Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3)

Unified Diff: third_party/re2/re2/dfa.cc

Issue 1544433002: Replace RE2 import with a dependency (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Re-Added LICENSE and OWNERS file Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/re2/re2/compile.cc ('k') | third_party/re2/re2/filtered_re2.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/re2/re2/dfa.cc
diff --git a/third_party/re2/re2/dfa.cc b/third_party/re2/re2/dfa.cc
deleted file mode 100644
index 1f54b9f942eb4804cc89a9ce3e6dadb75c3caf3f..0000000000000000000000000000000000000000
--- a/third_party/re2/re2/dfa.cc
+++ /dev/null
@@ -1,2112 +0,0 @@
-// Copyright 2008 The RE2 Authors. All Rights Reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// A DFA (deterministic finite automaton)-based regular expression search.
-//
-// The DFA search has two main parts: the construction of the automaton,
-// which is represented by a graph of State structures, and the execution
-// of the automaton over a given input string.
-//
-// The basic idea is that the State graph is constructed so that the
-// execution can simply start with a state s, and then for each byte c in
-// the input string, execute "s = s->next[c]", checking at each point whether
-// the current s represents a matching state.
-//
-// The simple explanation just given does convey the essence of this code,
-// but it omits the details of how the State graph gets constructed as well
-// as some performance-driven optimizations to the execution of the automaton.
-// All these details are explained in the comments for the code following
-// the definition of class DFA.
-//
-// See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
-
-#include "util/atomicops.h"
-#include "util/flags.h"
-#include "util/sparse_set.h"
-#include "re2/prog.h"
-#include "re2/stringpiece.h"
-
-DEFINE_bool(re2_dfa_bail_when_slow, true,
- "Whether the RE2 DFA should bail out early "
- "if the NFA would be faster (for testing).");
-
-namespace re2 {
-
-#if !defined(__linux__) /* only Linux seems to have memrchr */
-static void* memrchr(const void* s, int c, size_t n) {
- const unsigned char* p = (const unsigned char*)s;
- for (p += n; n > 0; n--)
- if (*--p == c)
- return (void*)p;
-
- return NULL;
-}
-#endif
-
-// Changing this to true compiles in prints that trace execution of the DFA.
-// Generates a lot of output -- only useful for debugging.
-static const bool DebugDFA = false;
-
-// A DFA implementation of a regular expression program.
-// Since this is entirely a forward declaration mandated by C++,
-// some of the comments here are better understood after reading
-// the comments in the sections that follow the DFA definition.
-class DFA {
- public:
- DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem);
- ~DFA();
- bool ok() const { return !init_failed_; }
- Prog::MatchKind kind() { return kind_; }
-
- // Searches for the regular expression in text, which is considered
- // as a subsection of context for the purposes of interpreting flags
- // like ^ and $ and \A and \z.
- // Returns whether a match was found.
- // If a match is found, sets *ep to the end point of the best match in text.
- // If "anchored", the match must begin at the start of text.
- // If "want_earliest_match", the match that ends first is used, not
- // necessarily the best one.
- // If "run_forward" is true, the DFA runs from text.begin() to text.end().
- // If it is false, the DFA runs from text.end() to text.begin(),
- // returning the leftmost end of the match instead of the rightmost one.
- // If the DFA cannot complete the search (for example, if it is out of
- // memory), it sets *failed and returns false.
- bool Search(const StringPiece& text, const StringPiece& context,
- bool anchored, bool want_earliest_match, bool run_forward,
- bool* failed, const char** ep, vector<int>* matches);
-
- // Builds out all states for the entire DFA. FOR TESTING ONLY
- // Returns number of states.
- int BuildAllStates();
-
- // Computes min and max for matching strings. Won't return strings
- // bigger than maxlen.
- bool PossibleMatchRange(string* min, string* max, int maxlen);
-
- // These data structures are logically private, but C++ makes it too
- // difficult to mark them as such.
- class Workq;
- class RWLocker;
- class StateSaver;
-
- // A single DFA state. The DFA is represented as a graph of these
- // States, linked by the next_ pointers. If in state s and reading
- // byte c, the next state should be s->next_[c].
- struct State {
- inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; }
- void SaveMatch(vector<int>* v);
-
- int* inst_; // Instruction pointers in the state.
- int ninst_; // # of inst_ pointers.
- uint flag_; // Empty string bitfield flags in effect on the way
- // into this state, along with kFlagMatch if this
- // is a matching state.
- State** next_; // Outgoing arrows from State,
- // one per input byte class
- };
-
- enum {
- kByteEndText = 256, // imaginary byte at end of text
-
- kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags
- kFlagMatch = 0x1000, // State.flag_: this is a matching state
- kFlagLastWord = 0x2000, // State.flag_: last byte was a word char
- kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left
- };
-
-#ifndef STL_MSVC
- // STL function structures for use with unordered_set.
- struct StateEqual {
- bool operator()(const State* a, const State* b) const {
- if (a == b)
- return true;
- if (a == NULL || b == NULL)
- return false;
- if (a->ninst_ != b->ninst_)
- return false;
- if (a->flag_ != b->flag_)
- return false;
- for (int i = 0; i < a->ninst_; i++)
- if (a->inst_[i] != b->inst_[i])
- return false;
- return true; // they're equal
- }
- };
-#endif // STL_MSVC
- struct StateHash {
- size_t operator()(const State* a) const {
- if (a == NULL)
- return 0;
- const char* s = reinterpret_cast<const char*>(a->inst_);
- int len = a->ninst_ * sizeof a->inst_[0];
- if (sizeof(size_t) == sizeof(uint32))
- return Hash32StringWithSeed(s, len, a->flag_);
- else
- return static_cast<size_t>(Hash64StringWithSeed(s, len, a->flag_));
- }
-#ifdef STL_MSVC
- // Less than operator.
- bool operator()(const State* a, const State* b) const {
- if (a == b)
- return false;
- if (a == NULL || b == NULL)
- return a == NULL;
- if (a->ninst_ != b->ninst_)
- return a->ninst_ < b->ninst_;
- if (a->flag_ != b->flag_)
- return a->flag_ < b->flag_;
- for (int i = 0; i < a->ninst_; ++i)
- if (a->inst_[i] != b->inst_[i])
- return a->inst_[i] < b->inst_[i];
- return false; // they're equal
- }
- // The two public members are required by msvc. 4 and 8 are default values.
- // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx
- static const size_t bucket_size = 4;
- static const size_t min_buckets = 8;
-#endif // STL_MSVC
- };
-
-#ifdef STL_MSVC
- typedef unordered_set<State*, StateHash> StateSet;
-#else // !STL_MSVC
- typedef unordered_set<State*, StateHash, StateEqual> StateSet;
-#endif // STL_MSVC
-
-
- private:
- // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.)
- enum {
- kFbUnknown = -1, // No analysis has been performed.
- kFbMany = -2, // Many bytes will lead out of this state.
- kFbNone = -3, // No bytes lead out of this state.
- };
-
- enum {
- // Indices into start_ for unanchored searches.
- // Add kStartAnchored for anchored searches.
- kStartBeginText = 0, // text at beginning of context
- kStartBeginLine = 2, // text at beginning of line
- kStartAfterWordChar = 4, // text follows a word character
- kStartAfterNonWordChar = 6, // text follows non-word character
- kMaxStart = 8,
-
- kStartAnchored = 1,
- };
-
- // Resets the DFA State cache, flushing all saved State* information.
- // Releases and reacquires cache_mutex_ via cache_lock, so any
- // State* existing before the call are not valid after the call.
- // Use a StateSaver to preserve important states across the call.
- // cache_mutex_.r <= L < mutex_
- // After: cache_mutex_.w <= L < mutex_
- void ResetCache(RWLocker* cache_lock);
-
- // Looks up and returns the State corresponding to a Workq.
- // L >= mutex_
- State* WorkqToCachedState(Workq* q, uint flag);
-
- // Looks up and returns a State matching the inst, ninst, and flag.
- // L >= mutex_
- State* CachedState(int* inst, int ninst, uint flag);
-
- // Clear the cache entirely.
- // Must hold cache_mutex_.w or be in destructor.
- void ClearCache();
-
- // Converts a State into a Workq: the opposite of WorkqToCachedState.
- // L >= mutex_
- static void StateToWorkq(State* s, Workq* q);
-
- // Runs a State on a given byte, returning the next state.
- State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_
- State* RunStateOnByte(State*, int); // L >= mutex_
-
- // Runs a Workq on a given byte followed by a set of empty-string flags,
- // producing a new Workq in nq. If a match instruction is encountered,
- // sets *ismatch to true.
- // L >= mutex_
- void RunWorkqOnByte(Workq* q, Workq* nq,
- int c, uint flag, bool* ismatch,
- Prog::MatchKind kind);
-
- // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
- // L >= mutex_
- void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag);
-
- // Adds the instruction id to the Workq, following empty arrows
- // according to flag.
- // L >= mutex_
- void AddToQueue(Workq* q, int id, uint flag);
-
- // For debugging, returns a text representation of State.
- static string DumpState(State* state);
-
- // For debugging, returns a text representation of a Workq.
- static string DumpWorkq(Workq* q);
-
- // Search parameters
- struct SearchParams {
- SearchParams(const StringPiece& text, const StringPiece& context,
- RWLocker* cache_lock)
- : text(text), context(context),
- anchored(false),
- want_earliest_match(false),
- run_forward(false),
- start(NULL),
- firstbyte(kFbUnknown),
- cache_lock(cache_lock),
- failed(false),
- ep(NULL),
- matches(NULL) { }
-
- StringPiece text;
- StringPiece context;
- bool anchored;
- bool want_earliest_match;
- bool run_forward;
- State* start;
- int firstbyte;
- RWLocker *cache_lock;
- bool failed; // "out" parameter: whether search gave up
- const char* ep; // "out" parameter: end pointer for match
- vector<int>* matches;
-
- private:
- DISALLOW_COPY_AND_ASSIGN(SearchParams);
- };
-
- // Before each search, the parameters to Search are analyzed by
- // AnalyzeSearch to determine the state in which to start and the
- // "firstbyte" for that state, if any.
- struct StartInfo {
- StartInfo() : start(NULL), firstbyte(kFbUnknown) { }
- State* start;
- volatile int firstbyte;
- };
-
- // Fills in params->start and params->firstbyte using
- // the other search parameters. Returns true on success,
- // false on failure.
- // cache_mutex_.r <= L < mutex_
- bool AnalyzeSearch(SearchParams* params);
- bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags);
-
- // The generic search loop, inlined to create specialized versions.
- // cache_mutex_.r <= L < mutex_
- // Might unlock and relock cache_mutex_ via params->cache_lock.
- inline bool InlinedSearchLoop(SearchParams* params,
- bool have_firstbyte,
- bool want_earliest_match,
- bool run_forward);
-
- // The specialized versions of InlinedSearchLoop. The three letters
- // at the ends of the name denote the true/false values used as the
- // last three parameters of InlinedSearchLoop.
- // cache_mutex_.r <= L < mutex_
- // Might unlock and relock cache_mutex_ via params->cache_lock.
- bool SearchFFF(SearchParams* params);
- bool SearchFFT(SearchParams* params);
- bool SearchFTF(SearchParams* params);
- bool SearchFTT(SearchParams* params);
- bool SearchTFF(SearchParams* params);
- bool SearchTFT(SearchParams* params);
- bool SearchTTF(SearchParams* params);
- bool SearchTTT(SearchParams* params);
-
- // The main search loop: calls an appropriate specialized version of
- // InlinedSearchLoop.
- // cache_mutex_.r <= L < mutex_
- // Might unlock and relock cache_mutex_ via params->cache_lock.
- bool FastSearchLoop(SearchParams* params);
-
- // For debugging, a slow search loop that calls InlinedSearchLoop
- // directly -- because the booleans passed are not constants, the
- // loop is not specialized like the SearchFFF etc. versions, so it
- // runs much more slowly. Useful only for debugging.
- // cache_mutex_.r <= L < mutex_
- // Might unlock and relock cache_mutex_ via params->cache_lock.
- bool SlowSearchLoop(SearchParams* params);
-
- // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
- int ByteMap(int c) {
- if (c == kByteEndText)
- return prog_->bytemap_range();
- return prog_->bytemap()[c];
- }
-
- // Constant after initialization.
- Prog* prog_; // The regular expression program to run.
- Prog::MatchKind kind_; // The kind of DFA.
- bool init_failed_; // initialization failed (out of memory)
-
- Mutex mutex_; // mutex_ >= cache_mutex_.r
-
- // Scratch areas, protected by mutex_.
- Workq* q0_; // Two pre-allocated work queues.
- Workq* q1_;
- int* astack_; // Pre-allocated stack for AddToQueue
- int nastack_;
-
- // State* cache. Many threads use and add to the cache simultaneously,
- // holding cache_mutex_ for reading and mutex_ (above) when adding.
- // If the cache fills and needs to be discarded, the discarding is done
- // while holding cache_mutex_ for writing, to avoid interrupting other
- // readers. Any State* pointers are only valid while cache_mutex_
- // is held.
- Mutex cache_mutex_;
- int64 mem_budget_; // Total memory budget for all States.
- int64 state_budget_; // Amount of memory remaining for new States.
- StateSet state_cache_; // All States computed so far.
- StartInfo start_[kMaxStart];
- bool cache_warned_; // have printed to LOG(INFO) about the cache
-};
-
-// Shorthand for casting to uint8*.
-static inline const uint8* BytePtr(const void* v) {
- return reinterpret_cast<const uint8*>(v);
-}
-
-// Work queues
-
-// Marks separate thread groups of different priority
-// in the work queue when in leftmost-longest matching mode.
-#define Mark (-1)
-
-// Internally, the DFA uses a sparse array of
-// program instruction pointers as a work queue.
-// In leftmost longest mode, marks separate sections
-// of workq that started executing at different
-// locations in the string (earlier locations first).
-class DFA::Workq : public SparseSet {
- public:
- // Constructor: n is number of normal slots, maxmark number of mark slots.
- Workq(int n, int maxmark) :
- SparseSet(n+maxmark),
- n_(n),
- maxmark_(maxmark),
- nextmark_(n),
- last_was_mark_(true) {
- }
-
- bool is_mark(int i) { return i >= n_; }
-
- int maxmark() { return maxmark_; }
-
- void clear() {
- SparseSet::clear();
- nextmark_ = n_;
- }
-
- void mark() {
- if (last_was_mark_)
- return;
- last_was_mark_ = false;
- SparseSet::insert_new(nextmark_++);
- }
-
- int size() {
- return n_ + maxmark_;
- }
-
- void insert(int id) {
- if (contains(id))
- return;
- insert_new(id);
- }
-
- void insert_new(int id) {
- last_was_mark_ = false;
- SparseSet::insert_new(id);
- }
-
- private:
- int n_; // size excluding marks
- int maxmark_; // maximum number of marks
- int nextmark_; // id of next mark
- bool last_was_mark_; // last inserted was mark
- DISALLOW_COPY_AND_ASSIGN(Workq);
-};
-
-DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem)
- : prog_(prog),
- kind_(kind),
- init_failed_(false),
- q0_(NULL),
- q1_(NULL),
- astack_(NULL),
- mem_budget_(max_mem),
- cache_warned_(false) {
- if (DebugDFA)
- fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
- int nmark = 0;
- if (kind_ == Prog::kLongestMatch)
- nmark = prog->size();
- nastack_ = 2 * prog->size() + nmark;
-
- // Account for space needed for DFA, q0, q1, astack.
- mem_budget_ -= sizeof(DFA);
- mem_budget_ -= (prog_->size() + nmark) *
- (sizeof(int)+sizeof(int)) * 2; // q0, q1
- mem_budget_ -= nastack_ * sizeof(int); // astack
- if (mem_budget_ < 0) {
- LOG(INFO) << StringPrintf("DFA out of memory: prog size %d mem %lld",
- prog_->size(), max_mem);
- init_failed_ = true;
- return;
- }
-
- state_budget_ = mem_budget_;
-
- // Make sure there is a reasonable amount of working room left.
- // At minimum, the search requires room for two states in order
- // to limp along, restarting frequently. We'll get better performance
- // if there is room for a larger number of states, say 20.
- int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) +
- (prog_->bytemap_range()+1)*sizeof(State*);
- if (state_budget_ < 20*one_state) {
- LOG(INFO) << StringPrintf("DFA out of memory: prog size %d mem %lld",
- prog_->size(), max_mem);
- init_failed_ = true;
- return;
- }
-
- q0_ = new Workq(prog->size(), nmark);
- q1_ = new Workq(prog->size(), nmark);
- astack_ = new int[nastack_];
-}
-
-DFA::~DFA() {
- delete q0_;
- delete q1_;
- delete[] astack_;
- ClearCache();
-}
-
-// In the DFA state graph, s->next[c] == NULL means that the
-// state has not yet been computed and needs to be. We need
-// a different special value to signal that s->next[c] is a
-// state that can never lead to a match (and thus the search
-// can be called off). Hence DeadState.
-#define DeadState reinterpret_cast<State*>(1)
-
-// Signals that the rest of the string matches no matter what it is.
-#define FullMatchState reinterpret_cast<State*>(2)
-
-#define SpecialStateMax FullMatchState
-
-// Debugging printouts
-
-// For debugging, returns a string representation of the work queue.
-string DFA::DumpWorkq(Workq* q) {
- string s;
- const char* sep = "";
- for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) {
- if (q->is_mark(*it)) {
- StringAppendF(&s, "|");
- sep = "";
- } else {
- StringAppendF(&s, "%s%d", sep, *it);
- sep = ",";
- }
- }
- return s;
-}
-
-// For debugging, returns a string representation of the state.
-string DFA::DumpState(State* state) {
- if (state == NULL)
- return "_";
- if (state == DeadState)
- return "X";
- if (state == FullMatchState)
- return "*";
- string s;
- const char* sep = "";
- StringAppendF(&s, "(%p)", state);
- for (int i = 0; i < state->ninst_; i++) {
- if (state->inst_[i] == Mark) {
- StringAppendF(&s, "|");
- sep = "";
- } else {
- StringAppendF(&s, "%s%d", sep, state->inst_[i]);
- sep = ",";
- }
- }
- StringAppendF(&s, " flag=%#x", state->flag_);
- return s;
-}
-
-//////////////////////////////////////////////////////////////////////
-//
-// DFA state graph construction.
-//
-// The DFA state graph is a heavily-linked collection of State* structures.
-// The state_cache_ is a set of all the State structures ever allocated,
-// so that if the same state is reached by two different paths,
-// the same State structure can be used. This reduces allocation
-// requirements and also avoids duplication of effort across the two
-// identical states.
-//
-// A State is defined by an ordered list of instruction ids and a flag word.
-//
-// The choice of an ordered list of instructions differs from a typical
-// textbook DFA implementation, which would use an unordered set.
-// Textbook descriptions, however, only care about whether
-// the DFA matches, not where it matches in the text. To decide where the
-// DFA matches, we need to mimic the behavior of the dominant backtracking
-// implementations like PCRE, which try one possible regular expression
-// execution, then another, then another, stopping when one of them succeeds.
-// The DFA execution tries these many executions in parallel, representing
-// each by an instruction id. These pointers are ordered in the State.inst_
-// list in the same order that the executions would happen in a backtracking
-// search: if a match is found during execution of inst_[2], inst_[i] for i>=3
-// can be discarded.
-//
-// Textbooks also typically do not consider context-aware empty string operators
-// like ^ or $. These are handled by the flag word, which specifies the set
-// of empty-string operators that should be matched when executing at the
-// current text position. These flag bits are defined in prog.h.
-// The flag word also contains two DFA-specific bits: kFlagMatch if the state
-// is a matching state (one that reached a kInstMatch in the program)
-// and kFlagLastWord if the last processed byte was a word character, for the
-// implementation of \B and \b.
-//
-// The flag word also contains, shifted up 16 bits, the bits looked for by
-// any kInstEmptyWidth instructions in the state. These provide a useful
-// summary indicating when new flags might be useful.
-//
-// The permanent representation of a State's instruction ids is just an array,
-// but while a state is being analyzed, these instruction ids are represented
-// as a Workq, which is an array that allows iteration in insertion order.
-
-// NOTE(rsc): The choice of State construction determines whether the DFA
-// mimics backtracking implementations (so-called leftmost first matching) or
-// traditional DFA implementations (so-called leftmost longest matching as
-// prescribed by POSIX). This implementation chooses to mimic the
-// backtracking implementations, because we want to replace PCRE. To get
-// POSIX behavior, the states would need to be considered not as a simple
-// ordered list of instruction ids, but as a list of unordered sets of instruction
-// ids. A match by a state in one set would inhibit the running of sets
-// farther down the list but not other instruction ids in the same set. Each
-// set would correspond to matches beginning at a given point in the string.
-// This is implemented by separating different sets with Mark pointers.
-
-// Looks in the State cache for a State matching q, flag.
-// If one is found, returns it. If one is not found, allocates one,
-// inserts it in the cache, and returns it.
-DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) {
- if (DEBUG_MODE)
- mutex_.AssertHeld();
-
- // Construct array of instruction ids for the new state.
- // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
- // those are the only operators with any effect in
- // RunWorkqOnEmptyString or RunWorkqOnByte.
- int* inst = new int[q->size()];
- int n = 0;
- uint needflags = 0; // flags needed by kInstEmptyWidth instructions
- bool sawmatch = false; // whether queue contains guaranteed kInstMatch
- bool sawmark = false; // whether queue contains a Mark
- if (DebugDFA)
- fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
- for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
- int id = *it;
- if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
- break;
- if (q->is_mark(id)) {
- if (n > 0 && inst[n-1] != Mark) {
- sawmark = true;
- inst[n++] = Mark;
- }
- continue;
- }
- Prog::Inst* ip = prog_->inst(id);
- switch (ip->opcode()) {
- case kInstAltMatch:
- // This state will continue to a match no matter what
- // the rest of the input is. If it is the highest priority match
- // being considered, return the special FullMatchState
- // to indicate that it's all matches from here out.
- if (kind_ != Prog::kManyMatch &&
- (kind_ != Prog::kFirstMatch ||
- (it == q->begin() && ip->greedy(prog_))) &&
- (kind_ != Prog::kLongestMatch || !sawmark) &&
- (flag & kFlagMatch)) {
- delete[] inst;
- if (DebugDFA)
- fprintf(stderr, " -> FullMatchState\n");
- return FullMatchState;
- }
- // Fall through.
- case kInstByteRange: // These are useful.
- case kInstEmptyWidth:
- case kInstMatch:
- case kInstAlt: // Not useful, but necessary [*]
- inst[n++] = *it;
- if (ip->opcode() == kInstEmptyWidth)
- needflags |= ip->empty();
- if (ip->opcode() == kInstMatch && !prog_->anchor_end())
- sawmatch = true;
- break;
-
- default: // The rest are not.
- break;
- }
-
- // [*] kInstAlt would seem useless to record in a state, since
- // we've already followed both its arrows and saved all the
- // interesting states we can reach from there. The problem
- // is that one of the empty-width instructions might lead
- // back to the same kInstAlt (if an empty-width operator is starred),
- // producing a different evaluation order depending on whether
- // we keep the kInstAlt to begin with. Sigh.
- // A specific case that this affects is /(^|a)+/ matching "a".
- // If we don't save the kInstAlt, we will match the whole "a" (0,1)
- // but in fact the correct leftmost-first match is the leading "" (0,0).
- }
- DCHECK_LE(n, q->size());
- if (n > 0 && inst[n-1] == Mark)
- n--;
-
- // If there are no empty-width instructions waiting to execute,
- // then the extra flag bits will not be used, so there is no
- // point in saving them. (Discarding them reduces the number
- // of distinct states.)
- if (needflags == 0)
- flag &= kFlagMatch;
-
- // NOTE(rsc): The code above cannot do flag &= needflags,
- // because if the right flags were present to pass the current
- // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
- // might be reached that in turn need different flags.
- // The only sure thing is that if there are no kInstEmptyWidth
- // instructions at all, no flags will be needed.
- // We could do the extra work to figure out the full set of
- // possibly needed flags by exploring past the kInstEmptyWidth
- // instructions, but the check above -- are any flags needed
- // at all? -- handles the most common case. More fine-grained
- // analysis can only be justified by measurements showing that
- // too many redundant states are being allocated.
-
- // If there are no Insts in the list, it's a dead state,
- // which is useful to signal with a special pointer so that
- // the execution loop can stop early. This is only okay
- // if the state is *not* a matching state.
- if (n == 0 && flag == 0) {
- delete[] inst;
- if (DebugDFA)
- fprintf(stderr, " -> DeadState\n");
- return DeadState;
- }
-
- // If we're in longest match mode, the state is a sequence of
- // unordered state sets separated by Marks. Sort each set
- // to canonicalize, to reduce the number of distinct sets stored.
- if (kind_ == Prog::kLongestMatch) {
- int* ip = inst;
- int* ep = ip + n;
- while (ip < ep) {
- int* markp = ip;
- while (markp < ep && *markp != Mark)
- markp++;
- sort(ip, markp);
- if (markp < ep)
- markp++;
- ip = markp;
- }
- }
-
- // Save the needed empty-width flags in the top bits for use later.
- flag |= needflags << kFlagNeedShift;
-
- State* state = CachedState(inst, n, flag);
- delete[] inst;
- return state;
-}
-
-// Looks in the State cache for a State matching inst, ninst, flag.
-// If one is found, returns it. If one is not found, allocates one,
-// inserts it in the cache, and returns it.
-DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) {
- if (DEBUG_MODE)
- mutex_.AssertHeld();
-
- // Look in the cache for a pre-existing state.
- State state = { inst, ninst, flag, NULL };
- StateSet::iterator it = state_cache_.find(&state);
- if (it != state_cache_.end()) {
- if (DebugDFA)
- fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
- return *it;
- }
-
- // Must have enough memory for new state.
- // In addition to what we're going to allocate,
- // the state cache hash table seems to incur about 32 bytes per
- // State*, empirically.
- const int kStateCacheOverhead = 32;
- int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
- int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int);
- if (mem_budget_ < mem + kStateCacheOverhead) {
- mem_budget_ = -1;
- return NULL;
- }
- mem_budget_ -= mem + kStateCacheOverhead;
-
- // Allocate new state, along with room for next and inst.
- char* space = new char[mem];
- State* s = reinterpret_cast<State*>(space);
- s->next_ = reinterpret_cast<State**>(s + 1);
- s->inst_ = reinterpret_cast<int*>(s->next_ + nnext);
- memset(s->next_, 0, nnext*sizeof s->next_[0]);
- memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
- s->ninst_ = ninst;
- s->flag_ = flag;
- if (DebugDFA)
- fprintf(stderr, " -> %s\n", DumpState(s).c_str());
-
- // Put state in cache and return it.
- state_cache_.insert(s);
- return s;
-}
-
-// Clear the cache. Must hold cache_mutex_.w or be in destructor.
-void DFA::ClearCache() {
- // In case state_cache_ doesn't support deleting entries
- // during iteration, copy into a vector and then delete.
- vector<State*> v;
- v.reserve(state_cache_.size());
- for (StateSet::iterator it = state_cache_.begin();
- it != state_cache_.end(); ++it)
- v.push_back(*it);
- state_cache_.clear();
- for (size_t i = 0; i < v.size(); i++)
- delete[] reinterpret_cast<const char*>(v[i]);
-}
-
-// Copies insts in state s to the work queue q.
-void DFA::StateToWorkq(State* s, Workq* q) {
- q->clear();
- for (int i = 0; i < s->ninst_; i++) {
- if (s->inst_[i] == Mark)
- q->mark();
- else
- q->insert_new(s->inst_[i]);
- }
-}
-
-// Adds ip to the work queue, following empty arrows according to flag
-// and expanding kInstAlt instructions (two-target gotos).
-void DFA::AddToQueue(Workq* q, int id, uint flag) {
-
- // Use astack_ to hold our stack of states yet to process.
- // It is sized to have room for nastack_ == 2*prog->size() + nmark
- // instructions, which is enough: each instruction can be
- // processed by the switch below only once, and the processing
- // pushes at most two instructions plus maybe a mark.
- // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.)
- int* stk = astack_;
- int nstk = 0;
-
- stk[nstk++] = id;
- while (nstk > 0) {
- DCHECK_LE(nstk, nastack_);
- id = stk[--nstk];
-
- if (id == Mark) {
- q->mark();
- continue;
- }
-
- if (id == 0)
- continue;
-
- // If ip is already on the queue, nothing to do.
- // Otherwise add it. We don't actually keep all the ones
- // that get added -- for example, kInstAlt is ignored
- // when on a work queue -- but adding all ip's here
- // increases the likelihood of q->contains(id),
- // reducing the amount of duplicated work.
- if (q->contains(id))
- continue;
- q->insert_new(id);
-
- // Process instruction.
- Prog::Inst* ip = prog_->inst(id);
- switch (ip->opcode()) {
- case kInstFail: // can't happen: discarded above
- break;
-
- case kInstByteRange: // just save these on the queue
- case kInstMatch:
- break;
-
- case kInstCapture: // DFA treats captures as no-ops.
- case kInstNop:
- stk[nstk++] = ip->out();
- break;
-
- case kInstAlt: // two choices: expand both, in order
- case kInstAltMatch:
- // Want to visit out then out1, so push on stack in reverse order.
- // This instruction is the [00-FF]* loop at the beginning of
- // a leftmost-longest unanchored search, separate out from out1
- // with a Mark, so that out1's threads (which will start farther
- // to the right in the string being searched) are lower priority
- // than the current ones.
- stk[nstk++] = ip->out1();
- if (q->maxmark() > 0 &&
- id == prog_->start_unanchored() && id != prog_->start())
- stk[nstk++] = Mark;
- stk[nstk++] = ip->out();
- break;
-
- case kInstEmptyWidth:
- // Continue on if we have all the right flag bits.
- if (ip->empty() & ~flag)
- break;
- stk[nstk++] = ip->out();
- break;
- }
- }
-}
-
-// Running of work queues. In the work queue, order matters:
-// the queue is sorted in priority order. If instruction i comes before j,
-// then the instructions that i produces during the run must come before
-// the ones that j produces. In order to keep this invariant, all the
-// work queue runners have to take an old queue to process and then
-// also a new queue to fill in. It's not acceptable to add to the end of
-// an existing queue, because new instructions will not end up in the
-// correct position.
-
-// Runs the work queue, processing the empty strings indicated by flag.
-// For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
-// both ^ and $. It is important that callers pass all flags at once:
-// processing both ^ and $ is not the same as first processing only ^
-// and then processing only $. Doing the two-step sequence won't match
-// ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
-// exhibited by existing implementations).
-void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) {
- newq->clear();
- for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
- if (oldq->is_mark(*i))
- AddToQueue(newq, Mark, flag);
- else
- AddToQueue(newq, *i, flag);
- }
-}
-
-// Runs the work queue, processing the single byte c followed by any empty
-// strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine,
-// means to match c$. Sets the bool *ismatch to true if the end of the
-// regular expression program has been reached (the regexp has matched).
-void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
- int c, uint flag, bool* ismatch,
- Prog::MatchKind kind) {
- if (DEBUG_MODE)
- mutex_.AssertHeld();
-
- newq->clear();
- for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
- if (oldq->is_mark(*i)) {
- if (*ismatch)
- return;
- newq->mark();
- continue;
- }
- int id = *i;
- Prog::Inst* ip = prog_->inst(id);
- switch (ip->opcode()) {
- case kInstFail: // never succeeds
- case kInstCapture: // already followed
- case kInstNop: // already followed
- case kInstAlt: // already followed
- case kInstAltMatch: // already followed
- case kInstEmptyWidth: // already followed
- break;
-
- case kInstByteRange: // can follow if c is in range
- if (ip->Matches(c))
- AddToQueue(newq, ip->out(), flag);
- break;
-
- case kInstMatch:
- if (prog_->anchor_end() && c != kByteEndText)
- break;
- *ismatch = true;
- if (kind == Prog::kFirstMatch) {
- // Can stop processing work queue since we found a match.
- return;
- }
- break;
- }
- }
-
- if (DebugDFA)
- fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
- c, flag, DumpWorkq(newq).c_str(), *ismatch);
-}
-
-// Processes input byte c in state, returning new state.
-// Caller does not hold mutex.
-DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
- // Keep only one RunStateOnByte going
- // even if the DFA is being run by multiple threads.
- MutexLock l(&mutex_);
- return RunStateOnByte(state, c);
-}
-
-// Processes input byte c in state, returning new state.
-DFA::State* DFA::RunStateOnByte(State* state, int c) {
- if (DEBUG_MODE)
- mutex_.AssertHeld();
- if (state <= SpecialStateMax) {
- if (state == FullMatchState) {
- // It is convenient for routines like PossibleMatchRange
- // if we implement RunStateOnByte for FullMatchState:
- // once you get into this state you never get out,
- // so it's pretty easy.
- return FullMatchState;
- }
- if (state == DeadState) {
- LOG(DFATAL) << "DeadState in RunStateOnByte";
- return NULL;
- }
- if (state == NULL) {
- LOG(DFATAL) << "NULL state in RunStateOnByte";
- return NULL;
- }
- LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
- return NULL;
- }
-
- // If someone else already computed this, return it.
- State* ns;
- ATOMIC_LOAD_CONSUME(ns, &state->next_[ByteMap(c)]);
- if (ns != NULL)
- return ns;
-
- // Convert state into Workq.
- StateToWorkq(state, q0_);
-
- // Flags marking the kinds of empty-width things (^ $ etc)
- // around this byte. Before the byte we have the flags recorded
- // in the State structure itself. After the byte we have
- // nothing yet (but that will change: read on).
- uint needflag = state->flag_ >> kFlagNeedShift;
- uint beforeflag = state->flag_ & kFlagEmptyMask;
- uint oldbeforeflag = beforeflag;
- uint afterflag = 0;
-
- if (c == '\n') {
- // Insert implicit $ and ^ around \n
- beforeflag |= kEmptyEndLine;
- afterflag |= kEmptyBeginLine;
- }
-
- if (c == kByteEndText) {
- // Insert implicit $ and \z before the fake "end text" byte.
- beforeflag |= kEmptyEndLine | kEmptyEndText;
- }
-
- // The state flag kFlagLastWord says whether the last
- // byte processed was a word character. Use that info to
- // insert empty-width (non-)word boundaries.
- bool islastword = (state->flag_ & kFlagLastWord) != 0;
- bool isword = (c != kByteEndText && Prog::IsWordChar(static_cast<uint8>(c)));
- if (isword == islastword)
- beforeflag |= kEmptyNonWordBoundary;
- else
- beforeflag |= kEmptyWordBoundary;
-
- // Okay, finally ready to run.
- // Only useful to rerun on empty string if there are new, useful flags.
- if (beforeflag & ~oldbeforeflag & needflag) {
- RunWorkqOnEmptyString(q0_, q1_, beforeflag);
- swap(q0_, q1_);
- }
- bool ismatch = false;
- RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_);
-
- // Most of the time, we build the state from the output of
- // RunWorkqOnByte, so swap q0_ and q1_ here. However, so that
- // RE2::Set can tell exactly which match instructions
- // contributed to the match, don't swap if c is kByteEndText.
- // The resulting state wouldn't be correct for further processing
- // of the string, but we're at the end of the text so that's okay.
- // Leaving q0_ alone preseves the match instructions that led to
- // the current setting of ismatch.
- if (c != kByteEndText || kind_ != Prog::kManyMatch)
- swap(q0_, q1_);
-
- // Save afterflag along with ismatch and isword in new state.
- uint flag = afterflag;
- if (ismatch)
- flag |= kFlagMatch;
- if (isword)
- flag |= kFlagLastWord;
-
- ns = WorkqToCachedState(q0_, flag);
-
- // Flush ns before linking to it.
- // Write barrier before updating state->next_ so that the
- // main search loop can proceed without any locking, for speed.
- // (Otherwise it would need one mutex operation per input byte.)
- ATOMIC_STORE_RELEASE(&state->next_[ByteMap(c)], ns);
- return ns;
-}
-
-
-//////////////////////////////////////////////////////////////////////
-// DFA cache reset.
-
-// Reader-writer lock helper.
-//
-// The DFA uses a reader-writer mutex to protect the state graph itself.
-// Traversing the state graph requires holding the mutex for reading,
-// and discarding the state graph and starting over requires holding the
-// lock for writing. If a search needs to expand the graph but is out
-// of memory, it will need to drop its read lock and then acquire the
-// write lock. Since it cannot then atomically downgrade from write lock
-// to read lock, it runs the rest of the search holding the write lock.
-// (This probably helps avoid repeated contention, but really the decision
-// is forced by the Mutex interface.) It's a bit complicated to keep
-// track of whether the lock is held for reading or writing and thread
-// that through the search, so instead we encapsulate it in the RWLocker
-// and pass that around.
-
-class DFA::RWLocker {
- public:
- explicit RWLocker(Mutex* mu);
- ~RWLocker();
-
- // If the lock is only held for reading right now,
- // drop the read lock and re-acquire for writing.
- // Subsequent calls to LockForWriting are no-ops.
- // Notice that the lock is *released* temporarily.
- void LockForWriting();
-
- // Returns whether the lock is already held for writing.
- bool IsLockedForWriting() {
- return writing_;
- }
-
- private:
- Mutex* mu_;
- bool writing_;
-
- DISALLOW_COPY_AND_ASSIGN(RWLocker);
-};
-
-DFA::RWLocker::RWLocker(Mutex* mu)
- : mu_(mu), writing_(false) {
-
- mu_->ReaderLock();
-}
-
-// This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
-// does not support lock upgrade.
-void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
- if (!writing_) {
- mu_->ReaderUnlock();
- mu_->Lock();
- writing_ = true;
- }
-}
-
-DFA::RWLocker::~RWLocker() {
- if (writing_)
- mu_->WriterUnlock();
- else
- mu_->ReaderUnlock();
-}
-
-
-// When the DFA's State cache fills, we discard all the states in the
-// cache and start over. Many threads can be using and adding to the
-// cache at the same time, so we synchronize using the cache_mutex_
-// to keep from stepping on other threads. Specifically, all the
-// threads using the current cache hold cache_mutex_ for reading.
-// When a thread decides to flush the cache, it drops cache_mutex_
-// and then re-acquires it for writing. That ensures there are no
-// other threads accessing the cache anymore. The rest of the search
-// runs holding cache_mutex_ for writing, avoiding any contention
-// with or cache pollution caused by other threads.
-
-void DFA::ResetCache(RWLocker* cache_lock) {
- // Re-acquire the cache_mutex_ for writing (exclusive use).
- bool was_writing = cache_lock->IsLockedForWriting();
- cache_lock->LockForWriting();
-
- // If we already held cache_mutex_ for writing, it means
- // this invocation of Search() has already reset the
- // cache once already. That's a pretty clear indication
- // that the cache is too small. Warn about that, once.
- // TODO(rsc): Only warn if state_cache_.size() < some threshold.
- if (was_writing && !cache_warned_) {
- LOG(INFO) << "DFA memory cache could be too small: "
- << "only room for " << state_cache_.size() << " states.";
- cache_warned_ = true;
- }
-
- // Clear the cache, reset the memory budget.
- for (int i = 0; i < kMaxStart; i++) {
- start_[i].start = NULL;
- start_[i].firstbyte = kFbUnknown;
- }
- ClearCache();
- mem_budget_ = state_budget_;
-}
-
-// Typically, a couple States do need to be preserved across a cache
-// reset, like the State at the current point in the search.
-// The StateSaver class helps keep States across cache resets.
-// It makes a copy of the state's guts outside the cache (before the reset)
-// and then can be asked, after the reset, to recreate the State
-// in the new cache. For example, in a DFA method ("this" is a DFA):
-//
-// StateSaver saver(this, s);
-// ResetCache(cache_lock);
-// s = saver.Restore();
-//
-// The saver should always have room in the cache to re-create the state,
-// because resetting the cache locks out all other threads, and the cache
-// is known to have room for at least a couple states (otherwise the DFA
-// constructor fails).
-
-class DFA::StateSaver {
- public:
- explicit StateSaver(DFA* dfa, State* state);
- ~StateSaver();
-
- // Recreates and returns a state equivalent to the
- // original state passed to the constructor.
- // Returns NULL if the cache has filled, but
- // since the DFA guarantees to have room in the cache
- // for a couple states, should never return NULL
- // if used right after ResetCache.
- State* Restore();
-
- private:
- DFA* dfa_; // the DFA to use
- int* inst_; // saved info from State
- int ninst_;
- uint flag_;
- bool is_special_; // whether original state was special
- State* special_; // if is_special_, the original state
-
- DISALLOW_COPY_AND_ASSIGN(StateSaver);
-};
-
-DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
- dfa_ = dfa;
- if (state <= SpecialStateMax) {
- inst_ = NULL;
- ninst_ = 0;
- flag_ = 0;
- is_special_ = true;
- special_ = state;
- return;
- }
- is_special_ = false;
- special_ = NULL;
- flag_ = state->flag_;
- ninst_ = state->ninst_;
- inst_ = new int[ninst_];
- memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
-}
-
-DFA::StateSaver::~StateSaver() {
- if (!is_special_)
- delete[] inst_;
-}
-
-DFA::State* DFA::StateSaver::Restore() {
- if (is_special_)
- return special_;
- MutexLock l(&dfa_->mutex_);
- State* s = dfa_->CachedState(inst_, ninst_, flag_);
- if (s == NULL)
- LOG(DFATAL) << "StateSaver failed to restore state.";
- return s;
-}
-
-
-//////////////////////////////////////////////////////////////////////
-//
-// DFA execution.
-//
-// The basic search loop is easy: start in a state s and then for each
-// byte c in the input, s = s->next[c].
-//
-// This simple description omits a few efficiency-driven complications.
-//
-// First, the State graph is constructed incrementally: it is possible
-// that s->next[c] is null, indicating that that state has not been
-// fully explored. In this case, RunStateOnByte must be invoked to
-// determine the next state, which is cached in s->next[c] to save
-// future effort. An alternative reason for s->next[c] to be null is
-// that the DFA has reached a so-called "dead state", in which any match
-// is no longer possible. In this case RunStateOnByte will return NULL
-// and the processing of the string can stop early.
-//
-// Second, a 256-element pointer array for s->next_ makes each State
-// quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[]
-// maps from bytes to "byte classes" and then next_ only needs to have
-// as many pointers as there are byte classes. A byte class is simply a
-// range of bytes that the regexp never distinguishes between.
-// A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
-// 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit
-// but in exchange we typically cut the size of a State (and thus our
-// memory footprint) by about 5-10x. The comments still refer to
-// s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
-//
-// Third, it is common for a DFA for an unanchored match to begin in a
-// state in which only one particular byte value can take the DFA to a
-// different state. That is, s->next[c] != s for only one c. In this
-// situation, the DFA can do better than executing the simple loop.
-// Instead, it can call memchr to search very quickly for the byte c.
-// Whether the start state has this property is determined during a
-// pre-compilation pass, and if so, the byte b is passed to the search
-// loop as the "firstbyte" argument, along with a boolean "have_firstbyte".
-//
-// Fourth, the desired behavior is to search for the leftmost-best match
-// (approximately, the same one that Perl would find), which is not
-// necessarily the match ending earliest in the string. Each time a
-// match is found, it must be noted, but the DFA must continue on in
-// hope of finding a higher-priority match. In some cases, the caller only
-// cares whether there is any match at all, not which one is found.
-// The "want_earliest_match" flag causes the search to stop at the first
-// match found.
-//
-// Fifth, one algorithm that uses the DFA needs it to run over the
-// input string backward, beginning at the end and ending at the beginning.
-// Passing false for the "run_forward" flag causes the DFA to run backward.
-//
-// The checks for these last three cases, which in a naive implementation
-// would be performed once per input byte, slow the general loop enough
-// to merit specialized versions of the search loop for each of the
-// eight possible settings of the three booleans. Rather than write
-// eight different functions, we write one general implementation and then
-// inline it to create the specialized ones.
-//
-// Note that matches are delayed by one byte, to make it easier to
-// accomodate match conditions depending on the next input byte (like $ and \b).
-// When s->next[c]->IsMatch(), it means that there is a match ending just
-// *before* byte c.
-
-// The generic search loop. Searches text for a match, returning
-// the pointer to the end of the chosen match, or NULL if no match.
-// The bools are equal to the same-named variables in params, but
-// making them function arguments lets the inliner specialize
-// this function to each combination (see two paragraphs above).
-inline bool DFA::InlinedSearchLoop(SearchParams* params,
- bool have_firstbyte,
- bool want_earliest_match,
- bool run_forward) {
- State* start = params->start;
- const uint8* bp = BytePtr(params->text.begin()); // start of text
- const uint8* p = bp; // text scanning point
- const uint8* ep = BytePtr(params->text.end()); // end of text
- const uint8* resetp = NULL; // p at last cache reset
- if (!run_forward)
- swap(p, ep);
-
- const uint8* bytemap = prog_->bytemap();
- const uint8* lastmatch = NULL; // most recent matching position in text
- bool matched = false;
- State* s = start;
-
- if (s->IsMatch()) {
- matched = true;
- lastmatch = p;
- if (want_earliest_match) {
- params->ep = reinterpret_cast<const char*>(lastmatch);
- return true;
- }
- }
-
- while (p != ep) {
- if (DebugDFA)
- fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp),
- DumpState(s).c_str());
- if (have_firstbyte && s == start) {
- // In start state, only way out is to find firstbyte,
- // so use optimized assembly in memchr to skip ahead.
- // If firstbyte isn't found, we can skip to the end
- // of the string.
- if (run_forward) {
- if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) {
- p = ep;
- break;
- }
- } else {
- if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) {
- p = ep;
- break;
- }
- p++;
- }
- }
-
- int c;
- if (run_forward)
- c = *p++;
- else
- c = *--p;
-
- // Note that multiple threads might be consulting
- // s->next_[bytemap[c]] simultaneously.
- // RunStateOnByte takes care of the appropriate locking,
- // including a memory barrier so that the unlocked access
- // (sometimes known as "double-checked locking") is safe.
- // The alternative would be either one DFA per thread
- // or one mutex operation per input byte.
- //
- // ns == DeadState means the state is known to be dead
- // (no more matches are possible).
- // ns == NULL means the state has not yet been computed
- // (need to call RunStateOnByteUnlocked).
- // RunStateOnByte returns ns == NULL if it is out of memory.
- // ns == FullMatchState means the rest of the string matches.
- //
- // Okay to use bytemap[] not ByteMap() here, because
- // c is known to be an actual byte and not kByteEndText.
-
- State* ns;
- ATOMIC_LOAD_CONSUME(ns, &s->next_[bytemap[c]]);
- if (ns == NULL) {
- ns = RunStateOnByteUnlocked(s, c);
- if (ns == NULL) {
- // After we reset the cache, we hold cache_mutex exclusively,
- // so if resetp != NULL, it means we filled the DFA state
- // cache with this search alone (without any other threads).
- // Benchmarks show that doing a state computation on every
- // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
- // same at about 2 MB/s. Unless we're processing an average
- // of 10 bytes per state computation, fail so that RE2 can
- // fall back to the NFA.
- if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL &&
- static_cast<unsigned long>(p - resetp) < 10*state_cache_.size()) {
- params->failed = true;
- return false;
- }
- resetp = p;
-
- // Prepare to save start and s across the reset.
- StateSaver save_start(this, start);
- StateSaver save_s(this, s);
-
- // Discard all the States in the cache.
- ResetCache(params->cache_lock);
-
- // Restore start and s so we can continue.
- if ((start = save_start.Restore()) == NULL ||
- (s = save_s.Restore()) == NULL) {
- // Restore already did LOG(DFATAL).
- params->failed = true;
- return false;
- }
- ns = RunStateOnByteUnlocked(s, c);
- if (ns == NULL) {
- LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
- params->failed = true;
- return false;
- }
- }
- }
- if (ns <= SpecialStateMax) {
- if (ns == DeadState) {
- params->ep = reinterpret_cast<const char*>(lastmatch);
- return matched;
- }
- // FullMatchState
- params->ep = reinterpret_cast<const char*>(ep);
- return true;
- }
- s = ns;
-
- if (s->IsMatch()) {
- matched = true;
- // The DFA notices the match one byte late,
- // so adjust p before using it in the match.
- if (run_forward)
- lastmatch = p - 1;
- else
- lastmatch = p + 1;
- if (DebugDFA)
- fprintf(stderr, "match @%d! [%s]\n",
- static_cast<int>(lastmatch - bp),
- DumpState(s).c_str());
-
- if (want_earliest_match) {
- params->ep = reinterpret_cast<const char*>(lastmatch);
- return true;
- }
- }
- }
-
- // Process one more byte to see if it triggers a match.
- // (Remember, matches are delayed one byte.)
- int lastbyte;
- if (run_forward) {
- if (params->text.end() == params->context.end())
- lastbyte = kByteEndText;
- else
- lastbyte = params->text.end()[0] & 0xFF;
- } else {
- if (params->text.begin() == params->context.begin())
- lastbyte = kByteEndText;
- else
- lastbyte = params->text.begin()[-1] & 0xFF;
- }
-
- State* ns;
- ATOMIC_LOAD_CONSUME(ns, &s->next_[ByteMap(lastbyte)]);
- if (ns == NULL) {
- ns = RunStateOnByteUnlocked(s, lastbyte);
- if (ns == NULL) {
- StateSaver save_s(this, s);
- ResetCache(params->cache_lock);
- if ((s = save_s.Restore()) == NULL) {
- params->failed = true;
- return false;
- }
- ns = RunStateOnByteUnlocked(s, lastbyte);
- if (ns == NULL) {
- LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
- params->failed = true;
- return false;
- }
- }
- }
- s = ns;
- if (DebugDFA)
- fprintf(stderr, "@_: %s\n", DumpState(s).c_str());
- if (s == FullMatchState) {
- params->ep = reinterpret_cast<const char*>(ep);
- return true;
- }
- if (s > SpecialStateMax && s->IsMatch()) {
- matched = true;
- lastmatch = p;
- if (params->matches && kind_ == Prog::kManyMatch) {
- vector<int>* v = params->matches;
- v->clear();
- for (int i = 0; i < s->ninst_; i++) {
- Prog::Inst* ip = prog_->inst(s->inst_[i]);
- if (ip->opcode() == kInstMatch)
- v->push_back(ip->match_id());
- }
- }
- if (DebugDFA)
- fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp),
- DumpState(s).c_str());
- }
- params->ep = reinterpret_cast<const char*>(lastmatch);
- return matched;
-}
-
-// Inline specializations of the general loop.
-bool DFA::SearchFFF(SearchParams* params) {
- return InlinedSearchLoop(params, 0, 0, 0);
-}
-bool DFA::SearchFFT(SearchParams* params) {
- return InlinedSearchLoop(params, 0, 0, 1);
-}
-bool DFA::SearchFTF(SearchParams* params) {
- return InlinedSearchLoop(params, 0, 1, 0);
-}
-bool DFA::SearchFTT(SearchParams* params) {
- return InlinedSearchLoop(params, 0, 1, 1);
-}
-bool DFA::SearchTFF(SearchParams* params) {
- return InlinedSearchLoop(params, 1, 0, 0);
-}
-bool DFA::SearchTFT(SearchParams* params) {
- return InlinedSearchLoop(params, 1, 0, 1);
-}
-bool DFA::SearchTTF(SearchParams* params) {
- return InlinedSearchLoop(params, 1, 1, 0);
-}
-bool DFA::SearchTTT(SearchParams* params) {
- return InlinedSearchLoop(params, 1, 1, 1);
-}
-
-// For debugging, calls the general code directly.
-bool DFA::SlowSearchLoop(SearchParams* params) {
- return InlinedSearchLoop(params,
- params->firstbyte >= 0,
- params->want_earliest_match,
- params->run_forward);
-}
-
-// For performance, calls the appropriate specialized version
-// of InlinedSearchLoop.
-bool DFA::FastSearchLoop(SearchParams* params) {
- // Because the methods are private, the Searches array
- // cannot be declared at top level.
- static bool (DFA::*Searches[])(SearchParams*) = {
- &DFA::SearchFFF,
- &DFA::SearchFFT,
- &DFA::SearchFTF,
- &DFA::SearchFTT,
- &DFA::SearchTFF,
- &DFA::SearchTFT,
- &DFA::SearchTTF,
- &DFA::SearchTTT,
- };
-
- bool have_firstbyte = (params->firstbyte >= 0);
- int index = 4 * have_firstbyte +
- 2 * params->want_earliest_match +
- 1 * params->run_forward;
- return (this->*Searches[index])(params);
-}
-
-
-// The discussion of DFA execution above ignored the question of how
-// to determine the initial state for the search loop. There are two
-// factors that influence the choice of start state.
-//
-// The first factor is whether the search is anchored or not.
-// The regexp program (Prog*) itself has
-// two different entry points: one for anchored searches and one for
-// unanchored searches. (The unanchored version starts with a leading ".*?"
-// and then jumps to the anchored one.)
-//
-// The second factor is where text appears in the larger context, which
-// determines which empty-string operators can be matched at the beginning
-// of execution. If text is at the very beginning of context, \A and ^ match.
-// Otherwise if text is at the beginning of a line, then ^ matches.
-// Otherwise it matters whether the character before text is a word character
-// or a non-word character.
-//
-// The two cases (unanchored vs not) and four cases (empty-string flags)
-// combine to make the eight cases recorded in the DFA's begin_text_[2],
-// begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
-// StartInfos. The start state for each is filled in the first time it
-// is used for an actual search.
-
-// Examines text, context, and anchored to determine the right start
-// state for the DFA search loop. Fills in params and returns true on success.
-// Returns false on failure.
-bool DFA::AnalyzeSearch(SearchParams* params) {
- const StringPiece& text = params->text;
- const StringPiece& context = params->context;
-
- // Sanity check: make sure that text lies within context.
- if (text.begin() < context.begin() || text.end() > context.end()) {
- LOG(DFATAL) << "Text is not inside context.";
- params->start = DeadState;
- return true;
- }
-
- // Determine correct search type.
- int start;
- uint flags;
- if (params->run_forward) {
- if (text.begin() == context.begin()) {
- start = kStartBeginText;
- flags = kEmptyBeginText|kEmptyBeginLine;
- } else if (text.begin()[-1] == '\n') {
- start = kStartBeginLine;
- flags = kEmptyBeginLine;
- } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
- start = kStartAfterWordChar;
- flags = kFlagLastWord;
- } else {
- start = kStartAfterNonWordChar;
- flags = 0;
- }
- } else {
- if (text.end() == context.end()) {
- start = kStartBeginText;
- flags = kEmptyBeginText|kEmptyBeginLine;
- } else if (text.end()[0] == '\n') {
- start = kStartBeginLine;
- flags = kEmptyBeginLine;
- } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
- start = kStartAfterWordChar;
- flags = kFlagLastWord;
- } else {
- start = kStartAfterNonWordChar;
- flags = 0;
- }
- }
- if (params->anchored || prog_->anchor_start())
- start |= kStartAnchored;
- StartInfo* info = &start_[start];
-
- // Try once without cache_lock for writing.
- // Try again after resetting the cache
- // (ResetCache will relock cache_lock for writing).
- if (!AnalyzeSearchHelper(params, info, flags)) {
- ResetCache(params->cache_lock);
- if (!AnalyzeSearchHelper(params, info, flags)) {
- LOG(DFATAL) << "Failed to analyze start state.";
- params->failed = true;
- return false;
- }
- }
-
- if (DebugDFA) {
- int fb;
- ATOMIC_LOAD_RELAXED(fb, &info->firstbyte);
- fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n",
- params->anchored, params->run_forward, flags,
- DumpState(info->start).c_str(), fb);
- }
-
- params->start = info->start;
- ATOMIC_LOAD_ACQUIRE(params->firstbyte, &info->firstbyte);
-
- return true;
-}
-
-// Fills in info if needed. Returns true on success, false on failure.
-bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
- uint flags) {
- // Quick check.
- int fb;
- ATOMIC_LOAD_ACQUIRE(fb, &info->firstbyte);
- if (fb != kFbUnknown)
- return true;
-
- MutexLock l(&mutex_);
- if (info->firstbyte != kFbUnknown)
- return true;
-
- q0_->clear();
- AddToQueue(q0_,
- params->anchored ? prog_->start() : prog_->start_unanchored(),
- flags);
- info->start = WorkqToCachedState(q0_, flags);
- if (info->start == NULL)
- return false;
-
- if (info->start == DeadState) {
- // Synchronize with "quick check" above.
- ATOMIC_STORE_RELEASE(&info->firstbyte, kFbNone);
- return true;
- }
-
- if (info->start == FullMatchState) {
- // Synchronize with "quick check" above.
- ATOMIC_STORE_RELEASE(&info->firstbyte, kFbNone); // will be ignored
- return true;
- }
-
- // Compute info->firstbyte by running state on all
- // possible byte values, looking for a single one that
- // leads to a different state.
- int firstbyte = kFbNone;
- for (int i = 0; i < 256; i++) {
- State* s = RunStateOnByte(info->start, i);
- if (s == NULL) {
- // Synchronize with "quick check" above.
- ATOMIC_STORE_RELEASE(&info->firstbyte, firstbyte);
- return false;
- }
- if (s == info->start)
- continue;
- // Goes to new state...
- if (firstbyte == kFbNone) {
- firstbyte = i; // ... first one
- } else {
- firstbyte = kFbMany; // ... too many
- break;
- }
- }
- // Synchronize with "quick check" above.
- ATOMIC_STORE_RELEASE(&info->firstbyte, firstbyte);
- return true;
-}
-
-// The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
-bool DFA::Search(const StringPiece& text,
- const StringPiece& context,
- bool anchored,
- bool want_earliest_match,
- bool run_forward,
- bool* failed,
- const char** epp,
- vector<int>* matches) {
- *epp = NULL;
- if (!ok()) {
- *failed = true;
- return false;
- }
- *failed = false;
-
- if (DebugDFA) {
- fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
- fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
- text.as_string().c_str(), anchored, want_earliest_match,
- run_forward, kind_);
- }
-
- RWLocker l(&cache_mutex_);
- SearchParams params(text, context, &l);
- params.anchored = anchored;
- params.want_earliest_match = want_earliest_match;
- params.run_forward = run_forward;
- params.matches = matches;
-
- if (!AnalyzeSearch(&params)) {
- *failed = true;
- return false;
- }
- if (params.start == DeadState)
- return false;
- if (params.start == FullMatchState) {
- if (run_forward == want_earliest_match)
- *epp = text.begin();
- else
- *epp = text.end();
- return true;
- }
- if (DebugDFA)
- fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
- bool ret = FastSearchLoop(&params);
- if (params.failed) {
- *failed = true;
- return false;
- }
- *epp = params.ep;
- return ret;
-}
-
-// Deletes dfa.
-//
-// This is a separate function so that
-// prog.h can be used without moving the definition of
-// class DFA out of this file. If you set
-// prog->dfa_ = dfa;
-// then you also have to set
-// prog->delete_dfa_ = DeleteDFA;
-// so that ~Prog can delete the dfa.
-static void DeleteDFA(DFA* dfa) {
- delete dfa;
-}
-
-DFA* Prog::GetDFA(MatchKind kind) {
- DFA*volatile* pdfa;
- if (kind == kFirstMatch || kind == kManyMatch) {
- pdfa = &dfa_first_;
- } else {
- kind = kLongestMatch;
- pdfa = &dfa_longest_;
- }
-
- // Quick check.
- DFA *dfa;
- ATOMIC_LOAD_ACQUIRE(dfa, pdfa);
- if (dfa != NULL)
- return dfa;
-
- MutexLock l(&dfa_mutex_);
- dfa = *pdfa;
- if (dfa != NULL)
- return dfa;
-
- // For a forward DFA, half the memory goes to each DFA.
- // For a reverse DFA, all the memory goes to the
- // "longest match" DFA, because RE2 never does reverse
- // "first match" searches.
- int64 m = dfa_mem_/2;
- if (reversed_) {
- if (kind == kLongestMatch || kind == kManyMatch)
- m = dfa_mem_;
- else
- m = 0;
- }
- dfa = new DFA(this, kind, m);
- delete_dfa_ = DeleteDFA;
-
- // Synchronize with "quick check" above.
- ATOMIC_STORE_RELEASE(pdfa, dfa);
-
- return dfa;
-}
-
-
-// Executes the regexp program to search in text,
-// which itself is inside the larger context. (As a convenience,
-// passing a NULL context is equivalent to passing text.)
-// Returns true if a match is found, false if not.
-// If a match is found, fills in match0->end() to point at the end of the match
-// and sets match0->begin() to text.begin(), since the DFA can't track
-// where the match actually began.
-//
-// This is the only external interface (class DFA only exists in this file).
-//
-bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
- Anchor anchor, MatchKind kind,
- StringPiece* match0, bool* failed, vector<int>* matches) {
- *failed = false;
-
- StringPiece context = const_context;
- if (context.begin() == NULL)
- context = text;
- bool carat = anchor_start();
- bool dollar = anchor_end();
- if (reversed_) {
- bool t = carat;
- carat = dollar;
- dollar = t;
- }
- if (carat && context.begin() != text.begin())
- return false;
- if (dollar && context.end() != text.end())
- return false;
-
- // Handle full match by running an anchored longest match
- // and then checking if it covers all of text.
- bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
- bool endmatch = false;
- if (kind == kManyMatch) {
- endmatch = true;
- } else if (kind == kFullMatch || anchor_end()) {
- endmatch = true;
- kind = kLongestMatch;
- }
-
- // If the caller doesn't care where the match is (just whether one exists),
- // then we can stop at the very first match we find, the so-called
- // "shortest match".
- bool want_shortest_match = false;
- if (match0 == NULL && !endmatch) {
- want_shortest_match = true;
- kind = kLongestMatch;
- }
-
- DFA* dfa = GetDFA(kind);
- const char* ep;
- bool matched = dfa->Search(text, context, anchored,
- want_shortest_match, !reversed_,
- failed, &ep, matches);
- if (*failed)
- return false;
- if (!matched)
- return false;
- if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
- return false;
-
- // If caller cares, record the boundary of the match.
- // We only know where it ends, so use the boundary of text
- // as the beginning.
- if (match0) {
- if (reversed_)
- match0->set(ep, static_cast<int>(text.end() - ep));
- else
- match0->set(text.begin(), static_cast<int>(ep - text.begin()));
- }
- return true;
-}
-
-// Build out all states in DFA. Returns number of states.
-int DFA::BuildAllStates() {
- if (!ok())
- return 0;
-
- // Pick out start state for unanchored search
- // at beginning of text.
- RWLocker l(&cache_mutex_);
- SearchParams params(NULL, NULL, &l);
- params.anchored = false;
- if (!AnalyzeSearch(&params) || params.start <= SpecialStateMax)
- return 0;
-
- // Add start state to work queue.
- StateSet queued;
- vector<State*> q;
- queued.insert(params.start);
- q.push_back(params.start);
-
- // Flood to expand every state.
- for (size_t i = 0; i < q.size(); i++) {
- State* s = q[i];
- for (int c = 0; c < 257; c++) {
- State* ns = RunStateOnByteUnlocked(s, c);
- if (ns > SpecialStateMax && queued.find(ns) == queued.end()) {
- queued.insert(ns);
- q.push_back(ns);
- }
- }
- }
-
- return static_cast<int>(q.size());
-}
-
-// Build out all states in DFA for kind. Returns number of states.
-int Prog::BuildEntireDFA(MatchKind kind) {
- //LOG(ERROR) << "BuildEntireDFA is only for testing.";
- return GetDFA(kind)->BuildAllStates();
-}
-
-// Computes min and max for matching string.
-// Won't return strings bigger than maxlen.
-bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
- if (!ok())
- return false;
-
- // NOTE: if future users of PossibleMatchRange want more precision when
- // presented with infinitely repeated elements, consider making this a
- // parameter to PossibleMatchRange.
- static int kMaxEltRepetitions = 0;
-
- // Keep track of the number of times we've visited states previously. We only
- // revisit a given state if it's part of a repeated group, so if the value
- // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
- // |*max| to |PrefixSuccessor(*max)|.
- //
- // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
- // tradition, implicitly insert a '0' value at first use. We take advantage
- // of that property below.
- map<State*, int> previously_visited_states;
-
- // Pick out start state for anchored search at beginning of text.
- RWLocker l(&cache_mutex_);
- SearchParams params(NULL, NULL, &l);
- params.anchored = true;
- if (!AnalyzeSearch(&params))
- return false;
- if (params.start == DeadState) { // No matching strings
- *min = "";
- *max = "";
- return true;
- }
- if (params.start == FullMatchState) // Every string matches: no max
- return false;
-
- // The DFA is essentially a big graph rooted at params.start,
- // and paths in the graph correspond to accepted strings.
- // Each node in the graph has potentially 256+1 arrows
- // coming out, one for each byte plus the magic end of
- // text character kByteEndText.
-
- // To find the smallest possible prefix of an accepted
- // string, we just walk the graph preferring to follow
- // arrows with the lowest bytes possible. To find the
- // largest possible prefix, we follow the largest bytes
- // possible.
-
- // The test for whether there is an arrow from s on byte j is
- // ns = RunStateOnByteUnlocked(s, j);
- // if (ns == NULL)
- // return false;
- // if (ns != DeadState && ns->ninst > 0)
- // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
- // It returns NULL only if the DFA has run out of memory,
- // in which case we can't be sure of anything.
- // The second check sees whether there was graph built
- // and whether it is interesting graph. Nodes might have
- // ns->ninst == 0 if they exist only to represent the fact
- // that a match was found on the previous byte.
-
- // Build minimum prefix.
- State* s = params.start;
- min->clear();
- MutexLock lock(&mutex_);
- for (int i = 0; i < maxlen; i++) {
- if (previously_visited_states[s] > kMaxEltRepetitions) {
- VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
- << " for state s=" << s << " and min=" << CEscape(*min);
- break;
- }
- previously_visited_states[s]++;
-
- // Stop if min is a match.
- State* ns = RunStateOnByte(s, kByteEndText);
- if (ns == NULL) // DFA out of memory
- return false;
- if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
- break;
-
- // Try to extend the string with low bytes.
- bool extended = false;
- for (int j = 0; j < 256; j++) {
- ns = RunStateOnByte(s, j);
- if (ns == NULL) // DFA out of memory
- return false;
- if (ns == FullMatchState ||
- (ns > SpecialStateMax && ns->ninst_ > 0)) {
- extended = true;
- min->append(1, static_cast<char>(j));
- s = ns;
- break;
- }
- }
- if (!extended)
- break;
- }
-
- // Build maximum prefix.
- previously_visited_states.clear();
- s = params.start;
- max->clear();
- for (int i = 0; i < maxlen; i++) {
- if (previously_visited_states[s] > kMaxEltRepetitions) {
- VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
- << " for state s=" << s << " and max=" << CEscape(*max);
- break;
- }
- previously_visited_states[s] += 1;
-
- // Try to extend the string with high bytes.
- bool extended = false;
- for (int j = 255; j >= 0; j--) {
- State* ns = RunStateOnByte(s, j);
- if (ns == NULL)
- return false;
- if (ns == FullMatchState ||
- (ns > SpecialStateMax && ns->ninst_ > 0)) {
- extended = true;
- max->append(1, static_cast<char>(j));
- s = ns;
- break;
- }
- }
- if (!extended) {
- // Done, no need for PrefixSuccessor.
- return true;
- }
- }
-
- // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
- *max = PrefixSuccessor(*max);
-
- // If there are no bytes left, we have no way to say "there is no maximum
- // string". We could make the interface more complicated and be able to
- // return "there is no maximum but here is a minimum", but that seems like
- // overkill -- the most common no-max case is all possible strings, so not
- // telling the caller that the empty string is the minimum match isn't a
- // great loss.
- if (max->empty())
- return false;
-
- return true;
-}
-
-// PossibleMatchRange for a Prog.
-bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
- DFA* dfa = NULL;
- {
- MutexLock l(&dfa_mutex_);
- // Have to use dfa_longest_ to get all strings for full matches.
- // For example, (a|aa) never matches aa in first-match mode.
- dfa = dfa_longest_;
- if (dfa == NULL) {
- dfa = new DFA(this, Prog::kLongestMatch, dfa_mem_/2);
- ATOMIC_STORE_RELEASE(&dfa_longest_, dfa);
- delete_dfa_ = DeleteDFA;
- }
- }
- return dfa->PossibleMatchRange(min, max, maxlen);
-}
-
-} // namespace re2
« no previous file with comments | « third_party/re2/re2/compile.cc ('k') | third_party/re2/re2/filtered_re2.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698