 |
| 682 if (unbal != null()) { |
| 683 unbal = balance(unbal); |
| 684 if (parent_unbal == null()) { |
| 685 abs.root = unbal; |
| 686 } else { |
| 687 depth = unbal_depth - 1; |
| 688 cmp = branch[depth] ? 1 : -1; |
| 689 if (cmp < 0) |
| 690 set_lt(parent_unbal, unbal); |
| 691 else // cmp > 0 |
| 692 set_gt(parent_unbal, unbal); |
| 693 } |
| 694 } |
| 695 } |
| 696 |
| 697 return h; |
| 698 } |
| 699 |
| 700 template <class Abstractor, unsigned maxDepth, class BSet> |
| 701 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 702 AVLTree<Abstractor, maxDepth, BSet>::search( |
| 703 key k, |
| 704 typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) { |
| 705 const int MASK_HIGH_BIT = (int) ~((~(unsigned) 0) >> 1); |
| 706 |
| 707 int cmp, target_cmp; |
| 708 handle match_h = null(); |
| 709 handle h = abs.root; |
| 710 |
| 711 if (st & LESS) |
| 712 target_cmp = 1; |
| 713 else if (st & GREATER) |
| 714 target_cmp = -1; |
| 715 else |
| 716 target_cmp = 0; |
| 717 |
| 718 while (h != null()) { |
| 719 cmp = cmp_k_n(k, h); |
| 720 if (cmp == 0) { |
| 721 if (st & EQUAL) { |
| 722 match_h = h; |
| 723 break; |
| 724 } |
| 725 cmp = -target_cmp; |
| 726 } else if (target_cmp != 0) { |
| 727 if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) { |
| 728 // cmp and target_cmp are both positive or both negative. |
| 729 match_h = h; |
| 730 } |
| 731 } |
| 732 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 733 } |
| 734 |
| 735 return match_h; |
| 736 } |
| 737 |
| 738 template <class Abstractor, unsigned maxDepth, class BSet> |
| 739 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 740 AVLTree<Abstractor, maxDepth, BSet>::search_least() { |
| 741 handle h = abs.root, parent = null(); |
| 742 |
| 743 while (h != null()) { |
| 744 parent = h; |
| 745 h = get_lt(h); |
| 746 } |
| 747 |
| 748 return parent; |
| 749 } |
| 750 |
| 751 template <class Abstractor, unsigned maxDepth, class BSet> |
| 752 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 753 AVLTree<Abstractor, maxDepth, BSet>::search_greatest() { |
| 754 handle h = abs.root, parent = null(); |
| 755 |
| 756 while (h != null()) { |
| 757 parent = h; |
| 758 h = get_gt(h); |
| 759 } |
| 760 |
| 761 return parent; |
| 762 } |
| 763 |
| 764 template <class Abstractor, unsigned maxDepth, class BSet> |
| 765 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 766 AVLTree<Abstractor, maxDepth, BSet>::remove(key k) { |
| 767 // Zero-based depth in tree. |
| 768 unsigned depth = 0, rm_depth; |
| 769 |
| 770 // Records a path into the tree. If branch[n] is true, indicates |
| 771 // take greater branch from the nth node in the path, otherwise |
| 772 // take the less branch. branch[0] gives branch from root, and |
| 773 // so on. |
| 774 BSet branch; |
| 775 |
| 776 handle h = abs.root; |
| 777 handle parent = null(), child; |
| 778 int cmp, cmp_shortened_sub_with_path = 0; |
| 779 |
| 780 for (;;) { |
| 781 if (h == null()) { |
| 782 // No node in tree with given key. |
| 783 return null(); |
| 784 } |
| 785 cmp = cmp_k_n(k, h); |
| 786 if (cmp == 0) { |
| 787 // Found node to remove. |
| 788 break; |
| 789 } |
| 790 parent = h; |
| 791 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 792 branch[depth++] = cmp > 0; |
| 793 cmp_shortened_sub_with_path = cmp; |
| 794 } |
| 795 handle rm = h; |
| 796 handle parent_rm = parent; |
| 797 rm_depth = depth; |
| 798 |
| 799 // If the node to remove is not a leaf node, we need to get a |
| 800 // leaf node, or a node with a single leaf as its child, to put |
| 801 // in the place of the node to remove. We will get the greatest |
| 802 // node in the less subtree (of the node to remove), or the least |
| 803 // node in the greater subtree. We take the leaf node from the |
| 804 // deeper subtree, if there is one. |
| 805 |
| 806 if (get_bf(h) < 0) { |
| 807 child = get_lt(h); |
| 808 branch[depth] = false; |
| 809 cmp = -1; |
| 810 } else { |
| 811 child = get_gt(h); |
| 812 branch[depth] = true; |
| 813 cmp = 1; |
| 814 } |
| 815 depth++; |
| 816 |
| 817 if (child != null()) { |
| 818 cmp = -cmp; |
| 819 do { |
| 820 parent = h; |
| 821 h = child; |
| 822 if (cmp < 0) { |
| 823 child = get_lt(h); |
| 824 branch[depth] = false; |
| 825 } else { |
| 826 child = get_gt(h); |
| 827 branch[depth] = true; |
| 828 } |
| 829 depth++; |
| 830 } while (child != null()); |
| 831 |
| 832 if (parent == rm) { |
| 833 // Only went through do loop once. Deleted node will be replaced |
| 834 // in the tree structure by one of its immediate children. |
| 835 cmp_shortened_sub_with_path = -cmp; |
| 836 } else { |
| 837 cmp_shortened_sub_with_path = cmp; |
| 838 } |
| 839 |
| 840 // Get the handle of the opposite child, which may not be null. |
| 841 child = cmp > 0 ? get_lt(h) : get_gt(h); |
| 842 } |
| 843 |
| 844 if (parent == null()) { |
| 845 // There were only 1 or 2 nodes in this tree. |
| 846 abs.root = child; |
| 847 } else if (cmp_shortened_sub_with_path < 0) { |
| 848 set_lt(parent, child); |
| 849 } else { |
| 850 set_gt(parent, child); |
| 851 } |
| 852 |
| 853 // "path" is the parent of the subtree being eliminated or reduced |
| 854 // from a depth of 2 to 1. If "path" is the node to be removed, we |
| 855 // set path to the node we're about to poke into the position of the |
| 856 // node to be removed. |
| 857 handle path = parent == rm ? h : parent; |
| 858 |
| 859 if (h != rm) { |
| 860 // Poke in the replacement for the node to be removed. |
| 861 set_lt(h, get_lt(rm)); |
| 862 set_gt(h, get_gt(rm)); |
| 863 set_bf(h, get_bf(rm)); |
| 864 if (parent_rm == null()) { |
| 865 abs.root = h; |
| 866 } else { |
| 867 depth = rm_depth - 1; |
| 868 if (branch[depth]) |
| 869 set_gt(parent_rm, h); |
| 870 else |
| 871 set_lt(parent_rm, h); |
| 872 } |
| 873 } |
| 874 |
| 875 if (path != null()) { |
| 876 // Create a temporary linked list from the parent of the path node |
| 877 // to the root node. |
| 878 h = abs.root; |
| 879 parent = null(); |
| 880 depth = 0; |
| 881 while (h != path) { |
| 882 if (branch[depth++]) { |
| 883 child = get_gt(h); |
| 884 set_gt(h, parent); |
| 885 } else { |
| 886 child = get_lt(h); |
| 887 set_lt(h, parent); |
| 888 } |
| 889 parent = h; |
| 890 h = child; |
| 891 } |
| 892 |
| 893 // Climb from the path node to the root node using the linked |
| 894 // list, restoring the tree structure and rebalancing as necessary. |
| 895 bool reduced_depth = true; |
| 896 int bf; |
| 897 cmp = cmp_shortened_sub_with_path; |
| 898 for (;;) { |
| 899 if (reduced_depth) { |
| 900 bf = get_bf(h); |
| 901 if (cmp < 0) |
| 902 bf++; |
| 903 else // cmp > 0 |
| 904 bf--; |
| 905 if ((bf == -2) || (bf == 2)) { |
| 906 h = balance(h); |
| 907 bf = get_bf(h); |
| 908 } else { |
| 909 set_bf(h, bf); |
| 910 } |
| 911 reduced_depth = (bf == 0); |
| 912 } |
| 913 if (parent == null()) |
| 914 break; |
| 915 child = h; |
| 916 h = parent; |
| 917 cmp = branch[--depth] ? 1 : -1; |
| 918 if (cmp < 0) { |
| 919 parent = get_lt(h); |
| 920 set_lt(h, child); |
| 921 } else { |
| 922 parent = get_gt(h); |
| 923 set_gt(h, child); |
| 924 } |
| 925 } |
| 926 abs.root = h; |
| 927 } |
| 928 |
| 929 return rm; |
| 930 } |
| 931 |
| 932 template <class Abstractor, unsigned maxDepth, class BSet> |
| 933 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 934 AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) { |
| 935 handle h = abs.root; |
| 936 handle parent = null(); |
| 937 int cmp, last_cmp; |
| 938 |
| 939 // Search for node already in tree with same key. |
| 940 for (;;) { |
| 941 if (h == null()) { |
| 942 // No node in tree with same key as new node. |
| 943 return null(); |
| 944 } |
| 945 cmp = cmp_n_n(new_node, h); |
| 946 if (cmp == 0) { |
| 947 // Found the node to substitute new one for. |
| 948 break; |
| 949 } |
| 950 last_cmp = cmp; |
| 951 parent = h; |
| 952 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 953 } |
| 954 |
| 955 // Copy tree housekeeping fields from node in tree to new node. |
| 956 set_lt(new_node, get_lt(h)); |
| 957 set_gt(new_node, get_gt(h)); |
| 958 set_bf(new_node, get_bf(h)); |
| 959 |
| 960 if (parent == null()) { |
| 961 // New node is also new root. |
| 962 abs.root = new_node; |
| 963 } else { |
| 964 // Make parent point to new node. |
| 965 if (last_cmp < 0) |
| 966 set_lt(parent, new_node); |
| 967 else |
| 968 set_gt(parent, new_node); |
| 969 } |
| 970 |
| 971 return h; |
| 972 } |
| 973 |
| 974 } // namespace content |
| 975 |
| 976 #endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
OLD | NEW |