Index: third_party/re2/re2/dfa.cc |
diff --git a/third_party/re2/re2/dfa.cc b/third_party/re2/re2/dfa.cc |
deleted file mode 100644 |
index 1f54b9f942eb4804cc89a9ce3e6dadb75c3caf3f..0000000000000000000000000000000000000000 |
--- a/third_party/re2/re2/dfa.cc |
+++ /dev/null |
@@ -1,2112 +0,0 @@ |
-// Copyright 2008 The RE2 Authors. All Rights Reserved. |
-// Use of this source code is governed by a BSD-style |
-// license that can be found in the LICENSE file. |
- |
-// A DFA (deterministic finite automaton)-based regular expression search. |
-// |
-// The DFA search has two main parts: the construction of the automaton, |
-// which is represented by a graph of State structures, and the execution |
-// of the automaton over a given input string. |
-// |
-// The basic idea is that the State graph is constructed so that the |
-// execution can simply start with a state s, and then for each byte c in |
-// the input string, execute "s = s->next[c]", checking at each point whether |
-// the current s represents a matching state. |
-// |
-// The simple explanation just given does convey the essence of this code, |
-// but it omits the details of how the State graph gets constructed as well |
-// as some performance-driven optimizations to the execution of the automaton. |
-// All these details are explained in the comments for the code following |
-// the definition of class DFA. |
-// |
-// See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent. |
- |
-#include "util/atomicops.h" |
-#include "util/flags.h" |
-#include "util/sparse_set.h" |
-#include "re2/prog.h" |
-#include "re2/stringpiece.h" |
- |
-DEFINE_bool(re2_dfa_bail_when_slow, true, |
- "Whether the RE2 DFA should bail out early " |
- "if the NFA would be faster (for testing)."); |
- |
-namespace re2 { |
- |
-#if !defined(__linux__) /* only Linux seems to have memrchr */ |
-static void* memrchr(const void* s, int c, size_t n) { |
- const unsigned char* p = (const unsigned char*)s; |
- for (p += n; n > 0; n--) |
- if (*--p == c) |
- return (void*)p; |
- |
- return NULL; |
-} |
-#endif |
- |
-// Changing this to true compiles in prints that trace execution of the DFA. |
-// Generates a lot of output -- only useful for debugging. |
-static const bool DebugDFA = false; |
- |
-// A DFA implementation of a regular expression program. |
-// Since this is entirely a forward declaration mandated by C++, |
-// some of the comments here are better understood after reading |
-// the comments in the sections that follow the DFA definition. |
-class DFA { |
- public: |
- DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem); |
- ~DFA(); |
- bool ok() const { return !init_failed_; } |
- Prog::MatchKind kind() { return kind_; } |
- |
- // Searches for the regular expression in text, which is considered |
- // as a subsection of context for the purposes of interpreting flags |
- // like ^ and $ and \A and \z. |
- // Returns whether a match was found. |
- // If a match is found, sets *ep to the end point of the best match in text. |
- // If "anchored", the match must begin at the start of text. |
- // If "want_earliest_match", the match that ends first is used, not |
- // necessarily the best one. |
- // If "run_forward" is true, the DFA runs from text.begin() to text.end(). |
- // If it is false, the DFA runs from text.end() to text.begin(), |
- // returning the leftmost end of the match instead of the rightmost one. |
- // If the DFA cannot complete the search (for example, if it is out of |
- // memory), it sets *failed and returns false. |
- bool Search(const StringPiece& text, const StringPiece& context, |
- bool anchored, bool want_earliest_match, bool run_forward, |
- bool* failed, const char** ep, vector<int>* matches); |
- |
- // Builds out all states for the entire DFA. FOR TESTING ONLY |
- // Returns number of states. |
- int BuildAllStates(); |
- |
- // Computes min and max for matching strings. Won't return strings |
- // bigger than maxlen. |
- bool PossibleMatchRange(string* min, string* max, int maxlen); |
- |
- // These data structures are logically private, but C++ makes it too |
- // difficult to mark them as such. |
- class Workq; |
- class RWLocker; |
- class StateSaver; |
- |
- // A single DFA state. The DFA is represented as a graph of these |
- // States, linked by the next_ pointers. If in state s and reading |
- // byte c, the next state should be s->next_[c]. |
- struct State { |
- inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; } |
- void SaveMatch(vector<int>* v); |
- |
- int* inst_; // Instruction pointers in the state. |
- int ninst_; // # of inst_ pointers. |
- uint flag_; // Empty string bitfield flags in effect on the way |
- // into this state, along with kFlagMatch if this |
- // is a matching state. |
- State** next_; // Outgoing arrows from State, |
- // one per input byte class |
- }; |
- |
- enum { |
- kByteEndText = 256, // imaginary byte at end of text |
- |
- kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags |
- kFlagMatch = 0x1000, // State.flag_: this is a matching state |
- kFlagLastWord = 0x2000, // State.flag_: last byte was a word char |
- kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left |
- }; |
- |
-#ifndef STL_MSVC |
- // STL function structures for use with unordered_set. |
- struct StateEqual { |
- bool operator()(const State* a, const State* b) const { |
- if (a == b) |
- return true; |
- if (a == NULL || b == NULL) |
- return false; |
- if (a->ninst_ != b->ninst_) |
- return false; |
- if (a->flag_ != b->flag_) |
- return false; |
- for (int i = 0; i < a->ninst_; i++) |
- if (a->inst_[i] != b->inst_[i]) |
- return false; |
- return true; // they're equal |
- } |
- }; |
-#endif // STL_MSVC |
- struct StateHash { |
- size_t operator()(const State* a) const { |
- if (a == NULL) |
- return 0; |
- const char* s = reinterpret_cast<const char*>(a->inst_); |
- int len = a->ninst_ * sizeof a->inst_[0]; |
- if (sizeof(size_t) == sizeof(uint32)) |
- return Hash32StringWithSeed(s, len, a->flag_); |
- else |
- return static_cast<size_t>(Hash64StringWithSeed(s, len, a->flag_)); |
- } |
-#ifdef STL_MSVC |
- // Less than operator. |
- bool operator()(const State* a, const State* b) const { |
- if (a == b) |
- return false; |
- if (a == NULL || b == NULL) |
- return a == NULL; |
- if (a->ninst_ != b->ninst_) |
- return a->ninst_ < b->ninst_; |
- if (a->flag_ != b->flag_) |
- return a->flag_ < b->flag_; |
- for (int i = 0; i < a->ninst_; ++i) |
- if (a->inst_[i] != b->inst_[i]) |
- return a->inst_[i] < b->inst_[i]; |
- return false; // they're equal |
- } |
- // The two public members are required by msvc. 4 and 8 are default values. |
- // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx |
- static const size_t bucket_size = 4; |
- static const size_t min_buckets = 8; |
-#endif // STL_MSVC |
- }; |
- |
-#ifdef STL_MSVC |
- typedef unordered_set<State*, StateHash> StateSet; |
-#else // !STL_MSVC |
- typedef unordered_set<State*, StateHash, StateEqual> StateSet; |
-#endif // STL_MSVC |
- |
- |
- private: |
- // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.) |
- enum { |
- kFbUnknown = -1, // No analysis has been performed. |
- kFbMany = -2, // Many bytes will lead out of this state. |
- kFbNone = -3, // No bytes lead out of this state. |
- }; |
- |
- enum { |
- // Indices into start_ for unanchored searches. |
- // Add kStartAnchored for anchored searches. |
- kStartBeginText = 0, // text at beginning of context |
- kStartBeginLine = 2, // text at beginning of line |
- kStartAfterWordChar = 4, // text follows a word character |
- kStartAfterNonWordChar = 6, // text follows non-word character |
- kMaxStart = 8, |
- |
- kStartAnchored = 1, |
- }; |
- |
- // Resets the DFA State cache, flushing all saved State* information. |
- // Releases and reacquires cache_mutex_ via cache_lock, so any |
- // State* existing before the call are not valid after the call. |
- // Use a StateSaver to preserve important states across the call. |
- // cache_mutex_.r <= L < mutex_ |
- // After: cache_mutex_.w <= L < mutex_ |
- void ResetCache(RWLocker* cache_lock); |
- |
- // Looks up and returns the State corresponding to a Workq. |
- // L >= mutex_ |
- State* WorkqToCachedState(Workq* q, uint flag); |
- |
- // Looks up and returns a State matching the inst, ninst, and flag. |
- // L >= mutex_ |
- State* CachedState(int* inst, int ninst, uint flag); |
- |
- // Clear the cache entirely. |
- // Must hold cache_mutex_.w or be in destructor. |
- void ClearCache(); |
- |
- // Converts a State into a Workq: the opposite of WorkqToCachedState. |
- // L >= mutex_ |
- static void StateToWorkq(State* s, Workq* q); |
- |
- // Runs a State on a given byte, returning the next state. |
- State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_ |
- State* RunStateOnByte(State*, int); // L >= mutex_ |
- |
- // Runs a Workq on a given byte followed by a set of empty-string flags, |
- // producing a new Workq in nq. If a match instruction is encountered, |
- // sets *ismatch to true. |
- // L >= mutex_ |
- void RunWorkqOnByte(Workq* q, Workq* nq, |
- int c, uint flag, bool* ismatch, |
- Prog::MatchKind kind); |
- |
- // Runs a Workq on a set of empty-string flags, producing a new Workq in nq. |
- // L >= mutex_ |
- void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag); |
- |
- // Adds the instruction id to the Workq, following empty arrows |
- // according to flag. |
- // L >= mutex_ |
- void AddToQueue(Workq* q, int id, uint flag); |
- |
- // For debugging, returns a text representation of State. |
- static string DumpState(State* state); |
- |
- // For debugging, returns a text representation of a Workq. |
- static string DumpWorkq(Workq* q); |
- |
- // Search parameters |
- struct SearchParams { |
- SearchParams(const StringPiece& text, const StringPiece& context, |
- RWLocker* cache_lock) |
- : text(text), context(context), |
- anchored(false), |
- want_earliest_match(false), |
- run_forward(false), |
- start(NULL), |
- firstbyte(kFbUnknown), |
- cache_lock(cache_lock), |
- failed(false), |
- ep(NULL), |
- matches(NULL) { } |
- |
- StringPiece text; |
- StringPiece context; |
- bool anchored; |
- bool want_earliest_match; |
- bool run_forward; |
- State* start; |
- int firstbyte; |
- RWLocker *cache_lock; |
- bool failed; // "out" parameter: whether search gave up |
- const char* ep; // "out" parameter: end pointer for match |
- vector<int>* matches; |
- |
- private: |
- DISALLOW_COPY_AND_ASSIGN(SearchParams); |
- }; |
- |
- // Before each search, the parameters to Search are analyzed by |
- // AnalyzeSearch to determine the state in which to start and the |
- // "firstbyte" for that state, if any. |
- struct StartInfo { |
- StartInfo() : start(NULL), firstbyte(kFbUnknown) { } |
- State* start; |
- volatile int firstbyte; |
- }; |
- |
- // Fills in params->start and params->firstbyte using |
- // the other search parameters. Returns true on success, |
- // false on failure. |
- // cache_mutex_.r <= L < mutex_ |
- bool AnalyzeSearch(SearchParams* params); |
- bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags); |
- |
- // The generic search loop, inlined to create specialized versions. |
- // cache_mutex_.r <= L < mutex_ |
- // Might unlock and relock cache_mutex_ via params->cache_lock. |
- inline bool InlinedSearchLoop(SearchParams* params, |
- bool have_firstbyte, |
- bool want_earliest_match, |
- bool run_forward); |
- |
- // The specialized versions of InlinedSearchLoop. The three letters |
- // at the ends of the name denote the true/false values used as the |
- // last three parameters of InlinedSearchLoop. |
- // cache_mutex_.r <= L < mutex_ |
- // Might unlock and relock cache_mutex_ via params->cache_lock. |
- bool SearchFFF(SearchParams* params); |
- bool SearchFFT(SearchParams* params); |
- bool SearchFTF(SearchParams* params); |
- bool SearchFTT(SearchParams* params); |
- bool SearchTFF(SearchParams* params); |
- bool SearchTFT(SearchParams* params); |
- bool SearchTTF(SearchParams* params); |
- bool SearchTTT(SearchParams* params); |
- |
- // The main search loop: calls an appropriate specialized version of |
- // InlinedSearchLoop. |
- // cache_mutex_.r <= L < mutex_ |
- // Might unlock and relock cache_mutex_ via params->cache_lock. |
- bool FastSearchLoop(SearchParams* params); |
- |
- // For debugging, a slow search loop that calls InlinedSearchLoop |
- // directly -- because the booleans passed are not constants, the |
- // loop is not specialized like the SearchFFF etc. versions, so it |
- // runs much more slowly. Useful only for debugging. |
- // cache_mutex_.r <= L < mutex_ |
- // Might unlock and relock cache_mutex_ via params->cache_lock. |
- bool SlowSearchLoop(SearchParams* params); |
- |
- // Looks up bytes in bytemap_ but handles case c == kByteEndText too. |
- int ByteMap(int c) { |
- if (c == kByteEndText) |
- return prog_->bytemap_range(); |
- return prog_->bytemap()[c]; |
- } |
- |
- // Constant after initialization. |
- Prog* prog_; // The regular expression program to run. |
- Prog::MatchKind kind_; // The kind of DFA. |
- bool init_failed_; // initialization failed (out of memory) |
- |
- Mutex mutex_; // mutex_ >= cache_mutex_.r |
- |
- // Scratch areas, protected by mutex_. |
- Workq* q0_; // Two pre-allocated work queues. |
- Workq* q1_; |
- int* astack_; // Pre-allocated stack for AddToQueue |
- int nastack_; |
- |
- // State* cache. Many threads use and add to the cache simultaneously, |
- // holding cache_mutex_ for reading and mutex_ (above) when adding. |
- // If the cache fills and needs to be discarded, the discarding is done |
- // while holding cache_mutex_ for writing, to avoid interrupting other |
- // readers. Any State* pointers are only valid while cache_mutex_ |
- // is held. |
- Mutex cache_mutex_; |
- int64 mem_budget_; // Total memory budget for all States. |
- int64 state_budget_; // Amount of memory remaining for new States. |
- StateSet state_cache_; // All States computed so far. |
- StartInfo start_[kMaxStart]; |
- bool cache_warned_; // have printed to LOG(INFO) about the cache |
-}; |
- |
-// Shorthand for casting to uint8*. |
-static inline const uint8* BytePtr(const void* v) { |
- return reinterpret_cast<const uint8*>(v); |
-} |
- |
-// Work queues |
- |
-// Marks separate thread groups of different priority |
-// in the work queue when in leftmost-longest matching mode. |
-#define Mark (-1) |
- |
-// Internally, the DFA uses a sparse array of |
-// program instruction pointers as a work queue. |
-// In leftmost longest mode, marks separate sections |
-// of workq that started executing at different |
-// locations in the string (earlier locations first). |
-class DFA::Workq : public SparseSet { |
- public: |
- // Constructor: n is number of normal slots, maxmark number of mark slots. |
- Workq(int n, int maxmark) : |
- SparseSet(n+maxmark), |
- n_(n), |
- maxmark_(maxmark), |
- nextmark_(n), |
- last_was_mark_(true) { |
- } |
- |
- bool is_mark(int i) { return i >= n_; } |
- |
- int maxmark() { return maxmark_; } |
- |
- void clear() { |
- SparseSet::clear(); |
- nextmark_ = n_; |
- } |
- |
- void mark() { |
- if (last_was_mark_) |
- return; |
- last_was_mark_ = false; |
- SparseSet::insert_new(nextmark_++); |
- } |
- |
- int size() { |
- return n_ + maxmark_; |
- } |
- |
- void insert(int id) { |
- if (contains(id)) |
- return; |
- insert_new(id); |
- } |
- |
- void insert_new(int id) { |
- last_was_mark_ = false; |
- SparseSet::insert_new(id); |
- } |
- |
- private: |
- int n_; // size excluding marks |
- int maxmark_; // maximum number of marks |
- int nextmark_; // id of next mark |
- bool last_was_mark_; // last inserted was mark |
- DISALLOW_COPY_AND_ASSIGN(Workq); |
-}; |
- |
-DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem) |
- : prog_(prog), |
- kind_(kind), |
- init_failed_(false), |
- q0_(NULL), |
- q1_(NULL), |
- astack_(NULL), |
- mem_budget_(max_mem), |
- cache_warned_(false) { |
- if (DebugDFA) |
- fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str()); |
- int nmark = 0; |
- if (kind_ == Prog::kLongestMatch) |
- nmark = prog->size(); |
- nastack_ = 2 * prog->size() + nmark; |
- |
- // Account for space needed for DFA, q0, q1, astack. |
- mem_budget_ -= sizeof(DFA); |
- mem_budget_ -= (prog_->size() + nmark) * |
- (sizeof(int)+sizeof(int)) * 2; // q0, q1 |
- mem_budget_ -= nastack_ * sizeof(int); // astack |
- if (mem_budget_ < 0) { |
- LOG(INFO) << StringPrintf("DFA out of memory: prog size %d mem %lld", |
- prog_->size(), max_mem); |
- init_failed_ = true; |
- return; |
- } |
- |
- state_budget_ = mem_budget_; |
- |
- // Make sure there is a reasonable amount of working room left. |
- // At minimum, the search requires room for two states in order |
- // to limp along, restarting frequently. We'll get better performance |
- // if there is room for a larger number of states, say 20. |
- int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) + |
- (prog_->bytemap_range()+1)*sizeof(State*); |
- if (state_budget_ < 20*one_state) { |
- LOG(INFO) << StringPrintf("DFA out of memory: prog size %d mem %lld", |
- prog_->size(), max_mem); |
- init_failed_ = true; |
- return; |
- } |
- |
- q0_ = new Workq(prog->size(), nmark); |
- q1_ = new Workq(prog->size(), nmark); |
- astack_ = new int[nastack_]; |
-} |
- |
-DFA::~DFA() { |
- delete q0_; |
- delete q1_; |
- delete[] astack_; |
- ClearCache(); |
-} |
- |
-// In the DFA state graph, s->next[c] == NULL means that the |
-// state has not yet been computed and needs to be. We need |
-// a different special value to signal that s->next[c] is a |
-// state that can never lead to a match (and thus the search |
-// can be called off). Hence DeadState. |
-#define DeadState reinterpret_cast<State*>(1) |
- |
-// Signals that the rest of the string matches no matter what it is. |
-#define FullMatchState reinterpret_cast<State*>(2) |
- |
-#define SpecialStateMax FullMatchState |
- |
-// Debugging printouts |
- |
-// For debugging, returns a string representation of the work queue. |
-string DFA::DumpWorkq(Workq* q) { |
- string s; |
- const char* sep = ""; |
- for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) { |
- if (q->is_mark(*it)) { |
- StringAppendF(&s, "|"); |
- sep = ""; |
- } else { |
- StringAppendF(&s, "%s%d", sep, *it); |
- sep = ","; |
- } |
- } |
- return s; |
-} |
- |
-// For debugging, returns a string representation of the state. |
-string DFA::DumpState(State* state) { |
- if (state == NULL) |
- return "_"; |
- if (state == DeadState) |
- return "X"; |
- if (state == FullMatchState) |
- return "*"; |
- string s; |
- const char* sep = ""; |
- StringAppendF(&s, "(%p)", state); |
- for (int i = 0; i < state->ninst_; i++) { |
- if (state->inst_[i] == Mark) { |
- StringAppendF(&s, "|"); |
- sep = ""; |
- } else { |
- StringAppendF(&s, "%s%d", sep, state->inst_[i]); |
- sep = ","; |
- } |
- } |
- StringAppendF(&s, " flag=%#x", state->flag_); |
- return s; |
-} |
- |
-////////////////////////////////////////////////////////////////////// |
-// |
-// DFA state graph construction. |
-// |
-// The DFA state graph is a heavily-linked collection of State* structures. |
-// The state_cache_ is a set of all the State structures ever allocated, |
-// so that if the same state is reached by two different paths, |
-// the same State structure can be used. This reduces allocation |
-// requirements and also avoids duplication of effort across the two |
-// identical states. |
-// |
-// A State is defined by an ordered list of instruction ids and a flag word. |
-// |
-// The choice of an ordered list of instructions differs from a typical |
-// textbook DFA implementation, which would use an unordered set. |
-// Textbook descriptions, however, only care about whether |
-// the DFA matches, not where it matches in the text. To decide where the |
-// DFA matches, we need to mimic the behavior of the dominant backtracking |
-// implementations like PCRE, which try one possible regular expression |
-// execution, then another, then another, stopping when one of them succeeds. |
-// The DFA execution tries these many executions in parallel, representing |
-// each by an instruction id. These pointers are ordered in the State.inst_ |
-// list in the same order that the executions would happen in a backtracking |
-// search: if a match is found during execution of inst_[2], inst_[i] for i>=3 |
-// can be discarded. |
-// |
-// Textbooks also typically do not consider context-aware empty string operators |
-// like ^ or $. These are handled by the flag word, which specifies the set |
-// of empty-string operators that should be matched when executing at the |
-// current text position. These flag bits are defined in prog.h. |
-// The flag word also contains two DFA-specific bits: kFlagMatch if the state |
-// is a matching state (one that reached a kInstMatch in the program) |
-// and kFlagLastWord if the last processed byte was a word character, for the |
-// implementation of \B and \b. |
-// |
-// The flag word also contains, shifted up 16 bits, the bits looked for by |
-// any kInstEmptyWidth instructions in the state. These provide a useful |
-// summary indicating when new flags might be useful. |
-// |
-// The permanent representation of a State's instruction ids is just an array, |
-// but while a state is being analyzed, these instruction ids are represented |
-// as a Workq, which is an array that allows iteration in insertion order. |
- |
-// NOTE(rsc): The choice of State construction determines whether the DFA |
-// mimics backtracking implementations (so-called leftmost first matching) or |
-// traditional DFA implementations (so-called leftmost longest matching as |
-// prescribed by POSIX). This implementation chooses to mimic the |
-// backtracking implementations, because we want to replace PCRE. To get |
-// POSIX behavior, the states would need to be considered not as a simple |
-// ordered list of instruction ids, but as a list of unordered sets of instruction |
-// ids. A match by a state in one set would inhibit the running of sets |
-// farther down the list but not other instruction ids in the same set. Each |
-// set would correspond to matches beginning at a given point in the string. |
-// This is implemented by separating different sets with Mark pointers. |
- |
-// Looks in the State cache for a State matching q, flag. |
-// If one is found, returns it. If one is not found, allocates one, |
-// inserts it in the cache, and returns it. |
-DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) { |
- if (DEBUG_MODE) |
- mutex_.AssertHeld(); |
- |
- // Construct array of instruction ids for the new state. |
- // Only ByteRange, EmptyWidth, and Match instructions are useful to keep: |
- // those are the only operators with any effect in |
- // RunWorkqOnEmptyString or RunWorkqOnByte. |
- int* inst = new int[q->size()]; |
- int n = 0; |
- uint needflags = 0; // flags needed by kInstEmptyWidth instructions |
- bool sawmatch = false; // whether queue contains guaranteed kInstMatch |
- bool sawmark = false; // whether queue contains a Mark |
- if (DebugDFA) |
- fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag); |
- for (Workq::iterator it = q->begin(); it != q->end(); ++it) { |
- int id = *it; |
- if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id))) |
- break; |
- if (q->is_mark(id)) { |
- if (n > 0 && inst[n-1] != Mark) { |
- sawmark = true; |
- inst[n++] = Mark; |
- } |
- continue; |
- } |
- Prog::Inst* ip = prog_->inst(id); |
- switch (ip->opcode()) { |
- case kInstAltMatch: |
- // This state will continue to a match no matter what |
- // the rest of the input is. If it is the highest priority match |
- // being considered, return the special FullMatchState |
- // to indicate that it's all matches from here out. |
- if (kind_ != Prog::kManyMatch && |
- (kind_ != Prog::kFirstMatch || |
- (it == q->begin() && ip->greedy(prog_))) && |
- (kind_ != Prog::kLongestMatch || !sawmark) && |
- (flag & kFlagMatch)) { |
- delete[] inst; |
- if (DebugDFA) |
- fprintf(stderr, " -> FullMatchState\n"); |
- return FullMatchState; |
- } |
- // Fall through. |
- case kInstByteRange: // These are useful. |
- case kInstEmptyWidth: |
- case kInstMatch: |
- case kInstAlt: // Not useful, but necessary [*] |
- inst[n++] = *it; |
- if (ip->opcode() == kInstEmptyWidth) |
- needflags |= ip->empty(); |
- if (ip->opcode() == kInstMatch && !prog_->anchor_end()) |
- sawmatch = true; |
- break; |
- |
- default: // The rest are not. |
- break; |
- } |
- |
- // [*] kInstAlt would seem useless to record in a state, since |
- // we've already followed both its arrows and saved all the |
- // interesting states we can reach from there. The problem |
- // is that one of the empty-width instructions might lead |
- // back to the same kInstAlt (if an empty-width operator is starred), |
- // producing a different evaluation order depending on whether |
- // we keep the kInstAlt to begin with. Sigh. |
- // A specific case that this affects is /(^|a)+/ matching "a". |
- // If we don't save the kInstAlt, we will match the whole "a" (0,1) |
- // but in fact the correct leftmost-first match is the leading "" (0,0). |
- } |
- DCHECK_LE(n, q->size()); |
- if (n > 0 && inst[n-1] == Mark) |
- n--; |
- |
- // If there are no empty-width instructions waiting to execute, |
- // then the extra flag bits will not be used, so there is no |
- // point in saving them. (Discarding them reduces the number |
- // of distinct states.) |
- if (needflags == 0) |
- flag &= kFlagMatch; |
- |
- // NOTE(rsc): The code above cannot do flag &= needflags, |
- // because if the right flags were present to pass the current |
- // kInstEmptyWidth instructions, new kInstEmptyWidth instructions |
- // might be reached that in turn need different flags. |
- // The only sure thing is that if there are no kInstEmptyWidth |
- // instructions at all, no flags will be needed. |
- // We could do the extra work to figure out the full set of |
- // possibly needed flags by exploring past the kInstEmptyWidth |
- // instructions, but the check above -- are any flags needed |
- // at all? -- handles the most common case. More fine-grained |
- // analysis can only be justified by measurements showing that |
- // too many redundant states are being allocated. |
- |
- // If there are no Insts in the list, it's a dead state, |
- // which is useful to signal with a special pointer so that |
- // the execution loop can stop early. This is only okay |
- // if the state is *not* a matching state. |
- if (n == 0 && flag == 0) { |
- delete[] inst; |
- if (DebugDFA) |
- fprintf(stderr, " -> DeadState\n"); |
- return DeadState; |
- } |
- |
- // If we're in longest match mode, the state is a sequence of |
- // unordered state sets separated by Marks. Sort each set |
- // to canonicalize, to reduce the number of distinct sets stored. |
- if (kind_ == Prog::kLongestMatch) { |
- int* ip = inst; |
- int* ep = ip + n; |
- while (ip < ep) { |
- int* markp = ip; |
- while (markp < ep && *markp != Mark) |
- markp++; |
- sort(ip, markp); |
- if (markp < ep) |
- markp++; |
- ip = markp; |
- } |
- } |
- |
- // Save the needed empty-width flags in the top bits for use later. |
- flag |= needflags << kFlagNeedShift; |
- |
- State* state = CachedState(inst, n, flag); |
- delete[] inst; |
- return state; |
-} |
- |
-// Looks in the State cache for a State matching inst, ninst, flag. |
-// If one is found, returns it. If one is not found, allocates one, |
-// inserts it in the cache, and returns it. |
-DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) { |
- if (DEBUG_MODE) |
- mutex_.AssertHeld(); |
- |
- // Look in the cache for a pre-existing state. |
- State state = { inst, ninst, flag, NULL }; |
- StateSet::iterator it = state_cache_.find(&state); |
- if (it != state_cache_.end()) { |
- if (DebugDFA) |
- fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str()); |
- return *it; |
- } |
- |
- // Must have enough memory for new state. |
- // In addition to what we're going to allocate, |
- // the state cache hash table seems to incur about 32 bytes per |
- // State*, empirically. |
- const int kStateCacheOverhead = 32; |
- int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot |
- int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int); |
- if (mem_budget_ < mem + kStateCacheOverhead) { |
- mem_budget_ = -1; |
- return NULL; |
- } |
- mem_budget_ -= mem + kStateCacheOverhead; |
- |
- // Allocate new state, along with room for next and inst. |
- char* space = new char[mem]; |
- State* s = reinterpret_cast<State*>(space); |
- s->next_ = reinterpret_cast<State**>(s + 1); |
- s->inst_ = reinterpret_cast<int*>(s->next_ + nnext); |
- memset(s->next_, 0, nnext*sizeof s->next_[0]); |
- memmove(s->inst_, inst, ninst*sizeof s->inst_[0]); |
- s->ninst_ = ninst; |
- s->flag_ = flag; |
- if (DebugDFA) |
- fprintf(stderr, " -> %s\n", DumpState(s).c_str()); |
- |
- // Put state in cache and return it. |
- state_cache_.insert(s); |
- return s; |
-} |
- |
-// Clear the cache. Must hold cache_mutex_.w or be in destructor. |
-void DFA::ClearCache() { |
- // In case state_cache_ doesn't support deleting entries |
- // during iteration, copy into a vector and then delete. |
- vector<State*> v; |
- v.reserve(state_cache_.size()); |
- for (StateSet::iterator it = state_cache_.begin(); |
- it != state_cache_.end(); ++it) |
- v.push_back(*it); |
- state_cache_.clear(); |
- for (size_t i = 0; i < v.size(); i++) |
- delete[] reinterpret_cast<const char*>(v[i]); |
-} |
- |
-// Copies insts in state s to the work queue q. |
-void DFA::StateToWorkq(State* s, Workq* q) { |
- q->clear(); |
- for (int i = 0; i < s->ninst_; i++) { |
- if (s->inst_[i] == Mark) |
- q->mark(); |
- else |
- q->insert_new(s->inst_[i]); |
- } |
-} |
- |
-// Adds ip to the work queue, following empty arrows according to flag |
-// and expanding kInstAlt instructions (two-target gotos). |
-void DFA::AddToQueue(Workq* q, int id, uint flag) { |
- |
- // Use astack_ to hold our stack of states yet to process. |
- // It is sized to have room for nastack_ == 2*prog->size() + nmark |
- // instructions, which is enough: each instruction can be |
- // processed by the switch below only once, and the processing |
- // pushes at most two instructions plus maybe a mark. |
- // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.) |
- int* stk = astack_; |
- int nstk = 0; |
- |
- stk[nstk++] = id; |
- while (nstk > 0) { |
- DCHECK_LE(nstk, nastack_); |
- id = stk[--nstk]; |
- |
- if (id == Mark) { |
- q->mark(); |
- continue; |
- } |
- |
- if (id == 0) |
- continue; |
- |
- // If ip is already on the queue, nothing to do. |
- // Otherwise add it. We don't actually keep all the ones |
- // that get added -- for example, kInstAlt is ignored |
- // when on a work queue -- but adding all ip's here |
- // increases the likelihood of q->contains(id), |
- // reducing the amount of duplicated work. |
- if (q->contains(id)) |
- continue; |
- q->insert_new(id); |
- |
- // Process instruction. |
- Prog::Inst* ip = prog_->inst(id); |
- switch (ip->opcode()) { |
- case kInstFail: // can't happen: discarded above |
- break; |
- |
- case kInstByteRange: // just save these on the queue |
- case kInstMatch: |
- break; |
- |
- case kInstCapture: // DFA treats captures as no-ops. |
- case kInstNop: |
- stk[nstk++] = ip->out(); |
- break; |
- |
- case kInstAlt: // two choices: expand both, in order |
- case kInstAltMatch: |
- // Want to visit out then out1, so push on stack in reverse order. |
- // This instruction is the [00-FF]* loop at the beginning of |
- // a leftmost-longest unanchored search, separate out from out1 |
- // with a Mark, so that out1's threads (which will start farther |
- // to the right in the string being searched) are lower priority |
- // than the current ones. |
- stk[nstk++] = ip->out1(); |
- if (q->maxmark() > 0 && |
- id == prog_->start_unanchored() && id != prog_->start()) |
- stk[nstk++] = Mark; |
- stk[nstk++] = ip->out(); |
- break; |
- |
- case kInstEmptyWidth: |
- // Continue on if we have all the right flag bits. |
- if (ip->empty() & ~flag) |
- break; |
- stk[nstk++] = ip->out(); |
- break; |
- } |
- } |
-} |
- |
-// Running of work queues. In the work queue, order matters: |
-// the queue is sorted in priority order. If instruction i comes before j, |
-// then the instructions that i produces during the run must come before |
-// the ones that j produces. In order to keep this invariant, all the |
-// work queue runners have to take an old queue to process and then |
-// also a new queue to fill in. It's not acceptable to add to the end of |
-// an existing queue, because new instructions will not end up in the |
-// correct position. |
- |
-// Runs the work queue, processing the empty strings indicated by flag. |
-// For example, flag == kEmptyBeginLine|kEmptyEndLine means to match |
-// both ^ and $. It is important that callers pass all flags at once: |
-// processing both ^ and $ is not the same as first processing only ^ |
-// and then processing only $. Doing the two-step sequence won't match |
-// ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior |
-// exhibited by existing implementations). |
-void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) { |
- newq->clear(); |
- for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { |
- if (oldq->is_mark(*i)) |
- AddToQueue(newq, Mark, flag); |
- else |
- AddToQueue(newq, *i, flag); |
- } |
-} |
- |
-// Runs the work queue, processing the single byte c followed by any empty |
-// strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine, |
-// means to match c$. Sets the bool *ismatch to true if the end of the |
-// regular expression program has been reached (the regexp has matched). |
-void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq, |
- int c, uint flag, bool* ismatch, |
- Prog::MatchKind kind) { |
- if (DEBUG_MODE) |
- mutex_.AssertHeld(); |
- |
- newq->clear(); |
- for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { |
- if (oldq->is_mark(*i)) { |
- if (*ismatch) |
- return; |
- newq->mark(); |
- continue; |
- } |
- int id = *i; |
- Prog::Inst* ip = prog_->inst(id); |
- switch (ip->opcode()) { |
- case kInstFail: // never succeeds |
- case kInstCapture: // already followed |
- case kInstNop: // already followed |
- case kInstAlt: // already followed |
- case kInstAltMatch: // already followed |
- case kInstEmptyWidth: // already followed |
- break; |
- |
- case kInstByteRange: // can follow if c is in range |
- if (ip->Matches(c)) |
- AddToQueue(newq, ip->out(), flag); |
- break; |
- |
- case kInstMatch: |
- if (prog_->anchor_end() && c != kByteEndText) |
- break; |
- *ismatch = true; |
- if (kind == Prog::kFirstMatch) { |
- // Can stop processing work queue since we found a match. |
- return; |
- } |
- break; |
- } |
- } |
- |
- if (DebugDFA) |
- fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(), |
- c, flag, DumpWorkq(newq).c_str(), *ismatch); |
-} |
- |
-// Processes input byte c in state, returning new state. |
-// Caller does not hold mutex. |
-DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) { |
- // Keep only one RunStateOnByte going |
- // even if the DFA is being run by multiple threads. |
- MutexLock l(&mutex_); |
- return RunStateOnByte(state, c); |
-} |
- |
-// Processes input byte c in state, returning new state. |
-DFA::State* DFA::RunStateOnByte(State* state, int c) { |
- if (DEBUG_MODE) |
- mutex_.AssertHeld(); |
- if (state <= SpecialStateMax) { |
- if (state == FullMatchState) { |
- // It is convenient for routines like PossibleMatchRange |
- // if we implement RunStateOnByte for FullMatchState: |
- // once you get into this state you never get out, |
- // so it's pretty easy. |
- return FullMatchState; |
- } |
- if (state == DeadState) { |
- LOG(DFATAL) << "DeadState in RunStateOnByte"; |
- return NULL; |
- } |
- if (state == NULL) { |
- LOG(DFATAL) << "NULL state in RunStateOnByte"; |
- return NULL; |
- } |
- LOG(DFATAL) << "Unexpected special state in RunStateOnByte"; |
- return NULL; |
- } |
- |
- // If someone else already computed this, return it. |
- State* ns; |
- ATOMIC_LOAD_CONSUME(ns, &state->next_[ByteMap(c)]); |
- if (ns != NULL) |
- return ns; |
- |
- // Convert state into Workq. |
- StateToWorkq(state, q0_); |
- |
- // Flags marking the kinds of empty-width things (^ $ etc) |
- // around this byte. Before the byte we have the flags recorded |
- // in the State structure itself. After the byte we have |
- // nothing yet (but that will change: read on). |
- uint needflag = state->flag_ >> kFlagNeedShift; |
- uint beforeflag = state->flag_ & kFlagEmptyMask; |
- uint oldbeforeflag = beforeflag; |
- uint afterflag = 0; |
- |
- if (c == '\n') { |
- // Insert implicit $ and ^ around \n |
- beforeflag |= kEmptyEndLine; |
- afterflag |= kEmptyBeginLine; |
- } |
- |
- if (c == kByteEndText) { |
- // Insert implicit $ and \z before the fake "end text" byte. |
- beforeflag |= kEmptyEndLine | kEmptyEndText; |
- } |
- |
- // The state flag kFlagLastWord says whether the last |
- // byte processed was a word character. Use that info to |
- // insert empty-width (non-)word boundaries. |
- bool islastword = (state->flag_ & kFlagLastWord) != 0; |
- bool isword = (c != kByteEndText && Prog::IsWordChar(static_cast<uint8>(c))); |
- if (isword == islastword) |
- beforeflag |= kEmptyNonWordBoundary; |
- else |
- beforeflag |= kEmptyWordBoundary; |
- |
- // Okay, finally ready to run. |
- // Only useful to rerun on empty string if there are new, useful flags. |
- if (beforeflag & ~oldbeforeflag & needflag) { |
- RunWorkqOnEmptyString(q0_, q1_, beforeflag); |
- swap(q0_, q1_); |
- } |
- bool ismatch = false; |
- RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_); |
- |
- // Most of the time, we build the state from the output of |
- // RunWorkqOnByte, so swap q0_ and q1_ here. However, so that |
- // RE2::Set can tell exactly which match instructions |
- // contributed to the match, don't swap if c is kByteEndText. |
- // The resulting state wouldn't be correct for further processing |
- // of the string, but we're at the end of the text so that's okay. |
- // Leaving q0_ alone preseves the match instructions that led to |
- // the current setting of ismatch. |
- if (c != kByteEndText || kind_ != Prog::kManyMatch) |
- swap(q0_, q1_); |
- |
- // Save afterflag along with ismatch and isword in new state. |
- uint flag = afterflag; |
- if (ismatch) |
- flag |= kFlagMatch; |
- if (isword) |
- flag |= kFlagLastWord; |
- |
- ns = WorkqToCachedState(q0_, flag); |
- |
- // Flush ns before linking to it. |
- // Write barrier before updating state->next_ so that the |
- // main search loop can proceed without any locking, for speed. |
- // (Otherwise it would need one mutex operation per input byte.) |
- ATOMIC_STORE_RELEASE(&state->next_[ByteMap(c)], ns); |
- return ns; |
-} |
- |
- |
-////////////////////////////////////////////////////////////////////// |
-// DFA cache reset. |
- |
-// Reader-writer lock helper. |
-// |
-// The DFA uses a reader-writer mutex to protect the state graph itself. |
-// Traversing the state graph requires holding the mutex for reading, |
-// and discarding the state graph and starting over requires holding the |
-// lock for writing. If a search needs to expand the graph but is out |
-// of memory, it will need to drop its read lock and then acquire the |
-// write lock. Since it cannot then atomically downgrade from write lock |
-// to read lock, it runs the rest of the search holding the write lock. |
-// (This probably helps avoid repeated contention, but really the decision |
-// is forced by the Mutex interface.) It's a bit complicated to keep |
-// track of whether the lock is held for reading or writing and thread |
-// that through the search, so instead we encapsulate it in the RWLocker |
-// and pass that around. |
- |
-class DFA::RWLocker { |
- public: |
- explicit RWLocker(Mutex* mu); |
- ~RWLocker(); |
- |
- // If the lock is only held for reading right now, |
- // drop the read lock and re-acquire for writing. |
- // Subsequent calls to LockForWriting are no-ops. |
- // Notice that the lock is *released* temporarily. |
- void LockForWriting(); |
- |
- // Returns whether the lock is already held for writing. |
- bool IsLockedForWriting() { |
- return writing_; |
- } |
- |
- private: |
- Mutex* mu_; |
- bool writing_; |
- |
- DISALLOW_COPY_AND_ASSIGN(RWLocker); |
-}; |
- |
-DFA::RWLocker::RWLocker(Mutex* mu) |
- : mu_(mu), writing_(false) { |
- |
- mu_->ReaderLock(); |
-} |
- |
-// This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations |
-// does not support lock upgrade. |
-void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS { |
- if (!writing_) { |
- mu_->ReaderUnlock(); |
- mu_->Lock(); |
- writing_ = true; |
- } |
-} |
- |
-DFA::RWLocker::~RWLocker() { |
- if (writing_) |
- mu_->WriterUnlock(); |
- else |
- mu_->ReaderUnlock(); |
-} |
- |
- |
-// When the DFA's State cache fills, we discard all the states in the |
-// cache and start over. Many threads can be using and adding to the |
-// cache at the same time, so we synchronize using the cache_mutex_ |
-// to keep from stepping on other threads. Specifically, all the |
-// threads using the current cache hold cache_mutex_ for reading. |
-// When a thread decides to flush the cache, it drops cache_mutex_ |
-// and then re-acquires it for writing. That ensures there are no |
-// other threads accessing the cache anymore. The rest of the search |
-// runs holding cache_mutex_ for writing, avoiding any contention |
-// with or cache pollution caused by other threads. |
- |
-void DFA::ResetCache(RWLocker* cache_lock) { |
- // Re-acquire the cache_mutex_ for writing (exclusive use). |
- bool was_writing = cache_lock->IsLockedForWriting(); |
- cache_lock->LockForWriting(); |
- |
- // If we already held cache_mutex_ for writing, it means |
- // this invocation of Search() has already reset the |
- // cache once already. That's a pretty clear indication |
- // that the cache is too small. Warn about that, once. |
- // TODO(rsc): Only warn if state_cache_.size() < some threshold. |
- if (was_writing && !cache_warned_) { |
- LOG(INFO) << "DFA memory cache could be too small: " |
- << "only room for " << state_cache_.size() << " states."; |
- cache_warned_ = true; |
- } |
- |
- // Clear the cache, reset the memory budget. |
- for (int i = 0; i < kMaxStart; i++) { |
- start_[i].start = NULL; |
- start_[i].firstbyte = kFbUnknown; |
- } |
- ClearCache(); |
- mem_budget_ = state_budget_; |
-} |
- |
-// Typically, a couple States do need to be preserved across a cache |
-// reset, like the State at the current point in the search. |
-// The StateSaver class helps keep States across cache resets. |
-// It makes a copy of the state's guts outside the cache (before the reset) |
-// and then can be asked, after the reset, to recreate the State |
-// in the new cache. For example, in a DFA method ("this" is a DFA): |
-// |
-// StateSaver saver(this, s); |
-// ResetCache(cache_lock); |
-// s = saver.Restore(); |
-// |
-// The saver should always have room in the cache to re-create the state, |
-// because resetting the cache locks out all other threads, and the cache |
-// is known to have room for at least a couple states (otherwise the DFA |
-// constructor fails). |
- |
-class DFA::StateSaver { |
- public: |
- explicit StateSaver(DFA* dfa, State* state); |
- ~StateSaver(); |
- |
- // Recreates and returns a state equivalent to the |
- // original state passed to the constructor. |
- // Returns NULL if the cache has filled, but |
- // since the DFA guarantees to have room in the cache |
- // for a couple states, should never return NULL |
- // if used right after ResetCache. |
- State* Restore(); |
- |
- private: |
- DFA* dfa_; // the DFA to use |
- int* inst_; // saved info from State |
- int ninst_; |
- uint flag_; |
- bool is_special_; // whether original state was special |
- State* special_; // if is_special_, the original state |
- |
- DISALLOW_COPY_AND_ASSIGN(StateSaver); |
-}; |
- |
-DFA::StateSaver::StateSaver(DFA* dfa, State* state) { |
- dfa_ = dfa; |
- if (state <= SpecialStateMax) { |
- inst_ = NULL; |
- ninst_ = 0; |
- flag_ = 0; |
- is_special_ = true; |
- special_ = state; |
- return; |
- } |
- is_special_ = false; |
- special_ = NULL; |
- flag_ = state->flag_; |
- ninst_ = state->ninst_; |
- inst_ = new int[ninst_]; |
- memmove(inst_, state->inst_, ninst_*sizeof inst_[0]); |
-} |
- |
-DFA::StateSaver::~StateSaver() { |
- if (!is_special_) |
- delete[] inst_; |
-} |
- |
-DFA::State* DFA::StateSaver::Restore() { |
- if (is_special_) |
- return special_; |
- MutexLock l(&dfa_->mutex_); |
- State* s = dfa_->CachedState(inst_, ninst_, flag_); |
- if (s == NULL) |
- LOG(DFATAL) << "StateSaver failed to restore state."; |
- return s; |
-} |
- |
- |
-////////////////////////////////////////////////////////////////////// |
-// |
-// DFA execution. |
-// |
-// The basic search loop is easy: start in a state s and then for each |
-// byte c in the input, s = s->next[c]. |
-// |
-// This simple description omits a few efficiency-driven complications. |
-// |
-// First, the State graph is constructed incrementally: it is possible |
-// that s->next[c] is null, indicating that that state has not been |
-// fully explored. In this case, RunStateOnByte must be invoked to |
-// determine the next state, which is cached in s->next[c] to save |
-// future effort. An alternative reason for s->next[c] to be null is |
-// that the DFA has reached a so-called "dead state", in which any match |
-// is no longer possible. In this case RunStateOnByte will return NULL |
-// and the processing of the string can stop early. |
-// |
-// Second, a 256-element pointer array for s->next_ makes each State |
-// quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[] |
-// maps from bytes to "byte classes" and then next_ only needs to have |
-// as many pointers as there are byte classes. A byte class is simply a |
-// range of bytes that the regexp never distinguishes between. |
-// A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1, |
-// 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit |
-// but in exchange we typically cut the size of a State (and thus our |
-// memory footprint) by about 5-10x. The comments still refer to |
-// s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]]. |
-// |
-// Third, it is common for a DFA for an unanchored match to begin in a |
-// state in which only one particular byte value can take the DFA to a |
-// different state. That is, s->next[c] != s for only one c. In this |
-// situation, the DFA can do better than executing the simple loop. |
-// Instead, it can call memchr to search very quickly for the byte c. |
-// Whether the start state has this property is determined during a |
-// pre-compilation pass, and if so, the byte b is passed to the search |
-// loop as the "firstbyte" argument, along with a boolean "have_firstbyte". |
-// |
-// Fourth, the desired behavior is to search for the leftmost-best match |
-// (approximately, the same one that Perl would find), which is not |
-// necessarily the match ending earliest in the string. Each time a |
-// match is found, it must be noted, but the DFA must continue on in |
-// hope of finding a higher-priority match. In some cases, the caller only |
-// cares whether there is any match at all, not which one is found. |
-// The "want_earliest_match" flag causes the search to stop at the first |
-// match found. |
-// |
-// Fifth, one algorithm that uses the DFA needs it to run over the |
-// input string backward, beginning at the end and ending at the beginning. |
-// Passing false for the "run_forward" flag causes the DFA to run backward. |
-// |
-// The checks for these last three cases, which in a naive implementation |
-// would be performed once per input byte, slow the general loop enough |
-// to merit specialized versions of the search loop for each of the |
-// eight possible settings of the three booleans. Rather than write |
-// eight different functions, we write one general implementation and then |
-// inline it to create the specialized ones. |
-// |
-// Note that matches are delayed by one byte, to make it easier to |
-// accomodate match conditions depending on the next input byte (like $ and \b). |
-// When s->next[c]->IsMatch(), it means that there is a match ending just |
-// *before* byte c. |
- |
-// The generic search loop. Searches text for a match, returning |
-// the pointer to the end of the chosen match, or NULL if no match. |
-// The bools are equal to the same-named variables in params, but |
-// making them function arguments lets the inliner specialize |
-// this function to each combination (see two paragraphs above). |
-inline bool DFA::InlinedSearchLoop(SearchParams* params, |
- bool have_firstbyte, |
- bool want_earliest_match, |
- bool run_forward) { |
- State* start = params->start; |
- const uint8* bp = BytePtr(params->text.begin()); // start of text |
- const uint8* p = bp; // text scanning point |
- const uint8* ep = BytePtr(params->text.end()); // end of text |
- const uint8* resetp = NULL; // p at last cache reset |
- if (!run_forward) |
- swap(p, ep); |
- |
- const uint8* bytemap = prog_->bytemap(); |
- const uint8* lastmatch = NULL; // most recent matching position in text |
- bool matched = false; |
- State* s = start; |
- |
- if (s->IsMatch()) { |
- matched = true; |
- lastmatch = p; |
- if (want_earliest_match) { |
- params->ep = reinterpret_cast<const char*>(lastmatch); |
- return true; |
- } |
- } |
- |
- while (p != ep) { |
- if (DebugDFA) |
- fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp), |
- DumpState(s).c_str()); |
- if (have_firstbyte && s == start) { |
- // In start state, only way out is to find firstbyte, |
- // so use optimized assembly in memchr to skip ahead. |
- // If firstbyte isn't found, we can skip to the end |
- // of the string. |
- if (run_forward) { |
- if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) { |
- p = ep; |
- break; |
- } |
- } else { |
- if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) { |
- p = ep; |
- break; |
- } |
- p++; |
- } |
- } |
- |
- int c; |
- if (run_forward) |
- c = *p++; |
- else |
- c = *--p; |
- |
- // Note that multiple threads might be consulting |
- // s->next_[bytemap[c]] simultaneously. |
- // RunStateOnByte takes care of the appropriate locking, |
- // including a memory barrier so that the unlocked access |
- // (sometimes known as "double-checked locking") is safe. |
- // The alternative would be either one DFA per thread |
- // or one mutex operation per input byte. |
- // |
- // ns == DeadState means the state is known to be dead |
- // (no more matches are possible). |
- // ns == NULL means the state has not yet been computed |
- // (need to call RunStateOnByteUnlocked). |
- // RunStateOnByte returns ns == NULL if it is out of memory. |
- // ns == FullMatchState means the rest of the string matches. |
- // |
- // Okay to use bytemap[] not ByteMap() here, because |
- // c is known to be an actual byte and not kByteEndText. |
- |
- State* ns; |
- ATOMIC_LOAD_CONSUME(ns, &s->next_[bytemap[c]]); |
- if (ns == NULL) { |
- ns = RunStateOnByteUnlocked(s, c); |
- if (ns == NULL) { |
- // After we reset the cache, we hold cache_mutex exclusively, |
- // so if resetp != NULL, it means we filled the DFA state |
- // cache with this search alone (without any other threads). |
- // Benchmarks show that doing a state computation on every |
- // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the |
- // same at about 2 MB/s. Unless we're processing an average |
- // of 10 bytes per state computation, fail so that RE2 can |
- // fall back to the NFA. |
- if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL && |
- static_cast<unsigned long>(p - resetp) < 10*state_cache_.size()) { |
- params->failed = true; |
- return false; |
- } |
- resetp = p; |
- |
- // Prepare to save start and s across the reset. |
- StateSaver save_start(this, start); |
- StateSaver save_s(this, s); |
- |
- // Discard all the States in the cache. |
- ResetCache(params->cache_lock); |
- |
- // Restore start and s so we can continue. |
- if ((start = save_start.Restore()) == NULL || |
- (s = save_s.Restore()) == NULL) { |
- // Restore already did LOG(DFATAL). |
- params->failed = true; |
- return false; |
- } |
- ns = RunStateOnByteUnlocked(s, c); |
- if (ns == NULL) { |
- LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache"; |
- params->failed = true; |
- return false; |
- } |
- } |
- } |
- if (ns <= SpecialStateMax) { |
- if (ns == DeadState) { |
- params->ep = reinterpret_cast<const char*>(lastmatch); |
- return matched; |
- } |
- // FullMatchState |
- params->ep = reinterpret_cast<const char*>(ep); |
- return true; |
- } |
- s = ns; |
- |
- if (s->IsMatch()) { |
- matched = true; |
- // The DFA notices the match one byte late, |
- // so adjust p before using it in the match. |
- if (run_forward) |
- lastmatch = p - 1; |
- else |
- lastmatch = p + 1; |
- if (DebugDFA) |
- fprintf(stderr, "match @%d! [%s]\n", |
- static_cast<int>(lastmatch - bp), |
- DumpState(s).c_str()); |
- |
- if (want_earliest_match) { |
- params->ep = reinterpret_cast<const char*>(lastmatch); |
- return true; |
- } |
- } |
- } |
- |
- // Process one more byte to see if it triggers a match. |
- // (Remember, matches are delayed one byte.) |
- int lastbyte; |
- if (run_forward) { |
- if (params->text.end() == params->context.end()) |
- lastbyte = kByteEndText; |
- else |
- lastbyte = params->text.end()[0] & 0xFF; |
- } else { |
- if (params->text.begin() == params->context.begin()) |
- lastbyte = kByteEndText; |
- else |
- lastbyte = params->text.begin()[-1] & 0xFF; |
- } |
- |
- State* ns; |
- ATOMIC_LOAD_CONSUME(ns, &s->next_[ByteMap(lastbyte)]); |
- if (ns == NULL) { |
- ns = RunStateOnByteUnlocked(s, lastbyte); |
- if (ns == NULL) { |
- StateSaver save_s(this, s); |
- ResetCache(params->cache_lock); |
- if ((s = save_s.Restore()) == NULL) { |
- params->failed = true; |
- return false; |
- } |
- ns = RunStateOnByteUnlocked(s, lastbyte); |
- if (ns == NULL) { |
- LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset"; |
- params->failed = true; |
- return false; |
- } |
- } |
- } |
- s = ns; |
- if (DebugDFA) |
- fprintf(stderr, "@_: %s\n", DumpState(s).c_str()); |
- if (s == FullMatchState) { |
- params->ep = reinterpret_cast<const char*>(ep); |
- return true; |
- } |
- if (s > SpecialStateMax && s->IsMatch()) { |
- matched = true; |
- lastmatch = p; |
- if (params->matches && kind_ == Prog::kManyMatch) { |
- vector<int>* v = params->matches; |
- v->clear(); |
- for (int i = 0; i < s->ninst_; i++) { |
- Prog::Inst* ip = prog_->inst(s->inst_[i]); |
- if (ip->opcode() == kInstMatch) |
- v->push_back(ip->match_id()); |
- } |
- } |
- if (DebugDFA) |
- fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp), |
- DumpState(s).c_str()); |
- } |
- params->ep = reinterpret_cast<const char*>(lastmatch); |
- return matched; |
-} |
- |
-// Inline specializations of the general loop. |
-bool DFA::SearchFFF(SearchParams* params) { |
- return InlinedSearchLoop(params, 0, 0, 0); |
-} |
-bool DFA::SearchFFT(SearchParams* params) { |
- return InlinedSearchLoop(params, 0, 0, 1); |
-} |
-bool DFA::SearchFTF(SearchParams* params) { |
- return InlinedSearchLoop(params, 0, 1, 0); |
-} |
-bool DFA::SearchFTT(SearchParams* params) { |
- return InlinedSearchLoop(params, 0, 1, 1); |
-} |
-bool DFA::SearchTFF(SearchParams* params) { |
- return InlinedSearchLoop(params, 1, 0, 0); |
-} |
-bool DFA::SearchTFT(SearchParams* params) { |
- return InlinedSearchLoop(params, 1, 0, 1); |
-} |
-bool DFA::SearchTTF(SearchParams* params) { |
- return InlinedSearchLoop(params, 1, 1, 0); |
-} |
-bool DFA::SearchTTT(SearchParams* params) { |
- return InlinedSearchLoop(params, 1, 1, 1); |
-} |
- |
-// For debugging, calls the general code directly. |
-bool DFA::SlowSearchLoop(SearchParams* params) { |
- return InlinedSearchLoop(params, |
- params->firstbyte >= 0, |
- params->want_earliest_match, |
- params->run_forward); |
-} |
- |
-// For performance, calls the appropriate specialized version |
-// of InlinedSearchLoop. |
-bool DFA::FastSearchLoop(SearchParams* params) { |
- // Because the methods are private, the Searches array |
- // cannot be declared at top level. |
- static bool (DFA::*Searches[])(SearchParams*) = { |
- &DFA::SearchFFF, |
- &DFA::SearchFFT, |
- &DFA::SearchFTF, |
- &DFA::SearchFTT, |
- &DFA::SearchTFF, |
- &DFA::SearchTFT, |
- &DFA::SearchTTF, |
- &DFA::SearchTTT, |
- }; |
- |
- bool have_firstbyte = (params->firstbyte >= 0); |
- int index = 4 * have_firstbyte + |
- 2 * params->want_earliest_match + |
- 1 * params->run_forward; |
- return (this->*Searches[index])(params); |
-} |
- |
- |
-// The discussion of DFA execution above ignored the question of how |
-// to determine the initial state for the search loop. There are two |
-// factors that influence the choice of start state. |
-// |
-// The first factor is whether the search is anchored or not. |
-// The regexp program (Prog*) itself has |
-// two different entry points: one for anchored searches and one for |
-// unanchored searches. (The unanchored version starts with a leading ".*?" |
-// and then jumps to the anchored one.) |
-// |
-// The second factor is where text appears in the larger context, which |
-// determines which empty-string operators can be matched at the beginning |
-// of execution. If text is at the very beginning of context, \A and ^ match. |
-// Otherwise if text is at the beginning of a line, then ^ matches. |
-// Otherwise it matters whether the character before text is a word character |
-// or a non-word character. |
-// |
-// The two cases (unanchored vs not) and four cases (empty-string flags) |
-// combine to make the eight cases recorded in the DFA's begin_text_[2], |
-// begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached |
-// StartInfos. The start state for each is filled in the first time it |
-// is used for an actual search. |
- |
-// Examines text, context, and anchored to determine the right start |
-// state for the DFA search loop. Fills in params and returns true on success. |
-// Returns false on failure. |
-bool DFA::AnalyzeSearch(SearchParams* params) { |
- const StringPiece& text = params->text; |
- const StringPiece& context = params->context; |
- |
- // Sanity check: make sure that text lies within context. |
- if (text.begin() < context.begin() || text.end() > context.end()) { |
- LOG(DFATAL) << "Text is not inside context."; |
- params->start = DeadState; |
- return true; |
- } |
- |
- // Determine correct search type. |
- int start; |
- uint flags; |
- if (params->run_forward) { |
- if (text.begin() == context.begin()) { |
- start = kStartBeginText; |
- flags = kEmptyBeginText|kEmptyBeginLine; |
- } else if (text.begin()[-1] == '\n') { |
- start = kStartBeginLine; |
- flags = kEmptyBeginLine; |
- } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) { |
- start = kStartAfterWordChar; |
- flags = kFlagLastWord; |
- } else { |
- start = kStartAfterNonWordChar; |
- flags = 0; |
- } |
- } else { |
- if (text.end() == context.end()) { |
- start = kStartBeginText; |
- flags = kEmptyBeginText|kEmptyBeginLine; |
- } else if (text.end()[0] == '\n') { |
- start = kStartBeginLine; |
- flags = kEmptyBeginLine; |
- } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) { |
- start = kStartAfterWordChar; |
- flags = kFlagLastWord; |
- } else { |
- start = kStartAfterNonWordChar; |
- flags = 0; |
- } |
- } |
- if (params->anchored || prog_->anchor_start()) |
- start |= kStartAnchored; |
- StartInfo* info = &start_[start]; |
- |
- // Try once without cache_lock for writing. |
- // Try again after resetting the cache |
- // (ResetCache will relock cache_lock for writing). |
- if (!AnalyzeSearchHelper(params, info, flags)) { |
- ResetCache(params->cache_lock); |
- if (!AnalyzeSearchHelper(params, info, flags)) { |
- LOG(DFATAL) << "Failed to analyze start state."; |
- params->failed = true; |
- return false; |
- } |
- } |
- |
- if (DebugDFA) { |
- int fb; |
- ATOMIC_LOAD_RELAXED(fb, &info->firstbyte); |
- fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n", |
- params->anchored, params->run_forward, flags, |
- DumpState(info->start).c_str(), fb); |
- } |
- |
- params->start = info->start; |
- ATOMIC_LOAD_ACQUIRE(params->firstbyte, &info->firstbyte); |
- |
- return true; |
-} |
- |
-// Fills in info if needed. Returns true on success, false on failure. |
-bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info, |
- uint flags) { |
- // Quick check. |
- int fb; |
- ATOMIC_LOAD_ACQUIRE(fb, &info->firstbyte); |
- if (fb != kFbUnknown) |
- return true; |
- |
- MutexLock l(&mutex_); |
- if (info->firstbyte != kFbUnknown) |
- return true; |
- |
- q0_->clear(); |
- AddToQueue(q0_, |
- params->anchored ? prog_->start() : prog_->start_unanchored(), |
- flags); |
- info->start = WorkqToCachedState(q0_, flags); |
- if (info->start == NULL) |
- return false; |
- |
- if (info->start == DeadState) { |
- // Synchronize with "quick check" above. |
- ATOMIC_STORE_RELEASE(&info->firstbyte, kFbNone); |
- return true; |
- } |
- |
- if (info->start == FullMatchState) { |
- // Synchronize with "quick check" above. |
- ATOMIC_STORE_RELEASE(&info->firstbyte, kFbNone); // will be ignored |
- return true; |
- } |
- |
- // Compute info->firstbyte by running state on all |
- // possible byte values, looking for a single one that |
- // leads to a different state. |
- int firstbyte = kFbNone; |
- for (int i = 0; i < 256; i++) { |
- State* s = RunStateOnByte(info->start, i); |
- if (s == NULL) { |
- // Synchronize with "quick check" above. |
- ATOMIC_STORE_RELEASE(&info->firstbyte, firstbyte); |
- return false; |
- } |
- if (s == info->start) |
- continue; |
- // Goes to new state... |
- if (firstbyte == kFbNone) { |
- firstbyte = i; // ... first one |
- } else { |
- firstbyte = kFbMany; // ... too many |
- break; |
- } |
- } |
- // Synchronize with "quick check" above. |
- ATOMIC_STORE_RELEASE(&info->firstbyte, firstbyte); |
- return true; |
-} |
- |
-// The actual DFA search: calls AnalyzeSearch and then FastSearchLoop. |
-bool DFA::Search(const StringPiece& text, |
- const StringPiece& context, |
- bool anchored, |
- bool want_earliest_match, |
- bool run_forward, |
- bool* failed, |
- const char** epp, |
- vector<int>* matches) { |
- *epp = NULL; |
- if (!ok()) { |
- *failed = true; |
- return false; |
- } |
- *failed = false; |
- |
- if (DebugDFA) { |
- fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str()); |
- fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n", |
- text.as_string().c_str(), anchored, want_earliest_match, |
- run_forward, kind_); |
- } |
- |
- RWLocker l(&cache_mutex_); |
- SearchParams params(text, context, &l); |
- params.anchored = anchored; |
- params.want_earliest_match = want_earliest_match; |
- params.run_forward = run_forward; |
- params.matches = matches; |
- |
- if (!AnalyzeSearch(¶ms)) { |
- *failed = true; |
- return false; |
- } |
- if (params.start == DeadState) |
- return false; |
- if (params.start == FullMatchState) { |
- if (run_forward == want_earliest_match) |
- *epp = text.begin(); |
- else |
- *epp = text.end(); |
- return true; |
- } |
- if (DebugDFA) |
- fprintf(stderr, "start %s\n", DumpState(params.start).c_str()); |
- bool ret = FastSearchLoop(¶ms); |
- if (params.failed) { |
- *failed = true; |
- return false; |
- } |
- *epp = params.ep; |
- return ret; |
-} |
- |
-// Deletes dfa. |
-// |
-// This is a separate function so that |
-// prog.h can be used without moving the definition of |
-// class DFA out of this file. If you set |
-// prog->dfa_ = dfa; |
-// then you also have to set |
-// prog->delete_dfa_ = DeleteDFA; |
-// so that ~Prog can delete the dfa. |
-static void DeleteDFA(DFA* dfa) { |
- delete dfa; |
-} |
- |
-DFA* Prog::GetDFA(MatchKind kind) { |
- DFA*volatile* pdfa; |
- if (kind == kFirstMatch || kind == kManyMatch) { |
- pdfa = &dfa_first_; |
- } else { |
- kind = kLongestMatch; |
- pdfa = &dfa_longest_; |
- } |
- |
- // Quick check. |
- DFA *dfa; |
- ATOMIC_LOAD_ACQUIRE(dfa, pdfa); |
- if (dfa != NULL) |
- return dfa; |
- |
- MutexLock l(&dfa_mutex_); |
- dfa = *pdfa; |
- if (dfa != NULL) |
- return dfa; |
- |
- // For a forward DFA, half the memory goes to each DFA. |
- // For a reverse DFA, all the memory goes to the |
- // "longest match" DFA, because RE2 never does reverse |
- // "first match" searches. |
- int64 m = dfa_mem_/2; |
- if (reversed_) { |
- if (kind == kLongestMatch || kind == kManyMatch) |
- m = dfa_mem_; |
- else |
- m = 0; |
- } |
- dfa = new DFA(this, kind, m); |
- delete_dfa_ = DeleteDFA; |
- |
- // Synchronize with "quick check" above. |
- ATOMIC_STORE_RELEASE(pdfa, dfa); |
- |
- return dfa; |
-} |
- |
- |
-// Executes the regexp program to search in text, |
-// which itself is inside the larger context. (As a convenience, |
-// passing a NULL context is equivalent to passing text.) |
-// Returns true if a match is found, false if not. |
-// If a match is found, fills in match0->end() to point at the end of the match |
-// and sets match0->begin() to text.begin(), since the DFA can't track |
-// where the match actually began. |
-// |
-// This is the only external interface (class DFA only exists in this file). |
-// |
-bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context, |
- Anchor anchor, MatchKind kind, |
- StringPiece* match0, bool* failed, vector<int>* matches) { |
- *failed = false; |
- |
- StringPiece context = const_context; |
- if (context.begin() == NULL) |
- context = text; |
- bool carat = anchor_start(); |
- bool dollar = anchor_end(); |
- if (reversed_) { |
- bool t = carat; |
- carat = dollar; |
- dollar = t; |
- } |
- if (carat && context.begin() != text.begin()) |
- return false; |
- if (dollar && context.end() != text.end()) |
- return false; |
- |
- // Handle full match by running an anchored longest match |
- // and then checking if it covers all of text. |
- bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch; |
- bool endmatch = false; |
- if (kind == kManyMatch) { |
- endmatch = true; |
- } else if (kind == kFullMatch || anchor_end()) { |
- endmatch = true; |
- kind = kLongestMatch; |
- } |
- |
- // If the caller doesn't care where the match is (just whether one exists), |
- // then we can stop at the very first match we find, the so-called |
- // "shortest match". |
- bool want_shortest_match = false; |
- if (match0 == NULL && !endmatch) { |
- want_shortest_match = true; |
- kind = kLongestMatch; |
- } |
- |
- DFA* dfa = GetDFA(kind); |
- const char* ep; |
- bool matched = dfa->Search(text, context, anchored, |
- want_shortest_match, !reversed_, |
- failed, &ep, matches); |
- if (*failed) |
- return false; |
- if (!matched) |
- return false; |
- if (endmatch && ep != (reversed_ ? text.begin() : text.end())) |
- return false; |
- |
- // If caller cares, record the boundary of the match. |
- // We only know where it ends, so use the boundary of text |
- // as the beginning. |
- if (match0) { |
- if (reversed_) |
- match0->set(ep, static_cast<int>(text.end() - ep)); |
- else |
- match0->set(text.begin(), static_cast<int>(ep - text.begin())); |
- } |
- return true; |
-} |
- |
-// Build out all states in DFA. Returns number of states. |
-int DFA::BuildAllStates() { |
- if (!ok()) |
- return 0; |
- |
- // Pick out start state for unanchored search |
- // at beginning of text. |
- RWLocker l(&cache_mutex_); |
- SearchParams params(NULL, NULL, &l); |
- params.anchored = false; |
- if (!AnalyzeSearch(¶ms) || params.start <= SpecialStateMax) |
- return 0; |
- |
- // Add start state to work queue. |
- StateSet queued; |
- vector<State*> q; |
- queued.insert(params.start); |
- q.push_back(params.start); |
- |
- // Flood to expand every state. |
- for (size_t i = 0; i < q.size(); i++) { |
- State* s = q[i]; |
- for (int c = 0; c < 257; c++) { |
- State* ns = RunStateOnByteUnlocked(s, c); |
- if (ns > SpecialStateMax && queued.find(ns) == queued.end()) { |
- queued.insert(ns); |
- q.push_back(ns); |
- } |
- } |
- } |
- |
- return static_cast<int>(q.size()); |
-} |
- |
-// Build out all states in DFA for kind. Returns number of states. |
-int Prog::BuildEntireDFA(MatchKind kind) { |
- //LOG(ERROR) << "BuildEntireDFA is only for testing."; |
- return GetDFA(kind)->BuildAllStates(); |
-} |
- |
-// Computes min and max for matching string. |
-// Won't return strings bigger than maxlen. |
-bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) { |
- if (!ok()) |
- return false; |
- |
- // NOTE: if future users of PossibleMatchRange want more precision when |
- // presented with infinitely repeated elements, consider making this a |
- // parameter to PossibleMatchRange. |
- static int kMaxEltRepetitions = 0; |
- |
- // Keep track of the number of times we've visited states previously. We only |
- // revisit a given state if it's part of a repeated group, so if the value |
- // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set |
- // |*max| to |PrefixSuccessor(*max)|. |
- // |
- // Also note that previously_visited_states[UnseenStatePtr] will, in the STL |
- // tradition, implicitly insert a '0' value at first use. We take advantage |
- // of that property below. |
- map<State*, int> previously_visited_states; |
- |
- // Pick out start state for anchored search at beginning of text. |
- RWLocker l(&cache_mutex_); |
- SearchParams params(NULL, NULL, &l); |
- params.anchored = true; |
- if (!AnalyzeSearch(¶ms)) |
- return false; |
- if (params.start == DeadState) { // No matching strings |
- *min = ""; |
- *max = ""; |
- return true; |
- } |
- if (params.start == FullMatchState) // Every string matches: no max |
- return false; |
- |
- // The DFA is essentially a big graph rooted at params.start, |
- // and paths in the graph correspond to accepted strings. |
- // Each node in the graph has potentially 256+1 arrows |
- // coming out, one for each byte plus the magic end of |
- // text character kByteEndText. |
- |
- // To find the smallest possible prefix of an accepted |
- // string, we just walk the graph preferring to follow |
- // arrows with the lowest bytes possible. To find the |
- // largest possible prefix, we follow the largest bytes |
- // possible. |
- |
- // The test for whether there is an arrow from s on byte j is |
- // ns = RunStateOnByteUnlocked(s, j); |
- // if (ns == NULL) |
- // return false; |
- // if (ns != DeadState && ns->ninst > 0) |
- // The RunStateOnByteUnlocked call asks the DFA to build out the graph. |
- // It returns NULL only if the DFA has run out of memory, |
- // in which case we can't be sure of anything. |
- // The second check sees whether there was graph built |
- // and whether it is interesting graph. Nodes might have |
- // ns->ninst == 0 if they exist only to represent the fact |
- // that a match was found on the previous byte. |
- |
- // Build minimum prefix. |
- State* s = params.start; |
- min->clear(); |
- MutexLock lock(&mutex_); |
- for (int i = 0; i < maxlen; i++) { |
- if (previously_visited_states[s] > kMaxEltRepetitions) { |
- VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions |
- << " for state s=" << s << " and min=" << CEscape(*min); |
- break; |
- } |
- previously_visited_states[s]++; |
- |
- // Stop if min is a match. |
- State* ns = RunStateOnByte(s, kByteEndText); |
- if (ns == NULL) // DFA out of memory |
- return false; |
- if (ns != DeadState && (ns == FullMatchState || ns->IsMatch())) |
- break; |
- |
- // Try to extend the string with low bytes. |
- bool extended = false; |
- for (int j = 0; j < 256; j++) { |
- ns = RunStateOnByte(s, j); |
- if (ns == NULL) // DFA out of memory |
- return false; |
- if (ns == FullMatchState || |
- (ns > SpecialStateMax && ns->ninst_ > 0)) { |
- extended = true; |
- min->append(1, static_cast<char>(j)); |
- s = ns; |
- break; |
- } |
- } |
- if (!extended) |
- break; |
- } |
- |
- // Build maximum prefix. |
- previously_visited_states.clear(); |
- s = params.start; |
- max->clear(); |
- for (int i = 0; i < maxlen; i++) { |
- if (previously_visited_states[s] > kMaxEltRepetitions) { |
- VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions |
- << " for state s=" << s << " and max=" << CEscape(*max); |
- break; |
- } |
- previously_visited_states[s] += 1; |
- |
- // Try to extend the string with high bytes. |
- bool extended = false; |
- for (int j = 255; j >= 0; j--) { |
- State* ns = RunStateOnByte(s, j); |
- if (ns == NULL) |
- return false; |
- if (ns == FullMatchState || |
- (ns > SpecialStateMax && ns->ninst_ > 0)) { |
- extended = true; |
- max->append(1, static_cast<char>(j)); |
- s = ns; |
- break; |
- } |
- } |
- if (!extended) { |
- // Done, no need for PrefixSuccessor. |
- return true; |
- } |
- } |
- |
- // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b |
- *max = PrefixSuccessor(*max); |
- |
- // If there are no bytes left, we have no way to say "there is no maximum |
- // string". We could make the interface more complicated and be able to |
- // return "there is no maximum but here is a minimum", but that seems like |
- // overkill -- the most common no-max case is all possible strings, so not |
- // telling the caller that the empty string is the minimum match isn't a |
- // great loss. |
- if (max->empty()) |
- return false; |
- |
- return true; |
-} |
- |
-// PossibleMatchRange for a Prog. |
-bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) { |
- DFA* dfa = NULL; |
- { |
- MutexLock l(&dfa_mutex_); |
- // Have to use dfa_longest_ to get all strings for full matches. |
- // For example, (a|aa) never matches aa in first-match mode. |
- dfa = dfa_longest_; |
- if (dfa == NULL) { |
- dfa = new DFA(this, Prog::kLongestMatch, dfa_mem_/2); |
- ATOMIC_STORE_RELEASE(&dfa_longest_, dfa); |
- delete_dfa_ = DeleteDFA; |
- } |
- } |
- return dfa->PossibleMatchRange(min, max, maxlen); |
-} |
- |
-} // namespace re2 |