OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 /* |
| 6 * Copyright (C) 2008 Apple Inc. All rights reserved. |
| 7 * |
| 8 * Based on Abstract AVL Tree Template v1.5 by Walt Karas |
| 9 * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>. |
| 10 * |
| 11 * Redistribution and use in source and binary forms, with or without |
| 12 * modification, are permitted provided that the following conditions |
| 13 * are met: |
| 14 * |
| 15 * 1. Redistributions of source code must retain the above copyright |
| 16 * notice, this list of conditions and the following disclaimer. |
| 17 * 2. Redistributions in binary form must reproduce the above copyright |
| 18 * notice, this list of conditions and the following disclaimer in the |
| 19 * documentation and/or other materials provided with the distribution. |
| 20 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
| 21 * its contributors may be used to endorse or promote products derived |
| 22 * from this software without specific prior written permission. |
| 23 * |
| 24 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 25 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 27 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 31 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 34 */ |
| 35 |
| 36 #ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
| 37 #define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
| 38 |
| 39 #include "base/logging.h" |
| 40 #include "content/browser/indexed_db/leveldb/fixed_array.h" |
| 41 |
| 42 namespace content { |
| 43 |
| 44 // Here is the reference class for BSet. |
| 45 // |
| 46 // class BSet |
| 47 // { |
| 48 // public: |
| 49 // |
| 50 // class ANY_bitref |
| 51 // { |
| 52 // public: |
| 53 // operator bool (); |
| 54 // void operator = (bool b); |
| 55 // }; |
| 56 // |
| 57 // // Does not have to initialize bits. |
| 58 // BSet(); |
| 59 // |
| 60 // // Must return a valid value for index when 0 <= index < maxDepth |
| 61 // ANY_bitref operator [] (unsigned index); |
| 62 // |
| 63 // // Set all bits to 1. |
| 64 // void set(); |
| 65 // |
| 66 // // Set all bits to 0. |
| 67 // void reset(); |
| 68 // }; |
| 69 |
| 70 template <unsigned maxDepth> class AVLTreeDefaultBSet { |
| 71 public: |
| 72 bool& operator[](unsigned i) { |
| 73 #if defined(ADDRESS_SANITIZER) |
| 74 CHECK(i < maxDepth); |
| 75 #endif |
| 76 return m_data[i]; |
| 77 } |
| 78 void set() { |
| 79 for (unsigned i = 0; i < maxDepth; ++i) |
| 80 m_data[i] = true; |
| 81 } |
| 82 void reset() { |
| 83 for (unsigned i = 0; i < maxDepth; ++i) |
| 84 m_data[i] = false; |
| 85 } |
| 86 |
| 87 private: |
| 88 FixedArray<bool, maxDepth> m_data; |
| 89 }; |
| 90 |
| 91 // How to determine maxDepth: |
| 92 // d Minimum number of nodes |
| 93 // 2 2 |
| 94 // 3 4 |
| 95 // 4 7 |
| 96 // 5 12 |
| 97 // 6 20 |
| 98 // 7 33 |
| 99 // 8 54 |
| 100 // 9 88 |
| 101 // 10 143 |
| 102 // 11 232 |
| 103 // 12 376 |
| 104 // 13 609 |
| 105 // 14 986 |
| 106 // 15 1,596 |
| 107 // 16 2,583 |
| 108 // 17 4,180 |
| 109 // 18 6,764 |
| 110 // 19 10,945 |
| 111 // 20 17,710 |
| 112 // 21 28,656 |
| 113 // 22 46,367 |
| 114 // 23 75,024 |
| 115 // 24 121,392 |
| 116 // 25 196,417 |
| 117 // 26 317,810 |
| 118 // 27 514,228 |
| 119 // 28 832,039 |
| 120 // 29 1,346,268 |
| 121 // 30 2,178,308 |
| 122 // 31 3,524,577 |
| 123 // 32 5,702,886 |
| 124 // 33 9,227,464 |
| 125 // 34 14,930,351 |
| 126 // 35 24,157,816 |
| 127 // 36 39,088,168 |
| 128 // 37 63,245,985 |
| 129 // 38 102,334,154 |
| 130 // 39 165,580,140 |
| 131 // 40 267,914,295 |
| 132 // 41 433,494,436 |
| 133 // 42 701,408,732 |
| 134 // 43 1,134,903,169 |
| 135 // 44 1,836,311,902 |
| 136 // 45 2,971,215,072 |
| 137 // |
| 138 // E.g., if, in a particular instantiation, the maximum number of nodes in a |
| 139 // tree instance is 1,000,000, the maximum depth should be 28. |
| 140 // You pick 28 because MN(28) is 832,039, which is less than or equal to |
| 141 // 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000. |
| 142 |
| 143 template <class Abstractor, |
| 144 unsigned maxDepth = 32, |
| 145 class BSet = AVLTreeDefaultBSet<maxDepth> > |
| 146 class AVLTree { |
| 147 public: |
| 148 typedef typename Abstractor::key key; |
| 149 typedef typename Abstractor::handle handle; |
| 150 typedef typename Abstractor::size size; |
| 151 |
| 152 enum SearchType { |
| 153 EQUAL = 1, |
| 154 LESS = 2, |
| 155 GREATER = 4, |
| 156 LESS_EQUAL = EQUAL | LESS, |
| 157 GREATER_EQUAL = EQUAL | GREATER |
| 158 }; |
| 159 |
| 160 Abstractor& abstractor() { return abs; } |
| 161 |
| 162 inline handle insert(handle h); |
| 163 |
| 164 inline handle search(key k, SearchType st = EQUAL); |
| 165 inline handle search_least(); |
| 166 inline handle search_greatest(); |
| 167 |
| 168 inline handle remove(key k); |
| 169 |
| 170 inline handle subst(handle new_node); |
| 171 |
| 172 void purge() { abs.root = null(); } |
| 173 |
| 174 bool is_empty() { return abs.root == null(); } |
| 175 |
| 176 AVLTree() { abs.root = null(); } |
| 177 |
| 178 class Iterator { |
| 179 public: |
| 180 // Initialize depth to invalid value, to indicate iterator is |
| 181 // invalid. (Depth is zero-base.) |
| 182 Iterator() { depth = ~0U; } |
| 183 |
| 184 void start_iter(AVLTree& tree, key k, SearchType st = EQUAL) { |
| 185 // Mask of high bit in an int. |
| 186 const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1); |
| 187 |
| 188 // Save the tree that we're going to iterate through in a |
| 189 // member variable. |
| 190 tree_ = &tree; |
| 191 |
| 192 int cmp, target_cmp; |
| 193 handle h = tree_->abs.root; |
| 194 unsigned d = 0; |
| 195 |
| 196 depth = ~0U; |
| 197 |
| 198 if (h == null()) { |
| 199 // Tree is empty. |
| 200 return; |
| 201 } |
| 202 |
| 203 if (st & LESS) { |
| 204 // Key can be greater than key of starting node. |
| 205 target_cmp = 1; |
| 206 } else if (st & GREATER) { |
| 207 // Key can be less than key of starting node. |
| 208 target_cmp = -1; |
| 209 } else { |
| 210 // Key must be same as key of starting node. |
| 211 target_cmp = 0; |
| 212 } |
| 213 |
| 214 for (;;) { |
| 215 cmp = cmp_k_n(k, h); |
| 216 if (cmp == 0) { |
| 217 if (st & EQUAL) { |
| 218 // Equal node was sought and found as starting node. |
| 219 depth = d; |
| 220 break; |
| 221 } |
| 222 cmp = -target_cmp; |
| 223 } else if (target_cmp != 0) { |
| 224 if (!((cmp ^ target_cmp) & kMaskHighBit)) { |
| 225 // cmp and target_cmp are both negative or both positive. |
| 226 depth = d; |
| 227 } |
| 228 } |
| 229 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 230 if (h == null()) |
| 231 break; |
| 232 branch[d] = cmp > 0; |
| 233 path_h[d++] = h; |
| 234 } |
| 235 } |
| 236 |
| 237 void start_iter_least(AVLTree& tree) { |
| 238 tree_ = &tree; |
| 239 |
| 240 handle h = tree_->abs.root; |
| 241 |
| 242 depth = ~0U; |
| 243 |
| 244 branch.reset(); |
| 245 |
| 246 while (h != null()) { |
| 247 if (depth != ~0U) |
| 248 path_h[depth] = h; |
| 249 depth++; |
| 250 h = get_lt(h); |
| 251 } |
| 252 } |
| 253 |
| 254 void start_iter_greatest(AVLTree& tree) { |
| 255 tree_ = &tree; |
| 256 |
| 257 handle h = tree_->abs.root; |
| 258 |
| 259 depth = ~0U; |
| 260 |
| 261 branch.set(); |
| 262 |
| 263 while (h != null()) { |
| 264 if (depth != ~0U) |
| 265 path_h[depth] = h; |
| 266 depth++; |
| 267 h = get_gt(h); |
| 268 } |
| 269 } |
| 270 |
| 271 handle operator*() { |
| 272 if (depth == ~0U) |
| 273 return null(); |
| 274 |
| 275 return depth == 0 ? tree_->abs.root : path_h[depth - 1]; |
| 276 } |
| 277 |
| 278 void operator++() { |
| 279 if (depth != ~0U) { |
| 280 handle h = get_gt(**this); |
| 281 if (h == null()) { |
| 282 do { |
| 283 if (depth == 0) { |
| 284 depth = ~0U; |
| 285 break; |
| 286 } |
| 287 depth--; |
| 288 } while (branch[depth]); |
| 289 } else { |
| 290 branch[depth] = true; |
| 291 path_h[depth++] = h; |
| 292 for (;;) { |
| 293 h = get_lt(h); |
| 294 if (h == null()) |
| 295 break; |
| 296 branch[depth] = false; |
| 297 path_h[depth++] = h; |
| 298 } |
| 299 } |
| 300 } |
| 301 } |
| 302 |
| 303 void operator--() { |
| 304 if (depth != ~0U) { |
| 305 handle h = get_lt(**this); |
| 306 if (h == null()) { |
| 307 do { |
| 308 if (depth == 0) { |
| 309 depth = ~0U; |
| 310 break; |
| 311 } |
| 312 depth--; |
| 313 } while (!branch[depth]); |
| 314 } else { |
| 315 branch[depth] = false; |
| 316 path_h[depth++] = h; |
| 317 for (;;) { |
| 318 h = get_gt(h); |
| 319 if (h == null()) |
| 320 break; |
| 321 branch[depth] = true; |
| 322 path_h[depth++] = h; |
| 323 } |
| 324 } |
| 325 } |
| 326 } |
| 327 |
| 328 void operator++(int) { ++(*this); } |
| 329 void operator--(int) { --(*this); } |
| 330 |
| 331 protected: |
| 332 |
| 333 // Tree being iterated over. |
| 334 AVLTree* tree_; |
| 335 |
| 336 // Records a path into the tree. If branch[n] is true, indicates |
| 337 // take greater branch from the nth node in the path, otherwise |
| 338 // take the less branch. branch[0] gives branch from root, and |
| 339 // so on. |
| 340 BSet branch; |
| 341 |
| 342 // Zero-based depth of path into tree. |
| 343 unsigned depth; |
| 344 |
| 345 // Handles of nodes in path from root to current node (returned by *). |
| 346 handle path_h[maxDepth - 1]; |
| 347 |
| 348 int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); } |
| 349 int cmp_n_n(handle h1, handle h2) { |
| 350 return tree_->abs.compare_node_node(h1, h2); |
| 351 } |
| 352 handle get_lt(handle h) { return tree_->abs.get_less(h); } |
| 353 handle get_gt(handle h) { return tree_->abs.get_greater(h); } |
| 354 handle null() { return tree_->abs.null(); } |
| 355 }; |
| 356 |
| 357 template <typename fwd_iter> bool build(fwd_iter p, size num_nodes) { |
| 358 if (num_nodes == 0) { |
| 359 abs.root = null(); |
| 360 return true; |
| 361 } |
| 362 |
| 363 // Gives path to subtree being built. If branch[N] is false, branch |
| 364 // less from the node at depth N, if true branch greater. |
| 365 BSet branch; |
| 366 |
| 367 // If rem[N] is true, then for the current subtree at depth N, it's |
| 368 // greater subtree has one more node than it's less subtree. |
| 369 BSet rem; |
| 370 |
| 371 // Depth of root node of current subtree. |
| 372 unsigned depth = 0; |
| 373 |
| 374 // Number of nodes in current subtree. |
| 375 size num_sub = num_nodes; |
| 376 |
| 377 // The algorithm relies on a stack of nodes whose less subtree has |
| 378 // been built, but whose right subtree has not yet been built. The |
| 379 // stack is implemented as linked list. The nodes are linked |
| 380 // together by having the "greater" handle of a node set to the |
| 381 // next node in the list. "less_parent" is the handle of the first |
| 382 // node in the list. |
| 383 handle less_parent = null(); |
| 384 |
| 385 // h is root of current subtree, child is one of its children. |
| 386 handle h, child; |
| 387 |
| 388 for (;;) { |
| 389 while (num_sub > 2) { |
| 390 // Subtract one for root of subtree. |
| 391 num_sub--; |
| 392 rem[depth] = !!(num_sub & 1); |
| 393 branch[depth++] = false; |
| 394 num_sub >>= 1; |
| 395 } |
| 396 |
| 397 if (num_sub == 2) { |
| 398 // Build a subtree with two nodes, slanting to greater. |
| 399 // I arbitrarily chose to always have the extra node in the |
| 400 // greater subtree when there is an odd number of nodes to |
| 401 // split between the two subtrees. |
| 402 |
| 403 h = *p; |
| 404 p++; |
| 405 child = *p; |
| 406 p++; |
| 407 set_lt(child, null()); |
| 408 set_gt(child, null()); |
| 409 set_bf(child, 0); |
| 410 set_gt(h, child); |
| 411 set_lt(h, null()); |
| 412 set_bf(h, 1); |
| 413 } else { // num_sub == 1 |
| 414 // Build a subtree with one node. |
| 415 |
| 416 h = *p; |
| 417 p++; |
| 418 set_lt(h, null()); |
| 419 set_gt(h, null()); |
| 420 set_bf(h, 0); |
| 421 } |
| 422 |
| 423 while (depth) { |
| 424 depth--; |
| 425 if (!branch[depth]) { |
| 426 // We've completed a less subtree. |
| 427 break; |
| 428 } |
| 429 |
| 430 // We've completed a greater subtree, so attach it to |
| 431 // its parent (that is less than it). We pop the parent |
| 432 // off the stack of less parents. |
| 433 child = h; |
| 434 h = less_parent; |
| 435 less_parent = get_gt(h); |
| 436 set_gt(h, child); |
| 437 // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1 |
| 438 num_sub <<= 1; |
| 439 num_sub += 1 - rem[depth]; |
| 440 if (num_sub & (num_sub - 1)) { |
| 441 // num_sub is not a power of 2 |
| 442 set_bf(h, 0); |
| 443 } else { |
| 444 // num_sub is a power of 2 |
| 445 set_bf(h, 1); |
| 446 } |
| 447 } |
| 448 |
| 449 if (num_sub == num_nodes) { |
| 450 // We've completed the full tree. |
| 451 break; |
| 452 } |
| 453 |
| 454 // The subtree we've completed is the less subtree of the |
| 455 // next node in the sequence. |
| 456 |
| 457 child = h; |
| 458 h = *p; |
| 459 p++; |
| 460 set_lt(h, child); |
| 461 |
| 462 // Put h into stack of less parents. |
| 463 set_gt(h, less_parent); |
| 464 less_parent = h; |
| 465 |
| 466 // Proceed to creating greater than subtree of h. |
| 467 branch[depth] = true; |
| 468 num_sub += rem[depth++]; |
| 469 |
| 470 } // end for (;;) |
| 471 |
| 472 abs.root = h; |
| 473 |
| 474 return true; |
| 475 } |
| 476 |
| 477 protected: |
| 478 |
| 479 friend class Iterator; |
| 480 |
| 481 // Create a class whose sole purpose is to take advantage of |
| 482 // the "empty member" optimization. |
| 483 struct abs_plus_root : public Abstractor { |
| 484 // The handle of the root element in the AVL tree. |
| 485 handle root; |
| 486 }; |
| 487 |
| 488 abs_plus_root abs; |
| 489 |
| 490 handle get_lt(handle h) { return abs.get_less(h); } |
| 491 void set_lt(handle h, handle lh) { abs.set_less(h, lh); } |
| 492 |
| 493 handle get_gt(handle h) { return abs.get_greater(h); } |
| 494 void set_gt(handle h, handle gh) { abs.set_greater(h, gh); } |
| 495 |
| 496 int get_bf(handle h) { return abs.get_balance_factor(h); } |
| 497 void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); } |
| 498 |
| 499 int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); } |
| 500 int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); } |
| 501 |
| 502 handle null() { return abs.null(); } |
| 503 |
| 504 private: |
| 505 |
| 506 // Balances subtree, returns handle of root node of subtree |
| 507 // after balancing. |
| 508 handle balance(handle bal_h) { |
| 509 handle deep_h; |
| 510 |
| 511 // Either the "greater than" or the "less than" subtree of |
| 512 // this node has to be 2 levels deeper (or else it wouldn't |
| 513 // need balancing). |
| 514 |
| 515 if (get_bf(bal_h) > 0) { |
| 516 // "Greater than" subtree is deeper. |
| 517 |
| 518 deep_h = get_gt(bal_h); |
| 519 |
| 520 if (get_bf(deep_h) < 0) { |
| 521 handle old_h = bal_h; |
| 522 bal_h = get_lt(deep_h); |
| 523 |
| 524 set_gt(old_h, get_lt(bal_h)); |
| 525 set_lt(deep_h, get_gt(bal_h)); |
| 526 set_lt(bal_h, old_h); |
| 527 set_gt(bal_h, deep_h); |
| 528 |
| 529 int bf = get_bf(bal_h); |
| 530 if (bf != 0) { |
| 531 if (bf > 0) { |
| 532 set_bf(old_h, -1); |
| 533 set_bf(deep_h, 0); |
| 534 } else { |
| 535 set_bf(deep_h, 1); |
| 536 set_bf(old_h, 0); |
| 537 } |
| 538 set_bf(bal_h, 0); |
| 539 } else { |
| 540 set_bf(old_h, 0); |
| 541 set_bf(deep_h, 0); |
| 542 } |
| 543 } else { |
| 544 set_gt(bal_h, get_lt(deep_h)); |
| 545 set_lt(deep_h, bal_h); |
| 546 if (get_bf(deep_h) == 0) { |
| 547 set_bf(deep_h, -1); |
| 548 set_bf(bal_h, 1); |
| 549 } else { |
| 550 set_bf(deep_h, 0); |
| 551 set_bf(bal_h, 0); |
| 552 } |
| 553 bal_h = deep_h; |
| 554 } |
| 555 } else { |
| 556 // "Less than" subtree is deeper. |
| 557 |
| 558 deep_h = get_lt(bal_h); |
| 559 |
| 560 if (get_bf(deep_h) > 0) { |
| 561 handle old_h = bal_h; |
| 562 bal_h = get_gt(deep_h); |
| 563 set_lt(old_h, get_gt(bal_h)); |
| 564 set_gt(deep_h, get_lt(bal_h)); |
| 565 set_gt(bal_h, old_h); |
| 566 set_lt(bal_h, deep_h); |
| 567 |
| 568 int bf = get_bf(bal_h); |
| 569 if (bf != 0) { |
| 570 if (bf < 0) { |
| 571 set_bf(old_h, 1); |
| 572 set_bf(deep_h, 0); |
| 573 } else { |
| 574 set_bf(deep_h, -1); |
| 575 set_bf(old_h, 0); |
| 576 } |
| 577 set_bf(bal_h, 0); |
| 578 } else { |
| 579 set_bf(old_h, 0); |
| 580 set_bf(deep_h, 0); |
| 581 } |
| 582 } else { |
| 583 set_lt(bal_h, get_gt(deep_h)); |
| 584 set_gt(deep_h, bal_h); |
| 585 if (get_bf(deep_h) == 0) { |
| 586 set_bf(deep_h, 1); |
| 587 set_bf(bal_h, -1); |
| 588 } else { |
| 589 set_bf(deep_h, 0); |
| 590 set_bf(bal_h, 0); |
| 591 } |
| 592 bal_h = deep_h; |
| 593 } |
| 594 } |
| 595 |
| 596 return bal_h; |
| 597 } |
| 598 |
| 599 }; |
| 600 |
| 601 template <class Abstractor, unsigned maxDepth, class BSet> |
| 602 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 603 AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) { |
| 604 set_lt(h, null()); |
| 605 set_gt(h, null()); |
| 606 set_bf(h, 0); |
| 607 |
| 608 if (abs.root == null()) { |
| 609 abs.root = h; |
| 610 } else { |
| 611 // Last unbalanced node encountered in search for insertion point. |
| 612 handle unbal = null(); |
| 613 // Parent of last unbalanced node. |
| 614 handle parent_unbal = null(); |
| 615 // Balance factor of last unbalanced node. |
| 616 int unbal_bf; |
| 617 |
| 618 // Zero-based depth in tree. |
| 619 unsigned depth = 0, unbal_depth = 0; |
| 620 |
| 621 // Records a path into the tree. If branch[n] is true, indicates |
| 622 // take greater branch from the nth node in the path, otherwise |
| 623 // take the less branch. branch[0] gives branch from root, and |
| 624 // so on. |
| 625 BSet branch; |
| 626 |
| 627 handle hh = abs.root; |
| 628 handle parent = null(); |
| 629 int cmp; |
| 630 |
| 631 do { |
| 632 if (get_bf(hh) != 0) { |
| 633 unbal = hh; |
| 634 parent_unbal = parent; |
| 635 unbal_depth = depth; |
| 636 } |
| 637 cmp = cmp_n_n(h, hh); |
| 638 if (cmp == 0) { |
| 639 // Duplicate key. |
| 640 return hh; |
| 641 } |
| 642 parent = hh; |
| 643 hh = cmp < 0 ? get_lt(hh) : get_gt(hh); |
| 644 branch[depth++] = cmp > 0; |
| 645 } while (hh != null()); |
| 646 |
| 647 // Add node to insert as leaf of tree. |
| 648 if (cmp < 0) |
| 649 set_lt(parent, h); |
| 650 else |
| 651 set_gt(parent, h); |
| 652 |
| 653 depth = unbal_depth; |
| 654 |
| 655 if (unbal == null()) { |
| 656 hh = abs.root; |
| 657 } else { |
| 658 cmp = branch[depth++] ? 1 : -1; |
| 659 unbal_bf = get_bf(unbal); |
| 660 if (cmp < 0) |
| 661 unbal_bf--; |
| 662 else // cmp > 0 |
| 663 unbal_bf++; |
| 664 hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal); |
| 665 if ((unbal_bf != -2) && (unbal_bf != 2)) { |
| 666 // No rebalancing of tree is necessary. |
| 667 set_bf(unbal, unbal_bf); |
| 668 unbal = null(); |
| 669 } |
| 670 } |
| 671 |
| 672 if (hh != null()) { |
| 673 while (h != hh) { |
| 674 cmp = branch[depth++] ? 1 : -1; |
| 675 if (cmp < 0) { |
| 676 set_bf(hh, -1); |
| 677 hh = get_lt(hh); |
| 678 } else { // cmp > 0 |
| 679 set_bf(hh, 1); |
| 680 hh = get_gt(hh); |
| 681 } |
| 682 } |
| 683 } |
| 684 |
| 685 if (unbal != null()) { |
| 686 unbal = balance(unbal); |
| 687 if (parent_unbal == null()) { |
| 688 abs.root = unbal; |
| 689 } else { |
| 690 depth = unbal_depth - 1; |
| 691 cmp = branch[depth] ? 1 : -1; |
| 692 if (cmp < 0) |
| 693 set_lt(parent_unbal, unbal); |
| 694 else // cmp > 0 |
| 695 set_gt(parent_unbal, unbal); |
| 696 } |
| 697 } |
| 698 } |
| 699 |
| 700 return h; |
| 701 } |
| 702 |
| 703 template <class Abstractor, unsigned maxDepth, class BSet> |
| 704 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 705 AVLTree<Abstractor, maxDepth, BSet>::search( |
| 706 key k, |
| 707 typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) { |
| 708 const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1); |
| 709 |
| 710 int cmp, target_cmp; |
| 711 handle match_h = null(); |
| 712 handle h = abs.root; |
| 713 |
| 714 if (st & LESS) |
| 715 target_cmp = 1; |
| 716 else if (st & GREATER) |
| 717 target_cmp = -1; |
| 718 else |
| 719 target_cmp = 0; |
| 720 |
| 721 while (h != null()) { |
| 722 cmp = cmp_k_n(k, h); |
| 723 if (cmp == 0) { |
| 724 if (st & EQUAL) { |
| 725 match_h = h; |
| 726 break; |
| 727 } |
| 728 cmp = -target_cmp; |
| 729 } else if (target_cmp != 0) { |
| 730 if (!((cmp ^ target_cmp) & kMaskHighBit)) { |
| 731 // cmp and target_cmp are both positive or both negative. |
| 732 match_h = h; |
| 733 } |
| 734 } |
| 735 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 736 } |
| 737 |
| 738 return match_h; |
| 739 } |
| 740 |
| 741 template <class Abstractor, unsigned maxDepth, class BSet> |
| 742 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 743 AVLTree<Abstractor, maxDepth, BSet>::search_least() { |
| 744 handle h = abs.root, parent = null(); |
| 745 |
| 746 while (h != null()) { |
| 747 parent = h; |
| 748 h = get_lt(h); |
| 749 } |
| 750 |
| 751 return parent; |
| 752 } |
| 753 |
| 754 template <class Abstractor, unsigned maxDepth, class BSet> |
| 755 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 756 AVLTree<Abstractor, maxDepth, BSet>::search_greatest() { |
| 757 handle h = abs.root, parent = null(); |
| 758 |
| 759 while (h != null()) { |
| 760 parent = h; |
| 761 h = get_gt(h); |
| 762 } |
| 763 |
| 764 return parent; |
| 765 } |
| 766 |
| 767 template <class Abstractor, unsigned maxDepth, class BSet> |
| 768 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 769 AVLTree<Abstractor, maxDepth, BSet>::remove(key k) { |
| 770 // Zero-based depth in tree. |
| 771 unsigned depth = 0, rm_depth; |
| 772 |
| 773 // Records a path into the tree. If branch[n] is true, indicates |
| 774 // take greater branch from the nth node in the path, otherwise |
| 775 // take the less branch. branch[0] gives branch from root, and |
| 776 // so on. |
| 777 BSet branch; |
| 778 |
| 779 handle h = abs.root; |
| 780 handle parent = null(), child; |
| 781 int cmp, cmp_shortened_sub_with_path = 0; |
| 782 |
| 783 for (;;) { |
| 784 if (h == null()) { |
| 785 // No node in tree with given key. |
| 786 return null(); |
| 787 } |
| 788 cmp = cmp_k_n(k, h); |
| 789 if (cmp == 0) { |
| 790 // Found node to remove. |
| 791 break; |
| 792 } |
| 793 parent = h; |
| 794 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 795 branch[depth++] = cmp > 0; |
| 796 cmp_shortened_sub_with_path = cmp; |
| 797 } |
| 798 handle rm = h; |
| 799 handle parent_rm = parent; |
| 800 rm_depth = depth; |
| 801 |
| 802 // If the node to remove is not a leaf node, we need to get a |
| 803 // leaf node, or a node with a single leaf as its child, to put |
| 804 // in the place of the node to remove. We will get the greatest |
| 805 // node in the less subtree (of the node to remove), or the least |
| 806 // node in the greater subtree. We take the leaf node from the |
| 807 // deeper subtree, if there is one. |
| 808 |
| 809 if (get_bf(h) < 0) { |
| 810 child = get_lt(h); |
| 811 branch[depth] = false; |
| 812 cmp = -1; |
| 813 } else { |
| 814 child = get_gt(h); |
| 815 branch[depth] = true; |
| 816 cmp = 1; |
| 817 } |
| 818 depth++; |
| 819 |
| 820 if (child != null()) { |
| 821 cmp = -cmp; |
| 822 do { |
| 823 parent = h; |
| 824 h = child; |
| 825 if (cmp < 0) { |
| 826 child = get_lt(h); |
| 827 branch[depth] = false; |
| 828 } else { |
| 829 child = get_gt(h); |
| 830 branch[depth] = true; |
| 831 } |
| 832 depth++; |
| 833 } while (child != null()); |
| 834 |
| 835 if (parent == rm) { |
| 836 // Only went through do loop once. Deleted node will be replaced |
| 837 // in the tree structure by one of its immediate children. |
| 838 cmp_shortened_sub_with_path = -cmp; |
| 839 } else { |
| 840 cmp_shortened_sub_with_path = cmp; |
| 841 } |
| 842 |
| 843 // Get the handle of the opposite child, which may not be null. |
| 844 child = cmp > 0 ? get_lt(h) : get_gt(h); |
| 845 } |
| 846 |
| 847 if (parent == null()) { |
| 848 // There were only 1 or 2 nodes in this tree. |
| 849 abs.root = child; |
| 850 } else if (cmp_shortened_sub_with_path < 0) { |
| 851 set_lt(parent, child); |
| 852 } else { |
| 853 set_gt(parent, child); |
| 854 } |
| 855 |
| 856 // "path" is the parent of the subtree being eliminated or reduced |
| 857 // from a depth of 2 to 1. If "path" is the node to be removed, we |
| 858 // set path to the node we're about to poke into the position of the |
| 859 // node to be removed. |
| 860 handle path = parent == rm ? h : parent; |
| 861 |
| 862 if (h != rm) { |
| 863 // Poke in the replacement for the node to be removed. |
| 864 set_lt(h, get_lt(rm)); |
| 865 set_gt(h, get_gt(rm)); |
| 866 set_bf(h, get_bf(rm)); |
| 867 if (parent_rm == null()) { |
| 868 abs.root = h; |
| 869 } else { |
| 870 depth = rm_depth - 1; |
| 871 if (branch[depth]) |
| 872 set_gt(parent_rm, h); |
| 873 else |
| 874 set_lt(parent_rm, h); |
| 875 } |
| 876 } |
| 877 |
| 878 if (path != null()) { |
| 879 // Create a temporary linked list from the parent of the path node |
| 880 // to the root node. |
| 881 h = abs.root; |
| 882 parent = null(); |
| 883 depth = 0; |
| 884 while (h != path) { |
| 885 if (branch[depth++]) { |
| 886 child = get_gt(h); |
| 887 set_gt(h, parent); |
| 888 } else { |
| 889 child = get_lt(h); |
| 890 set_lt(h, parent); |
| 891 } |
| 892 parent = h; |
| 893 h = child; |
| 894 } |
| 895 |
| 896 // Climb from the path node to the root node using the linked |
| 897 // list, restoring the tree structure and rebalancing as necessary. |
| 898 bool reduced_depth = true; |
| 899 int bf; |
| 900 cmp = cmp_shortened_sub_with_path; |
| 901 for (;;) { |
| 902 if (reduced_depth) { |
| 903 bf = get_bf(h); |
| 904 if (cmp < 0) |
| 905 bf++; |
| 906 else // cmp > 0 |
| 907 bf--; |
| 908 if ((bf == -2) || (bf == 2)) { |
| 909 h = balance(h); |
| 910 bf = get_bf(h); |
| 911 } else { |
| 912 set_bf(h, bf); |
| 913 } |
| 914 reduced_depth = (bf == 0); |
| 915 } |
| 916 if (parent == null()) |
| 917 break; |
| 918 child = h; |
| 919 h = parent; |
| 920 cmp = branch[--depth] ? 1 : -1; |
| 921 if (cmp < 0) { |
| 922 parent = get_lt(h); |
| 923 set_lt(h, child); |
| 924 } else { |
| 925 parent = get_gt(h); |
| 926 set_gt(h, child); |
| 927 } |
| 928 } |
| 929 abs.root = h; |
| 930 } |
| 931 |
| 932 return rm; |
| 933 } |
| 934 |
| 935 template <class Abstractor, unsigned maxDepth, class BSet> |
| 936 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| 937 AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) { |
| 938 handle h = abs.root; |
| 939 handle parent = null(); |
| 940 int cmp, last_cmp; |
| 941 |
| 942 // Search for node already in tree with same key. |
| 943 for (;;) { |
| 944 if (h == null()) { |
| 945 // No node in tree with same key as new node. |
| 946 return null(); |
| 947 } |
| 948 cmp = cmp_n_n(new_node, h); |
| 949 if (cmp == 0) { |
| 950 // Found the node to substitute new one for. |
| 951 break; |
| 952 } |
| 953 last_cmp = cmp; |
| 954 parent = h; |
| 955 h = cmp < 0 ? get_lt(h) : get_gt(h); |
| 956 } |
| 957 |
| 958 // Copy tree housekeeping fields from node in tree to new node. |
| 959 set_lt(new_node, get_lt(h)); |
| 960 set_gt(new_node, get_gt(h)); |
| 961 set_bf(new_node, get_bf(h)); |
| 962 |
| 963 if (parent == null()) { |
| 964 // New node is also new root. |
| 965 abs.root = new_node; |
| 966 } else { |
| 967 // Make parent point to new node. |
| 968 if (last_cmp < 0) |
| 969 set_lt(parent, new_node); |
| 970 else |
| 971 set_gt(parent, new_node); |
| 972 } |
| 973 |
| 974 return h; |
| 975 } |
| 976 |
| 977 } // namespace content |
| 978 |
| 979 #endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
OLD | NEW |