Index: content/browser/indexed_db/leveldb/avltree.h |
diff --git a/content/browser/indexed_db/leveldb/avltree.h b/content/browser/indexed_db/leveldb/avltree.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..104d69bbc5d5262bcf6d3dad5932bd603b458a23 |
--- /dev/null |
+++ b/content/browser/indexed_db/leveldb/avltree.h |
@@ -0,0 +1,979 @@ |
+// Copyright (c) 2013 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+/* |
+ * Copyright (C) 2008 Apple Inc. All rights reserved. |
+ * |
+ * Based on Abstract AVL Tree Template v1.5 by Walt Karas |
+ * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>. |
+ * |
+ * Redistribution and use in source and binary forms, with or without |
+ * modification, are permitted provided that the following conditions |
+ * are met: |
+ * |
+ * 1. Redistributions of source code must retain the above copyright |
+ * notice, this list of conditions and the following disclaimer. |
+ * 2. Redistributions in binary form must reproduce the above copyright |
+ * notice, this list of conditions and the following disclaimer in the |
+ * documentation and/or other materials provided with the distribution. |
+ * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
+ * its contributors may be used to endorse or promote products derived |
+ * from this software without specific prior written permission. |
+ * |
+ * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
+ * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ */ |
+ |
+#ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
+#define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
+ |
+#include "base/logging.h" |
+#include "content/browser/indexed_db/leveldb/fixed_array.h" |
+ |
+namespace content { |
+ |
+// Here is the reference class for BSet. |
+// |
+// class BSet |
+// { |
+// public: |
+// |
+// class ANY_bitref |
+// { |
+// public: |
+// operator bool (); |
+// void operator = (bool b); |
+// }; |
+// |
+// // Does not have to initialize bits. |
+// BSet(); |
+// |
+// // Must return a valid value for index when 0 <= index < maxDepth |
+// ANY_bitref operator [] (unsigned index); |
+// |
+// // Set all bits to 1. |
+// void set(); |
+// |
+// // Set all bits to 0. |
+// void reset(); |
+// }; |
+ |
+template <unsigned maxDepth> class AVLTreeDefaultBSet { |
+ public: |
+ bool& operator[](unsigned i) { |
+#if defined(ADDRESS_SANITIZER) |
+ CHECK(i < maxDepth); |
+#endif |
+ return m_data[i]; |
+ } |
+ void set() { |
+ for (unsigned i = 0; i < maxDepth; ++i) |
+ m_data[i] = true; |
+ } |
+ void reset() { |
+ for (unsigned i = 0; i < maxDepth; ++i) |
+ m_data[i] = false; |
+ } |
+ |
+ private: |
+ FixedArray<bool, maxDepth> m_data; |
+}; |
+ |
+// How to determine maxDepth: |
+// d Minimum number of nodes |
+// 2 2 |
+// 3 4 |
+// 4 7 |
+// 5 12 |
+// 6 20 |
+// 7 33 |
+// 8 54 |
+// 9 88 |
+// 10 143 |
+// 11 232 |
+// 12 376 |
+// 13 609 |
+// 14 986 |
+// 15 1,596 |
+// 16 2,583 |
+// 17 4,180 |
+// 18 6,764 |
+// 19 10,945 |
+// 20 17,710 |
+// 21 28,656 |
+// 22 46,367 |
+// 23 75,024 |
+// 24 121,392 |
+// 25 196,417 |
+// 26 317,810 |
+// 27 514,228 |
+// 28 832,039 |
+// 29 1,346,268 |
+// 30 2,178,308 |
+// 31 3,524,577 |
+// 32 5,702,886 |
+// 33 9,227,464 |
+// 34 14,930,351 |
+// 35 24,157,816 |
+// 36 39,088,168 |
+// 37 63,245,985 |
+// 38 102,334,154 |
+// 39 165,580,140 |
+// 40 267,914,295 |
+// 41 433,494,436 |
+// 42 701,408,732 |
+// 43 1,134,903,169 |
+// 44 1,836,311,902 |
+// 45 2,971,215,072 |
+// |
+// E.g., if, in a particular instantiation, the maximum number of nodes in a |
+// tree instance is 1,000,000, the maximum depth should be 28. |
+// You pick 28 because MN(28) is 832,039, which is less than or equal to |
+// 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000. |
+ |
+template <class Abstractor, |
+ unsigned maxDepth = 32, |
+ class BSet = AVLTreeDefaultBSet<maxDepth> > |
+class AVLTree { |
+ public: |
+ typedef typename Abstractor::key key; |
+ typedef typename Abstractor::handle handle; |
+ typedef typename Abstractor::size size; |
+ |
+ enum SearchType { |
+ EQUAL = 1, |
+ LESS = 2, |
+ GREATER = 4, |
+ LESS_EQUAL = EQUAL | LESS, |
+ GREATER_EQUAL = EQUAL | GREATER |
+ }; |
+ |
+ Abstractor& abstractor() { return abs; } |
+ |
+ inline handle insert(handle h); |
+ |
+ inline handle search(key k, SearchType st = EQUAL); |
+ inline handle search_least(); |
+ inline handle search_greatest(); |
+ |
+ inline handle remove(key k); |
+ |
+ inline handle subst(handle new_node); |
+ |
+ void purge() { abs.root = null(); } |
+ |
+ bool is_empty() { return abs.root == null(); } |
+ |
+ AVLTree() { abs.root = null(); } |
+ |
+ class Iterator { |
+ public: |
+ // Initialize depth to invalid value, to indicate iterator is |
+ // invalid. (Depth is zero-base.) |
+ Iterator() { depth = ~0U; } |
+ |
+ void start_iter(AVLTree& tree, key k, SearchType st = EQUAL) { |
+ // Mask of high bit in an int. |
+ const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1); |
+ |
+ // Save the tree that we're going to iterate through in a |
+ // member variable. |
+ tree_ = &tree; |
+ |
+ int cmp, target_cmp; |
+ handle h = tree_->abs.root; |
+ unsigned d = 0; |
+ |
+ depth = ~0U; |
+ |
+ if (h == null()) { |
+ // Tree is empty. |
+ return; |
+ } |
+ |
+ if (st & LESS) { |
+ // Key can be greater than key of starting node. |
+ target_cmp = 1; |
+ } else if (st & GREATER) { |
+ // Key can be less than key of starting node. |
+ target_cmp = -1; |
+ } else { |
+ // Key must be same as key of starting node. |
+ target_cmp = 0; |
+ } |
+ |
+ for (;;) { |
+ cmp = cmp_k_n(k, h); |
+ if (cmp == 0) { |
+ if (st & EQUAL) { |
+ // Equal node was sought and found as starting node. |
+ depth = d; |
+ break; |
+ } |
+ cmp = -target_cmp; |
+ } else if (target_cmp != 0) { |
+ if (!((cmp ^ target_cmp) & kMaskHighBit)) { |
+ // cmp and target_cmp are both negative or both positive. |
+ depth = d; |
+ } |
+ } |
+ h = cmp < 0 ? get_lt(h) : get_gt(h); |
+ if (h == null()) |
+ break; |
+ branch[d] = cmp > 0; |
+ path_h[d++] = h; |
+ } |
+ } |
+ |
+ void start_iter_least(AVLTree& tree) { |
+ tree_ = &tree; |
+ |
+ handle h = tree_->abs.root; |
+ |
+ depth = ~0U; |
+ |
+ branch.reset(); |
+ |
+ while (h != null()) { |
+ if (depth != ~0U) |
+ path_h[depth] = h; |
+ depth++; |
+ h = get_lt(h); |
+ } |
+ } |
+ |
+ void start_iter_greatest(AVLTree& tree) { |
+ tree_ = &tree; |
+ |
+ handle h = tree_->abs.root; |
+ |
+ depth = ~0U; |
+ |
+ branch.set(); |
+ |
+ while (h != null()) { |
+ if (depth != ~0U) |
+ path_h[depth] = h; |
+ depth++; |
+ h = get_gt(h); |
+ } |
+ } |
+ |
+ handle operator*() { |
+ if (depth == ~0U) |
+ return null(); |
+ |
+ return depth == 0 ? tree_->abs.root : path_h[depth - 1]; |
+ } |
+ |
+ void operator++() { |
+ if (depth != ~0U) { |
+ handle h = get_gt(**this); |
+ if (h == null()) { |
+ do { |
+ if (depth == 0) { |
+ depth = ~0U; |
+ break; |
+ } |
+ depth--; |
+ } while (branch[depth]); |
+ } else { |
+ branch[depth] = true; |
+ path_h[depth++] = h; |
+ for (;;) { |
+ h = get_lt(h); |
+ if (h == null()) |
+ break; |
+ branch[depth] = false; |
+ path_h[depth++] = h; |
+ } |
+ } |
+ } |
+ } |
+ |
+ void operator--() { |
+ if (depth != ~0U) { |
+ handle h = get_lt(**this); |
+ if (h == null()) { |
+ do { |
+ if (depth == 0) { |
+ depth = ~0U; |
+ break; |
+ } |
+ depth--; |
+ } while (!branch[depth]); |
+ } else { |
+ branch[depth] = false; |
+ path_h[depth++] = h; |
+ for (;;) { |
+ h = get_gt(h); |
+ if (h == null()) |
+ break; |
+ branch[depth] = true; |
+ path_h[depth++] = h; |
+ } |
+ } |
+ } |
+ } |
+ |
+ void operator++(int) { ++(*this); } |
+ void operator--(int) { --(*this); } |
+ |
+ protected: |
+ |
+ // Tree being iterated over. |
+ AVLTree* tree_; |
+ |
+ // Records a path into the tree. If branch[n] is true, indicates |
+ // take greater branch from the nth node in the path, otherwise |
+ // take the less branch. branch[0] gives branch from root, and |
+ // so on. |
+ BSet branch; |
+ |
+ // Zero-based depth of path into tree. |
+ unsigned depth; |
+ |
+ // Handles of nodes in path from root to current node (returned by *). |
+ handle path_h[maxDepth - 1]; |
+ |
+ int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); } |
+ int cmp_n_n(handle h1, handle h2) { |
+ return tree_->abs.compare_node_node(h1, h2); |
+ } |
+ handle get_lt(handle h) { return tree_->abs.get_less(h); } |
+ handle get_gt(handle h) { return tree_->abs.get_greater(h); } |
+ handle null() { return tree_->abs.null(); } |
+ }; |
+ |
+ template <typename fwd_iter> bool build(fwd_iter p, size num_nodes) { |
+ if (num_nodes == 0) { |
+ abs.root = null(); |
+ return true; |
+ } |
+ |
+ // Gives path to subtree being built. If branch[N] is false, branch |
+ // less from the node at depth N, if true branch greater. |
+ BSet branch; |
+ |
+ // If rem[N] is true, then for the current subtree at depth N, it's |
+ // greater subtree has one more node than it's less subtree. |
+ BSet rem; |
+ |
+ // Depth of root node of current subtree. |
+ unsigned depth = 0; |
+ |
+ // Number of nodes in current subtree. |
+ size num_sub = num_nodes; |
+ |
+ // The algorithm relies on a stack of nodes whose less subtree has |
+ // been built, but whose right subtree has not yet been built. The |
+ // stack is implemented as linked list. The nodes are linked |
+ // together by having the "greater" handle of a node set to the |
+ // next node in the list. "less_parent" is the handle of the first |
+ // node in the list. |
+ handle less_parent = null(); |
+ |
+ // h is root of current subtree, child is one of its children. |
+ handle h, child; |
+ |
+ for (;;) { |
+ while (num_sub > 2) { |
+ // Subtract one for root of subtree. |
+ num_sub--; |
+ rem[depth] = !!(num_sub & 1); |
+ branch[depth++] = false; |
+ num_sub >>= 1; |
+ } |
+ |
+ if (num_sub == 2) { |
+ // Build a subtree with two nodes, slanting to greater. |
+ // I arbitrarily chose to always have the extra node in the |
+ // greater subtree when there is an odd number of nodes to |
+ // split between the two subtrees. |
+ |
+ h = *p; |
+ p++; |
+ child = *p; |
+ p++; |
+ set_lt(child, null()); |
+ set_gt(child, null()); |
+ set_bf(child, 0); |
+ set_gt(h, child); |
+ set_lt(h, null()); |
+ set_bf(h, 1); |
+ } else { // num_sub == 1 |
+ // Build a subtree with one node. |
+ |
+ h = *p; |
+ p++; |
+ set_lt(h, null()); |
+ set_gt(h, null()); |
+ set_bf(h, 0); |
+ } |
+ |
+ while (depth) { |
+ depth--; |
+ if (!branch[depth]) { |
+ // We've completed a less subtree. |
+ break; |
+ } |
+ |
+ // We've completed a greater subtree, so attach it to |
+ // its parent (that is less than it). We pop the parent |
+ // off the stack of less parents. |
+ child = h; |
+ h = less_parent; |
+ less_parent = get_gt(h); |
+ set_gt(h, child); |
+ // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1 |
+ num_sub <<= 1; |
+ num_sub += 1 - rem[depth]; |
+ if (num_sub & (num_sub - 1)) { |
+ // num_sub is not a power of 2 |
+ set_bf(h, 0); |
+ } else { |
+ // num_sub is a power of 2 |
+ set_bf(h, 1); |
+ } |
+ } |
+ |
+ if (num_sub == num_nodes) { |
+ // We've completed the full tree. |
+ break; |
+ } |
+ |
+ // The subtree we've completed is the less subtree of the |
+ // next node in the sequence. |
+ |
+ child = h; |
+ h = *p; |
+ p++; |
+ set_lt(h, child); |
+ |
+ // Put h into stack of less parents. |
+ set_gt(h, less_parent); |
+ less_parent = h; |
+ |
+ // Proceed to creating greater than subtree of h. |
+ branch[depth] = true; |
+ num_sub += rem[depth++]; |
+ |
+ } // end for (;;) |
+ |
+ abs.root = h; |
+ |
+ return true; |
+ } |
+ |
+ protected: |
+ |
+ friend class Iterator; |
+ |
+ // Create a class whose sole purpose is to take advantage of |
+ // the "empty member" optimization. |
+ struct abs_plus_root : public Abstractor { |
+ // The handle of the root element in the AVL tree. |
+ handle root; |
+ }; |
+ |
+ abs_plus_root abs; |
+ |
+ handle get_lt(handle h) { return abs.get_less(h); } |
+ void set_lt(handle h, handle lh) { abs.set_less(h, lh); } |
+ |
+ handle get_gt(handle h) { return abs.get_greater(h); } |
+ void set_gt(handle h, handle gh) { abs.set_greater(h, gh); } |
+ |
+ int get_bf(handle h) { return abs.get_balance_factor(h); } |
+ void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); } |
+ |
+ int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); } |
+ int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); } |
+ |
+ handle null() { return abs.null(); } |
+ |
+ private: |
+ |
+ // Balances subtree, returns handle of root node of subtree |
+ // after balancing. |
+ handle balance(handle bal_h) { |
+ handle deep_h; |
+ |
+ // Either the "greater than" or the "less than" subtree of |
+ // this node has to be 2 levels deeper (or else it wouldn't |
+ // need balancing). |
+ |
+ if (get_bf(bal_h) > 0) { |
+ // "Greater than" subtree is deeper. |
+ |
+ deep_h = get_gt(bal_h); |
+ |
+ if (get_bf(deep_h) < 0) { |
+ handle old_h = bal_h; |
+ bal_h = get_lt(deep_h); |
+ |
+ set_gt(old_h, get_lt(bal_h)); |
+ set_lt(deep_h, get_gt(bal_h)); |
+ set_lt(bal_h, old_h); |
+ set_gt(bal_h, deep_h); |
+ |
+ int bf = get_bf(bal_h); |
+ if (bf != 0) { |
+ if (bf > 0) { |
+ set_bf(old_h, -1); |
+ set_bf(deep_h, 0); |
+ } else { |
+ set_bf(deep_h, 1); |
+ set_bf(old_h, 0); |
+ } |
+ set_bf(bal_h, 0); |
+ } else { |
+ set_bf(old_h, 0); |
+ set_bf(deep_h, 0); |
+ } |
+ } else { |
+ set_gt(bal_h, get_lt(deep_h)); |
+ set_lt(deep_h, bal_h); |
+ if (get_bf(deep_h) == 0) { |
+ set_bf(deep_h, -1); |
+ set_bf(bal_h, 1); |
+ } else { |
+ set_bf(deep_h, 0); |
+ set_bf(bal_h, 0); |
+ } |
+ bal_h = deep_h; |
+ } |
+ } else { |
+ // "Less than" subtree is deeper. |
+ |
+ deep_h = get_lt(bal_h); |
+ |
+ if (get_bf(deep_h) > 0) { |
+ handle old_h = bal_h; |
+ bal_h = get_gt(deep_h); |
+ set_lt(old_h, get_gt(bal_h)); |
+ set_gt(deep_h, get_lt(bal_h)); |
+ set_gt(bal_h, old_h); |
+ set_lt(bal_h, deep_h); |
+ |
+ int bf = get_bf(bal_h); |
+ if (bf != 0) { |
+ if (bf < 0) { |
+ set_bf(old_h, 1); |
+ set_bf(deep_h, 0); |
+ } else { |
+ set_bf(deep_h, -1); |
+ set_bf(old_h, 0); |
+ } |
+ set_bf(bal_h, 0); |
+ } else { |
+ set_bf(old_h, 0); |
+ set_bf(deep_h, 0); |
+ } |
+ } else { |
+ set_lt(bal_h, get_gt(deep_h)); |
+ set_gt(deep_h, bal_h); |
+ if (get_bf(deep_h) == 0) { |
+ set_bf(deep_h, 1); |
+ set_bf(bal_h, -1); |
+ } else { |
+ set_bf(deep_h, 0); |
+ set_bf(bal_h, 0); |
+ } |
+ bal_h = deep_h; |
+ } |
+ } |
+ |
+ return bal_h; |
+ } |
+ |
+}; |
+ |
+template <class Abstractor, unsigned maxDepth, class BSet> |
+inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
+AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) { |
+ set_lt(h, null()); |
+ set_gt(h, null()); |
+ set_bf(h, 0); |
+ |
+ if (abs.root == null()) { |
+ abs.root = h; |
+ } else { |
+ // Last unbalanced node encountered in search for insertion point. |
+ handle unbal = null(); |
+ // Parent of last unbalanced node. |
+ handle parent_unbal = null(); |
+ // Balance factor of last unbalanced node. |
+ int unbal_bf; |
+ |
+ // Zero-based depth in tree. |
+ unsigned depth = 0, unbal_depth = 0; |
+ |
+ // Records a path into the tree. If branch[n] is true, indicates |
+ // take greater branch from the nth node in the path, otherwise |
+ // take the less branch. branch[0] gives branch from root, and |
+ // so on. |
+ BSet branch; |
+ |
+ handle hh = abs.root; |
+ handle parent = null(); |
+ int cmp; |
+ |
+ do { |
+ if (get_bf(hh) != 0) { |
+ unbal = hh; |
+ parent_unbal = parent; |
+ unbal_depth = depth; |
+ } |
+ cmp = cmp_n_n(h, hh); |
+ if (cmp == 0) { |
+ // Duplicate key. |
+ return hh; |
+ } |
+ parent = hh; |
+ hh = cmp < 0 ? get_lt(hh) : get_gt(hh); |
+ branch[depth++] = cmp > 0; |
+ } while (hh != null()); |
+ |
+ // Add node to insert as leaf of tree. |
+ if (cmp < 0) |
+ set_lt(parent, h); |
+ else |
+ set_gt(parent, h); |
+ |
+ depth = unbal_depth; |
+ |
+ if (unbal == null()) { |
+ hh = abs.root; |
+ } else { |
+ cmp = branch[depth++] ? 1 : -1; |
+ unbal_bf = get_bf(unbal); |
+ if (cmp < 0) |
+ unbal_bf--; |
+ else // cmp > 0 |
+ unbal_bf++; |
+ hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal); |
+ if ((unbal_bf != -2) && (unbal_bf != 2)) { |
+ // No rebalancing of tree is necessary. |
+ set_bf(unbal, unbal_bf); |
+ unbal = null(); |
+ } |
+ } |
+ |
+ if (hh != null()) { |
+ while (h != hh) { |
+ cmp = branch[depth++] ? 1 : -1; |
+ if (cmp < 0) { |
+ set_bf(hh, -1); |
+ hh = get_lt(hh); |
+ } else { // cmp > 0 |
+ set_bf(hh, 1); |
+ hh = get_gt(hh); |
+ } |
+ } |
+ } |
+ |
+ if (unbal != null()) { |
+ unbal = balance(unbal); |
+ if (parent_unbal == null()) { |
+ abs.root = unbal; |
+ } else { |
+ depth = unbal_depth - 1; |
+ cmp = branch[depth] ? 1 : -1; |
+ if (cmp < 0) |
+ set_lt(parent_unbal, unbal); |
+ else // cmp > 0 |
+ set_gt(parent_unbal, unbal); |
+ } |
+ } |
+ } |
+ |
+ return h; |
+} |
+ |
+template <class Abstractor, unsigned maxDepth, class BSet> |
+inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
+AVLTree<Abstractor, maxDepth, BSet>::search( |
+ key k, |
+ typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) { |
+ const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1); |
+ |
+ int cmp, target_cmp; |
+ handle match_h = null(); |
+ handle h = abs.root; |
+ |
+ if (st & LESS) |
+ target_cmp = 1; |
+ else if (st & GREATER) |
+ target_cmp = -1; |
+ else |
+ target_cmp = 0; |
+ |
+ while (h != null()) { |
+ cmp = cmp_k_n(k, h); |
+ if (cmp == 0) { |
+ if (st & EQUAL) { |
+ match_h = h; |
+ break; |
+ } |
+ cmp = -target_cmp; |
+ } else if (target_cmp != 0) { |
+ if (!((cmp ^ target_cmp) & kMaskHighBit)) { |
+ // cmp and target_cmp are both positive or both negative. |
+ match_h = h; |
+ } |
+ } |
+ h = cmp < 0 ? get_lt(h) : get_gt(h); |
+ } |
+ |
+ return match_h; |
+} |
+ |
+template <class Abstractor, unsigned maxDepth, class BSet> |
+inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
+AVLTree<Abstractor, maxDepth, BSet>::search_least() { |
+ handle h = abs.root, parent = null(); |
+ |
+ while (h != null()) { |
+ parent = h; |
+ h = get_lt(h); |
+ } |
+ |
+ return parent; |
+} |
+ |
+template <class Abstractor, unsigned maxDepth, class BSet> |
+inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
+AVLTree<Abstractor, maxDepth, BSet>::search_greatest() { |
+ handle h = abs.root, parent = null(); |
+ |
+ while (h != null()) { |
+ parent = h; |
+ h = get_gt(h); |
+ } |
+ |
+ return parent; |
+} |
+ |
+template <class Abstractor, unsigned maxDepth, class BSet> |
+inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
+AVLTree<Abstractor, maxDepth, BSet>::remove(key k) { |
+ // Zero-based depth in tree. |
+ unsigned depth = 0, rm_depth; |
+ |
+ // Records a path into the tree. If branch[n] is true, indicates |
+ // take greater branch from the nth node in the path, otherwise |
+ // take the less branch. branch[0] gives branch from root, and |
+ // so on. |
+ BSet branch; |
+ |
+ handle h = abs.root; |
+ handle parent = null(), child; |
+ int cmp, cmp_shortened_sub_with_path = 0; |
+ |
+ for (;;) { |
+ if (h == null()) { |
+ // No node in tree with given key. |
+ return null(); |
+ } |
+ cmp = cmp_k_n(k, h); |
+ if (cmp == 0) { |
+ // Found node to remove. |
+ break; |
+ } |
+ parent = h; |
+ h = cmp < 0 ? get_lt(h) : get_gt(h); |
+ branch[depth++] = cmp > 0; |
+ cmp_shortened_sub_with_path = cmp; |
+ } |
+ handle rm = h; |
+ handle parent_rm = parent; |
+ rm_depth = depth; |
+ |
+ // If the node to remove is not a leaf node, we need to get a |
+ // leaf node, or a node with a single leaf as its child, to put |
+ // in the place of the node to remove. We will get the greatest |
+ // node in the less subtree (of the node to remove), or the least |
+ // node in the greater subtree. We take the leaf node from the |
+ // deeper subtree, if there is one. |
+ |
+ if (get_bf(h) < 0) { |
+ child = get_lt(h); |
+ branch[depth] = false; |
+ cmp = -1; |
+ } else { |
+ child = get_gt(h); |
+ branch[depth] = true; |
+ cmp = 1; |
+ } |
+ depth++; |
+ |
+ if (child != null()) { |
+ cmp = -cmp; |
+ do { |
+ parent = h; |
+ h = child; |
+ if (cmp < 0) { |
+ child = get_lt(h); |
+ branch[depth] = false; |
+ } else { |
+ child = get_gt(h); |
+ branch[depth] = true; |
+ } |
+ depth++; |
+ } while (child != null()); |
+ |
+ if (parent == rm) { |
+ // Only went through do loop once. Deleted node will be replaced |
+ // in the tree structure by one of its immediate children. |
+ cmp_shortened_sub_with_path = -cmp; |
+ } else { |
+ cmp_shortened_sub_with_path = cmp; |
+ } |
+ |
+ // Get the handle of the opposite child, which may not be null. |
+ child = cmp > 0 ? get_lt(h) : get_gt(h); |
+ } |
+ |
+ if (parent == null()) { |
+ // There were only 1 or 2 nodes in this tree. |
+ abs.root = child; |
+ } else if (cmp_shortened_sub_with_path < 0) { |
+ set_lt(parent, child); |
+ } else { |
+ set_gt(parent, child); |
+ } |
+ |
+ // "path" is the parent of the subtree being eliminated or reduced |
+ // from a depth of 2 to 1. If "path" is the node to be removed, we |
+ // set path to the node we're about to poke into the position of the |
+ // node to be removed. |
+ handle path = parent == rm ? h : parent; |
+ |
+ if (h != rm) { |
+ // Poke in the replacement for the node to be removed. |
+ set_lt(h, get_lt(rm)); |
+ set_gt(h, get_gt(rm)); |
+ set_bf(h, get_bf(rm)); |
+ if (parent_rm == null()) { |
+ abs.root = h; |
+ } else { |
+ depth = rm_depth - 1; |
+ if (branch[depth]) |
+ set_gt(parent_rm, h); |
+ else |
+ set_lt(parent_rm, h); |
+ } |
+ } |
+ |
+ if (path != null()) { |
+ // Create a temporary linked list from the parent of the path node |
+ // to the root node. |
+ h = abs.root; |
+ parent = null(); |
+ depth = 0; |
+ while (h != path) { |
+ if (branch[depth++]) { |
+ child = get_gt(h); |
+ set_gt(h, parent); |
+ } else { |
+ child = get_lt(h); |
+ set_lt(h, parent); |
+ } |
+ parent = h; |
+ h = child; |
+ } |
+ |
+ // Climb from the path node to the root node using the linked |
+ // list, restoring the tree structure and rebalancing as necessary. |
+ bool reduced_depth = true; |
+ int bf; |
+ cmp = cmp_shortened_sub_with_path; |
+ for (;;) { |
+ if (reduced_depth) { |
+ bf = get_bf(h); |
+ if (cmp < 0) |
+ bf++; |
+ else // cmp > 0 |
+ bf--; |
+ if ((bf == -2) || (bf == 2)) { |
+ h = balance(h); |
+ bf = get_bf(h); |
+ } else { |
+ set_bf(h, bf); |
+ } |
+ reduced_depth = (bf == 0); |
+ } |
+ if (parent == null()) |
+ break; |
+ child = h; |
+ h = parent; |
+ cmp = branch[--depth] ? 1 : -1; |
+ if (cmp < 0) { |
+ parent = get_lt(h); |
+ set_lt(h, child); |
+ } else { |
+ parent = get_gt(h); |
+ set_gt(h, child); |
+ } |
+ } |
+ abs.root = h; |
+ } |
+ |
+ return rm; |
+} |
+ |
+template <class Abstractor, unsigned maxDepth, class BSet> |
+inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
+AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) { |
+ handle h = abs.root; |
+ handle parent = null(); |
+ int cmp, last_cmp; |
+ |
+ // Search for node already in tree with same key. |
+ for (;;) { |
+ if (h == null()) { |
+ // No node in tree with same key as new node. |
+ return null(); |
+ } |
+ cmp = cmp_n_n(new_node, h); |
+ if (cmp == 0) { |
+ // Found the node to substitute new one for. |
+ break; |
+ } |
+ last_cmp = cmp; |
+ parent = h; |
+ h = cmp < 0 ? get_lt(h) : get_gt(h); |
+ } |
+ |
+ // Copy tree housekeeping fields from node in tree to new node. |
+ set_lt(new_node, get_lt(h)); |
+ set_gt(new_node, get_gt(h)); |
+ set_bf(new_node, get_bf(h)); |
+ |
+ if (parent == null()) { |
+ // New node is also new root. |
+ abs.root = new_node; |
+ } else { |
+ // Make parent point to new node. |
+ if (last_cmp < 0) |
+ set_lt(parent, new_node); |
+ else |
+ set_gt(parent, new_node); |
+ } |
+ |
+ return h; |
+} |
+ |
+} // namespace content |
+ |
+#endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |