OLD | NEW |
| (Empty) |
1 // Copyright 2008 The RE2 Authors. All Rights Reserved. | |
2 // Use of this source code is governed by a BSD-style | |
3 // license that can be found in the LICENSE file. | |
4 | |
5 // A DFA (deterministic finite automaton)-based regular expression search. | |
6 // | |
7 // The DFA search has two main parts: the construction of the automaton, | |
8 // which is represented by a graph of State structures, and the execution | |
9 // of the automaton over a given input string. | |
10 // | |
11 // The basic idea is that the State graph is constructed so that the | |
12 // execution can simply start with a state s, and then for each byte c in | |
13 // the input string, execute "s = s->next[c]", checking at each point whether | |
14 // the current s represents a matching state. | |
15 // | |
16 // The simple explanation just given does convey the essence of this code, | |
17 // but it omits the details of how the State graph gets constructed as well | |
18 // as some performance-driven optimizations to the execution of the automaton. | |
19 // All these details are explained in the comments for the code following | |
20 // the definition of class DFA. | |
21 // | |
22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent. | |
23 | |
24 #include "util/atomicops.h" | |
25 #include "util/flags.h" | |
26 #include "util/sparse_set.h" | |
27 #include "re2/prog.h" | |
28 #include "re2/stringpiece.h" | |
29 | |
30 DEFINE_bool(re2_dfa_bail_when_slow, true, | |
31 "Whether the RE2 DFA should bail out early " | |
32 "if the NFA would be faster (for testing)."); | |
33 | |
34 namespace re2 { | |
35 | |
36 #if !defined(__linux__) /* only Linux seems to have memrchr */ | |
37 static void* memrchr(const void* s, int c, size_t n) { | |
38 const unsigned char* p = (const unsigned char*)s; | |
39 for (p += n; n > 0; n--) | |
40 if (*--p == c) | |
41 return (void*)p; | |
42 | |
43 return NULL; | |
44 } | |
45 #endif | |
46 | |
47 // Changing this to true compiles in prints that trace execution of the DFA. | |
48 // Generates a lot of output -- only useful for debugging. | |
49 static const bool DebugDFA = false; | |
50 | |
51 // A DFA implementation of a regular expression program. | |
52 // Since this is entirely a forward declaration mandated by C++, | |
53 // some of the comments here are better understood after reading | |
54 // the comments in the sections that follow the DFA definition. | |
55 class DFA { | |
56 public: | |
57 DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem); | |
58 ~DFA(); | |
59 bool ok() const { return !init_failed_; } | |
60 Prog::MatchKind kind() { return kind_; } | |
61 | |
62 // Searches for the regular expression in text, which is considered | |
63 // as a subsection of context for the purposes of interpreting flags | |
64 // like ^ and $ and \A and \z. | |
65 // Returns whether a match was found. | |
66 // If a match is found, sets *ep to the end point of the best match in text. | |
67 // If "anchored", the match must begin at the start of text. | |
68 // If "want_earliest_match", the match that ends first is used, not | |
69 // necessarily the best one. | |
70 // If "run_forward" is true, the DFA runs from text.begin() to text.end(). | |
71 // If it is false, the DFA runs from text.end() to text.begin(), | |
72 // returning the leftmost end of the match instead of the rightmost one. | |
73 // If the DFA cannot complete the search (for example, if it is out of | |
74 // memory), it sets *failed and returns false. | |
75 bool Search(const StringPiece& text, const StringPiece& context, | |
76 bool anchored, bool want_earliest_match, bool run_forward, | |
77 bool* failed, const char** ep, vector<int>* matches); | |
78 | |
79 // Builds out all states for the entire DFA. FOR TESTING ONLY | |
80 // Returns number of states. | |
81 int BuildAllStates(); | |
82 | |
83 // Computes min and max for matching strings. Won't return strings | |
84 // bigger than maxlen. | |
85 bool PossibleMatchRange(string* min, string* max, int maxlen); | |
86 | |
87 // These data structures are logically private, but C++ makes it too | |
88 // difficult to mark them as such. | |
89 class Workq; | |
90 class RWLocker; | |
91 class StateSaver; | |
92 | |
93 // A single DFA state. The DFA is represented as a graph of these | |
94 // States, linked by the next_ pointers. If in state s and reading | |
95 // byte c, the next state should be s->next_[c]. | |
96 struct State { | |
97 inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; } | |
98 void SaveMatch(vector<int>* v); | |
99 | |
100 int* inst_; // Instruction pointers in the state. | |
101 int ninst_; // # of inst_ pointers. | |
102 uint flag_; // Empty string bitfield flags in effect on the way | |
103 // into this state, along with kFlagMatch if this | |
104 // is a matching state. | |
105 State** next_; // Outgoing arrows from State, | |
106 // one per input byte class | |
107 }; | |
108 | |
109 enum { | |
110 kByteEndText = 256, // imaginary byte at end of text | |
111 | |
112 kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags | |
113 kFlagMatch = 0x1000, // State.flag_: this is a matching state | |
114 kFlagLastWord = 0x2000, // State.flag_: last byte was a word char | |
115 kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left | |
116 }; | |
117 | |
118 #ifndef STL_MSVC | |
119 // STL function structures for use with unordered_set. | |
120 struct StateEqual { | |
121 bool operator()(const State* a, const State* b) const { | |
122 if (a == b) | |
123 return true; | |
124 if (a == NULL || b == NULL) | |
125 return false; | |
126 if (a->ninst_ != b->ninst_) | |
127 return false; | |
128 if (a->flag_ != b->flag_) | |
129 return false; | |
130 for (int i = 0; i < a->ninst_; i++) | |
131 if (a->inst_[i] != b->inst_[i]) | |
132 return false; | |
133 return true; // they're equal | |
134 } | |
135 }; | |
136 #endif // STL_MSVC | |
137 struct StateHash { | |
138 size_t operator()(const State* a) const { | |
139 if (a == NULL) | |
140 return 0; | |
141 const char* s = reinterpret_cast<const char*>(a->inst_); | |
142 int len = a->ninst_ * sizeof a->inst_[0]; | |
143 if (sizeof(size_t) == sizeof(uint32)) | |
144 return Hash32StringWithSeed(s, len, a->flag_); | |
145 else | |
146 return static_cast<size_t>(Hash64StringWithSeed(s, len, a->flag_)); | |
147 } | |
148 #ifdef STL_MSVC | |
149 // Less than operator. | |
150 bool operator()(const State* a, const State* b) const { | |
151 if (a == b) | |
152 return false; | |
153 if (a == NULL || b == NULL) | |
154 return a == NULL; | |
155 if (a->ninst_ != b->ninst_) | |
156 return a->ninst_ < b->ninst_; | |
157 if (a->flag_ != b->flag_) | |
158 return a->flag_ < b->flag_; | |
159 for (int i = 0; i < a->ninst_; ++i) | |
160 if (a->inst_[i] != b->inst_[i]) | |
161 return a->inst_[i] < b->inst_[i]; | |
162 return false; // they're equal | |
163 } | |
164 // The two public members are required by msvc. 4 and 8 are default values. | |
165 // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx | |
166 static const size_t bucket_size = 4; | |
167 static const size_t min_buckets = 8; | |
168 #endif // STL_MSVC | |
169 }; | |
170 | |
171 #ifdef STL_MSVC | |
172 typedef unordered_set<State*, StateHash> StateSet; | |
173 #else // !STL_MSVC | |
174 typedef unordered_set<State*, StateHash, StateEqual> StateSet; | |
175 #endif // STL_MSVC | |
176 | |
177 | |
178 private: | |
179 // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.) | |
180 enum { | |
181 kFbUnknown = -1, // No analysis has been performed. | |
182 kFbMany = -2, // Many bytes will lead out of this state. | |
183 kFbNone = -3, // No bytes lead out of this state. | |
184 }; | |
185 | |
186 enum { | |
187 // Indices into start_ for unanchored searches. | |
188 // Add kStartAnchored for anchored searches. | |
189 kStartBeginText = 0, // text at beginning of context | |
190 kStartBeginLine = 2, // text at beginning of line | |
191 kStartAfterWordChar = 4, // text follows a word character | |
192 kStartAfterNonWordChar = 6, // text follows non-word character | |
193 kMaxStart = 8, | |
194 | |
195 kStartAnchored = 1, | |
196 }; | |
197 | |
198 // Resets the DFA State cache, flushing all saved State* information. | |
199 // Releases and reacquires cache_mutex_ via cache_lock, so any | |
200 // State* existing before the call are not valid after the call. | |
201 // Use a StateSaver to preserve important states across the call. | |
202 // cache_mutex_.r <= L < mutex_ | |
203 // After: cache_mutex_.w <= L < mutex_ | |
204 void ResetCache(RWLocker* cache_lock); | |
205 | |
206 // Looks up and returns the State corresponding to a Workq. | |
207 // L >= mutex_ | |
208 State* WorkqToCachedState(Workq* q, uint flag); | |
209 | |
210 // Looks up and returns a State matching the inst, ninst, and flag. | |
211 // L >= mutex_ | |
212 State* CachedState(int* inst, int ninst, uint flag); | |
213 | |
214 // Clear the cache entirely. | |
215 // Must hold cache_mutex_.w or be in destructor. | |
216 void ClearCache(); | |
217 | |
218 // Converts a State into a Workq: the opposite of WorkqToCachedState. | |
219 // L >= mutex_ | |
220 static void StateToWorkq(State* s, Workq* q); | |
221 | |
222 // Runs a State on a given byte, returning the next state. | |
223 State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_ | |
224 State* RunStateOnByte(State*, int); // L >= mutex_ | |
225 | |
226 // Runs a Workq on a given byte followed by a set of empty-string flags, | |
227 // producing a new Workq in nq. If a match instruction is encountered, | |
228 // sets *ismatch to true. | |
229 // L >= mutex_ | |
230 void RunWorkqOnByte(Workq* q, Workq* nq, | |
231 int c, uint flag, bool* ismatch, | |
232 Prog::MatchKind kind); | |
233 | |
234 // Runs a Workq on a set of empty-string flags, producing a new Workq in nq. | |
235 // L >= mutex_ | |
236 void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag); | |
237 | |
238 // Adds the instruction id to the Workq, following empty arrows | |
239 // according to flag. | |
240 // L >= mutex_ | |
241 void AddToQueue(Workq* q, int id, uint flag); | |
242 | |
243 // For debugging, returns a text representation of State. | |
244 static string DumpState(State* state); | |
245 | |
246 // For debugging, returns a text representation of a Workq. | |
247 static string DumpWorkq(Workq* q); | |
248 | |
249 // Search parameters | |
250 struct SearchParams { | |
251 SearchParams(const StringPiece& text, const StringPiece& context, | |
252 RWLocker* cache_lock) | |
253 : text(text), context(context), | |
254 anchored(false), | |
255 want_earliest_match(false), | |
256 run_forward(false), | |
257 start(NULL), | |
258 firstbyte(kFbUnknown), | |
259 cache_lock(cache_lock), | |
260 failed(false), | |
261 ep(NULL), | |
262 matches(NULL) { } | |
263 | |
264 StringPiece text; | |
265 StringPiece context; | |
266 bool anchored; | |
267 bool want_earliest_match; | |
268 bool run_forward; | |
269 State* start; | |
270 int firstbyte; | |
271 RWLocker *cache_lock; | |
272 bool failed; // "out" parameter: whether search gave up | |
273 const char* ep; // "out" parameter: end pointer for match | |
274 vector<int>* matches; | |
275 | |
276 private: | |
277 DISALLOW_COPY_AND_ASSIGN(SearchParams); | |
278 }; | |
279 | |
280 // Before each search, the parameters to Search are analyzed by | |
281 // AnalyzeSearch to determine the state in which to start and the | |
282 // "firstbyte" for that state, if any. | |
283 struct StartInfo { | |
284 StartInfo() : start(NULL), firstbyte(kFbUnknown) { } | |
285 State* start; | |
286 volatile int firstbyte; | |
287 }; | |
288 | |
289 // Fills in params->start and params->firstbyte using | |
290 // the other search parameters. Returns true on success, | |
291 // false on failure. | |
292 // cache_mutex_.r <= L < mutex_ | |
293 bool AnalyzeSearch(SearchParams* params); | |
294 bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags); | |
295 | |
296 // The generic search loop, inlined to create specialized versions. | |
297 // cache_mutex_.r <= L < mutex_ | |
298 // Might unlock and relock cache_mutex_ via params->cache_lock. | |
299 inline bool InlinedSearchLoop(SearchParams* params, | |
300 bool have_firstbyte, | |
301 bool want_earliest_match, | |
302 bool run_forward); | |
303 | |
304 // The specialized versions of InlinedSearchLoop. The three letters | |
305 // at the ends of the name denote the true/false values used as the | |
306 // last three parameters of InlinedSearchLoop. | |
307 // cache_mutex_.r <= L < mutex_ | |
308 // Might unlock and relock cache_mutex_ via params->cache_lock. | |
309 bool SearchFFF(SearchParams* params); | |
310 bool SearchFFT(SearchParams* params); | |
311 bool SearchFTF(SearchParams* params); | |
312 bool SearchFTT(SearchParams* params); | |
313 bool SearchTFF(SearchParams* params); | |
314 bool SearchTFT(SearchParams* params); | |
315 bool SearchTTF(SearchParams* params); | |
316 bool SearchTTT(SearchParams* params); | |
317 | |
318 // The main search loop: calls an appropriate specialized version of | |
319 // InlinedSearchLoop. | |
320 // cache_mutex_.r <= L < mutex_ | |
321 // Might unlock and relock cache_mutex_ via params->cache_lock. | |
322 bool FastSearchLoop(SearchParams* params); | |
323 | |
324 // For debugging, a slow search loop that calls InlinedSearchLoop | |
325 // directly -- because the booleans passed are not constants, the | |
326 // loop is not specialized like the SearchFFF etc. versions, so it | |
327 // runs much more slowly. Useful only for debugging. | |
328 // cache_mutex_.r <= L < mutex_ | |
329 // Might unlock and relock cache_mutex_ via params->cache_lock. | |
330 bool SlowSearchLoop(SearchParams* params); | |
331 | |
332 // Looks up bytes in bytemap_ but handles case c == kByteEndText too. | |
333 int ByteMap(int c) { | |
334 if (c == kByteEndText) | |
335 return prog_->bytemap_range(); | |
336 return prog_->bytemap()[c]; | |
337 } | |
338 | |
339 // Constant after initialization. | |
340 Prog* prog_; // The regular expression program to run. | |
341 Prog::MatchKind kind_; // The kind of DFA. | |
342 bool init_failed_; // initialization failed (out of memory) | |
343 | |
344 Mutex mutex_; // mutex_ >= cache_mutex_.r | |
345 | |
346 // Scratch areas, protected by mutex_. | |
347 Workq* q0_; // Two pre-allocated work queues. | |
348 Workq* q1_; | |
349 int* astack_; // Pre-allocated stack for AddToQueue | |
350 int nastack_; | |
351 | |
352 // State* cache. Many threads use and add to the cache simultaneously, | |
353 // holding cache_mutex_ for reading and mutex_ (above) when adding. | |
354 // If the cache fills and needs to be discarded, the discarding is done | |
355 // while holding cache_mutex_ for writing, to avoid interrupting other | |
356 // readers. Any State* pointers are only valid while cache_mutex_ | |
357 // is held. | |
358 Mutex cache_mutex_; | |
359 int64 mem_budget_; // Total memory budget for all States. | |
360 int64 state_budget_; // Amount of memory remaining for new States. | |
361 StateSet state_cache_; // All States computed so far. | |
362 StartInfo start_[kMaxStart]; | |
363 bool cache_warned_; // have printed to LOG(INFO) about the cache | |
364 }; | |
365 | |
366 // Shorthand for casting to uint8*. | |
367 static inline const uint8* BytePtr(const void* v) { | |
368 return reinterpret_cast<const uint8*>(v); | |
369 } | |
370 | |
371 // Work queues | |
372 | |
373 // Marks separate thread groups of different priority | |
374 // in the work queue when in leftmost-longest matching mode. | |
375 #define Mark (-1) | |
376 | |
377 // Internally, the DFA uses a sparse array of | |
378 // program instruction pointers as a work queue. | |
379 // In leftmost longest mode, marks separate sections | |
380 // of workq that started executing at different | |
381 // locations in the string (earlier locations first). | |
382 class DFA::Workq : public SparseSet { | |
383 public: | |
384 // Constructor: n is number of normal slots, maxmark number of mark slots. | |
385 Workq(int n, int maxmark) : | |
386 SparseSet(n+maxmark), | |
387 n_(n), | |
388 maxmark_(maxmark), | |
389 nextmark_(n), | |
390 last_was_mark_(true) { | |
391 } | |
392 | |
393 bool is_mark(int i) { return i >= n_; } | |
394 | |
395 int maxmark() { return maxmark_; } | |
396 | |
397 void clear() { | |
398 SparseSet::clear(); | |
399 nextmark_ = n_; | |
400 } | |
401 | |
402 void mark() { | |
403 if (last_was_mark_) | |
404 return; | |
405 last_was_mark_ = false; | |
406 SparseSet::insert_new(nextmark_++); | |
407 } | |
408 | |
409 int size() { | |
410 return n_ + maxmark_; | |
411 } | |
412 | |
413 void insert(int id) { | |
414 if (contains(id)) | |
415 return; | |
416 insert_new(id); | |
417 } | |
418 | |
419 void insert_new(int id) { | |
420 last_was_mark_ = false; | |
421 SparseSet::insert_new(id); | |
422 } | |
423 | |
424 private: | |
425 int n_; // size excluding marks | |
426 int maxmark_; // maximum number of marks | |
427 int nextmark_; // id of next mark | |
428 bool last_was_mark_; // last inserted was mark | |
429 DISALLOW_COPY_AND_ASSIGN(Workq); | |
430 }; | |
431 | |
432 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem) | |
433 : prog_(prog), | |
434 kind_(kind), | |
435 init_failed_(false), | |
436 q0_(NULL), | |
437 q1_(NULL), | |
438 astack_(NULL), | |
439 mem_budget_(max_mem), | |
440 cache_warned_(false) { | |
441 if (DebugDFA) | |
442 fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str
()); | |
443 int nmark = 0; | |
444 if (kind_ == Prog::kLongestMatch) | |
445 nmark = prog->size(); | |
446 nastack_ = 2 * prog->size() + nmark; | |
447 | |
448 // Account for space needed for DFA, q0, q1, astack. | |
449 mem_budget_ -= sizeof(DFA); | |
450 mem_budget_ -= (prog_->size() + nmark) * | |
451 (sizeof(int)+sizeof(int)) * 2; // q0, q1 | |
452 mem_budget_ -= nastack_ * sizeof(int); // astack | |
453 if (mem_budget_ < 0) { | |
454 LOG(INFO) << StringPrintf("DFA out of memory: prog size %d mem %lld", | |
455 prog_->size(), max_mem); | |
456 init_failed_ = true; | |
457 return; | |
458 } | |
459 | |
460 state_budget_ = mem_budget_; | |
461 | |
462 // Make sure there is a reasonable amount of working room left. | |
463 // At minimum, the search requires room for two states in order | |
464 // to limp along, restarting frequently. We'll get better performance | |
465 // if there is room for a larger number of states, say 20. | |
466 int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) + | |
467 (prog_->bytemap_range()+1)*sizeof(State*); | |
468 if (state_budget_ < 20*one_state) { | |
469 LOG(INFO) << StringPrintf("DFA out of memory: prog size %d mem %lld", | |
470 prog_->size(), max_mem); | |
471 init_failed_ = true; | |
472 return; | |
473 } | |
474 | |
475 q0_ = new Workq(prog->size(), nmark); | |
476 q1_ = new Workq(prog->size(), nmark); | |
477 astack_ = new int[nastack_]; | |
478 } | |
479 | |
480 DFA::~DFA() { | |
481 delete q0_; | |
482 delete q1_; | |
483 delete[] astack_; | |
484 ClearCache(); | |
485 } | |
486 | |
487 // In the DFA state graph, s->next[c] == NULL means that the | |
488 // state has not yet been computed and needs to be. We need | |
489 // a different special value to signal that s->next[c] is a | |
490 // state that can never lead to a match (and thus the search | |
491 // can be called off). Hence DeadState. | |
492 #define DeadState reinterpret_cast<State*>(1) | |
493 | |
494 // Signals that the rest of the string matches no matter what it is. | |
495 #define FullMatchState reinterpret_cast<State*>(2) | |
496 | |
497 #define SpecialStateMax FullMatchState | |
498 | |
499 // Debugging printouts | |
500 | |
501 // For debugging, returns a string representation of the work queue. | |
502 string DFA::DumpWorkq(Workq* q) { | |
503 string s; | |
504 const char* sep = ""; | |
505 for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) { | |
506 if (q->is_mark(*it)) { | |
507 StringAppendF(&s, "|"); | |
508 sep = ""; | |
509 } else { | |
510 StringAppendF(&s, "%s%d", sep, *it); | |
511 sep = ","; | |
512 } | |
513 } | |
514 return s; | |
515 } | |
516 | |
517 // For debugging, returns a string representation of the state. | |
518 string DFA::DumpState(State* state) { | |
519 if (state == NULL) | |
520 return "_"; | |
521 if (state == DeadState) | |
522 return "X"; | |
523 if (state == FullMatchState) | |
524 return "*"; | |
525 string s; | |
526 const char* sep = ""; | |
527 StringAppendF(&s, "(%p)", state); | |
528 for (int i = 0; i < state->ninst_; i++) { | |
529 if (state->inst_[i] == Mark) { | |
530 StringAppendF(&s, "|"); | |
531 sep = ""; | |
532 } else { | |
533 StringAppendF(&s, "%s%d", sep, state->inst_[i]); | |
534 sep = ","; | |
535 } | |
536 } | |
537 StringAppendF(&s, " flag=%#x", state->flag_); | |
538 return s; | |
539 } | |
540 | |
541 ////////////////////////////////////////////////////////////////////// | |
542 // | |
543 // DFA state graph construction. | |
544 // | |
545 // The DFA state graph is a heavily-linked collection of State* structures. | |
546 // The state_cache_ is a set of all the State structures ever allocated, | |
547 // so that if the same state is reached by two different paths, | |
548 // the same State structure can be used. This reduces allocation | |
549 // requirements and also avoids duplication of effort across the two | |
550 // identical states. | |
551 // | |
552 // A State is defined by an ordered list of instruction ids and a flag word. | |
553 // | |
554 // The choice of an ordered list of instructions differs from a typical | |
555 // textbook DFA implementation, which would use an unordered set. | |
556 // Textbook descriptions, however, only care about whether | |
557 // the DFA matches, not where it matches in the text. To decide where the | |
558 // DFA matches, we need to mimic the behavior of the dominant backtracking | |
559 // implementations like PCRE, which try one possible regular expression | |
560 // execution, then another, then another, stopping when one of them succeeds. | |
561 // The DFA execution tries these many executions in parallel, representing | |
562 // each by an instruction id. These pointers are ordered in the State.inst_ | |
563 // list in the same order that the executions would happen in a backtracking | |
564 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3 | |
565 // can be discarded. | |
566 // | |
567 // Textbooks also typically do not consider context-aware empty string operators | |
568 // like ^ or $. These are handled by the flag word, which specifies the set | |
569 // of empty-string operators that should be matched when executing at the | |
570 // current text position. These flag bits are defined in prog.h. | |
571 // The flag word also contains two DFA-specific bits: kFlagMatch if the state | |
572 // is a matching state (one that reached a kInstMatch in the program) | |
573 // and kFlagLastWord if the last processed byte was a word character, for the | |
574 // implementation of \B and \b. | |
575 // | |
576 // The flag word also contains, shifted up 16 bits, the bits looked for by | |
577 // any kInstEmptyWidth instructions in the state. These provide a useful | |
578 // summary indicating when new flags might be useful. | |
579 // | |
580 // The permanent representation of a State's instruction ids is just an array, | |
581 // but while a state is being analyzed, these instruction ids are represented | |
582 // as a Workq, which is an array that allows iteration in insertion order. | |
583 | |
584 // NOTE(rsc): The choice of State construction determines whether the DFA | |
585 // mimics backtracking implementations (so-called leftmost first matching) or | |
586 // traditional DFA implementations (so-called leftmost longest matching as | |
587 // prescribed by POSIX). This implementation chooses to mimic the | |
588 // backtracking implementations, because we want to replace PCRE. To get | |
589 // POSIX behavior, the states would need to be considered not as a simple | |
590 // ordered list of instruction ids, but as a list of unordered sets of instructi
on | |
591 // ids. A match by a state in one set would inhibit the running of sets | |
592 // farther down the list but not other instruction ids in the same set. Each | |
593 // set would correspond to matches beginning at a given point in the string. | |
594 // This is implemented by separating different sets with Mark pointers. | |
595 | |
596 // Looks in the State cache for a State matching q, flag. | |
597 // If one is found, returns it. If one is not found, allocates one, | |
598 // inserts it in the cache, and returns it. | |
599 DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) { | |
600 if (DEBUG_MODE) | |
601 mutex_.AssertHeld(); | |
602 | |
603 // Construct array of instruction ids for the new state. | |
604 // Only ByteRange, EmptyWidth, and Match instructions are useful to keep: | |
605 // those are the only operators with any effect in | |
606 // RunWorkqOnEmptyString or RunWorkqOnByte. | |
607 int* inst = new int[q->size()]; | |
608 int n = 0; | |
609 uint needflags = 0; // flags needed by kInstEmptyWidth instructions | |
610 bool sawmatch = false; // whether queue contains guaranteed kInstMatch | |
611 bool sawmark = false; // whether queue contains a Mark | |
612 if (DebugDFA) | |
613 fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag); | |
614 for (Workq::iterator it = q->begin(); it != q->end(); ++it) { | |
615 int id = *it; | |
616 if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id))) | |
617 break; | |
618 if (q->is_mark(id)) { | |
619 if (n > 0 && inst[n-1] != Mark) { | |
620 sawmark = true; | |
621 inst[n++] = Mark; | |
622 } | |
623 continue; | |
624 } | |
625 Prog::Inst* ip = prog_->inst(id); | |
626 switch (ip->opcode()) { | |
627 case kInstAltMatch: | |
628 // This state will continue to a match no matter what | |
629 // the rest of the input is. If it is the highest priority match | |
630 // being considered, return the special FullMatchState | |
631 // to indicate that it's all matches from here out. | |
632 if (kind_ != Prog::kManyMatch && | |
633 (kind_ != Prog::kFirstMatch || | |
634 (it == q->begin() && ip->greedy(prog_))) && | |
635 (kind_ != Prog::kLongestMatch || !sawmark) && | |
636 (flag & kFlagMatch)) { | |
637 delete[] inst; | |
638 if (DebugDFA) | |
639 fprintf(stderr, " -> FullMatchState\n"); | |
640 return FullMatchState; | |
641 } | |
642 // Fall through. | |
643 case kInstByteRange: // These are useful. | |
644 case kInstEmptyWidth: | |
645 case kInstMatch: | |
646 case kInstAlt: // Not useful, but necessary [*] | |
647 inst[n++] = *it; | |
648 if (ip->opcode() == kInstEmptyWidth) | |
649 needflags |= ip->empty(); | |
650 if (ip->opcode() == kInstMatch && !prog_->anchor_end()) | |
651 sawmatch = true; | |
652 break; | |
653 | |
654 default: // The rest are not. | |
655 break; | |
656 } | |
657 | |
658 // [*] kInstAlt would seem useless to record in a state, since | |
659 // we've already followed both its arrows and saved all the | |
660 // interesting states we can reach from there. The problem | |
661 // is that one of the empty-width instructions might lead | |
662 // back to the same kInstAlt (if an empty-width operator is starred), | |
663 // producing a different evaluation order depending on whether | |
664 // we keep the kInstAlt to begin with. Sigh. | |
665 // A specific case that this affects is /(^|a)+/ matching "a". | |
666 // If we don't save the kInstAlt, we will match the whole "a" (0,1) | |
667 // but in fact the correct leftmost-first match is the leading "" (0,0). | |
668 } | |
669 DCHECK_LE(n, q->size()); | |
670 if (n > 0 && inst[n-1] == Mark) | |
671 n--; | |
672 | |
673 // If there are no empty-width instructions waiting to execute, | |
674 // then the extra flag bits will not be used, so there is no | |
675 // point in saving them. (Discarding them reduces the number | |
676 // of distinct states.) | |
677 if (needflags == 0) | |
678 flag &= kFlagMatch; | |
679 | |
680 // NOTE(rsc): The code above cannot do flag &= needflags, | |
681 // because if the right flags were present to pass the current | |
682 // kInstEmptyWidth instructions, new kInstEmptyWidth instructions | |
683 // might be reached that in turn need different flags. | |
684 // The only sure thing is that if there are no kInstEmptyWidth | |
685 // instructions at all, no flags will be needed. | |
686 // We could do the extra work to figure out the full set of | |
687 // possibly needed flags by exploring past the kInstEmptyWidth | |
688 // instructions, but the check above -- are any flags needed | |
689 // at all? -- handles the most common case. More fine-grained | |
690 // analysis can only be justified by measurements showing that | |
691 // too many redundant states are being allocated. | |
692 | |
693 // If there are no Insts in the list, it's a dead state, | |
694 // which is useful to signal with a special pointer so that | |
695 // the execution loop can stop early. This is only okay | |
696 // if the state is *not* a matching state. | |
697 if (n == 0 && flag == 0) { | |
698 delete[] inst; | |
699 if (DebugDFA) | |
700 fprintf(stderr, " -> DeadState\n"); | |
701 return DeadState; | |
702 } | |
703 | |
704 // If we're in longest match mode, the state is a sequence of | |
705 // unordered state sets separated by Marks. Sort each set | |
706 // to canonicalize, to reduce the number of distinct sets stored. | |
707 if (kind_ == Prog::kLongestMatch) { | |
708 int* ip = inst; | |
709 int* ep = ip + n; | |
710 while (ip < ep) { | |
711 int* markp = ip; | |
712 while (markp < ep && *markp != Mark) | |
713 markp++; | |
714 sort(ip, markp); | |
715 if (markp < ep) | |
716 markp++; | |
717 ip = markp; | |
718 } | |
719 } | |
720 | |
721 // Save the needed empty-width flags in the top bits for use later. | |
722 flag |= needflags << kFlagNeedShift; | |
723 | |
724 State* state = CachedState(inst, n, flag); | |
725 delete[] inst; | |
726 return state; | |
727 } | |
728 | |
729 // Looks in the State cache for a State matching inst, ninst, flag. | |
730 // If one is found, returns it. If one is not found, allocates one, | |
731 // inserts it in the cache, and returns it. | |
732 DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) { | |
733 if (DEBUG_MODE) | |
734 mutex_.AssertHeld(); | |
735 | |
736 // Look in the cache for a pre-existing state. | |
737 State state = { inst, ninst, flag, NULL }; | |
738 StateSet::iterator it = state_cache_.find(&state); | |
739 if (it != state_cache_.end()) { | |
740 if (DebugDFA) | |
741 fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str()); | |
742 return *it; | |
743 } | |
744 | |
745 // Must have enough memory for new state. | |
746 // In addition to what we're going to allocate, | |
747 // the state cache hash table seems to incur about 32 bytes per | |
748 // State*, empirically. | |
749 const int kStateCacheOverhead = 32; | |
750 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot | |
751 int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int); | |
752 if (mem_budget_ < mem + kStateCacheOverhead) { | |
753 mem_budget_ = -1; | |
754 return NULL; | |
755 } | |
756 mem_budget_ -= mem + kStateCacheOverhead; | |
757 | |
758 // Allocate new state, along with room for next and inst. | |
759 char* space = new char[mem]; | |
760 State* s = reinterpret_cast<State*>(space); | |
761 s->next_ = reinterpret_cast<State**>(s + 1); | |
762 s->inst_ = reinterpret_cast<int*>(s->next_ + nnext); | |
763 memset(s->next_, 0, nnext*sizeof s->next_[0]); | |
764 memmove(s->inst_, inst, ninst*sizeof s->inst_[0]); | |
765 s->ninst_ = ninst; | |
766 s->flag_ = flag; | |
767 if (DebugDFA) | |
768 fprintf(stderr, " -> %s\n", DumpState(s).c_str()); | |
769 | |
770 // Put state in cache and return it. | |
771 state_cache_.insert(s); | |
772 return s; | |
773 } | |
774 | |
775 // Clear the cache. Must hold cache_mutex_.w or be in destructor. | |
776 void DFA::ClearCache() { | |
777 // In case state_cache_ doesn't support deleting entries | |
778 // during iteration, copy into a vector and then delete. | |
779 vector<State*> v; | |
780 v.reserve(state_cache_.size()); | |
781 for (StateSet::iterator it = state_cache_.begin(); | |
782 it != state_cache_.end(); ++it) | |
783 v.push_back(*it); | |
784 state_cache_.clear(); | |
785 for (size_t i = 0; i < v.size(); i++) | |
786 delete[] reinterpret_cast<const char*>(v[i]); | |
787 } | |
788 | |
789 // Copies insts in state s to the work queue q. | |
790 void DFA::StateToWorkq(State* s, Workq* q) { | |
791 q->clear(); | |
792 for (int i = 0; i < s->ninst_; i++) { | |
793 if (s->inst_[i] == Mark) | |
794 q->mark(); | |
795 else | |
796 q->insert_new(s->inst_[i]); | |
797 } | |
798 } | |
799 | |
800 // Adds ip to the work queue, following empty arrows according to flag | |
801 // and expanding kInstAlt instructions (two-target gotos). | |
802 void DFA::AddToQueue(Workq* q, int id, uint flag) { | |
803 | |
804 // Use astack_ to hold our stack of states yet to process. | |
805 // It is sized to have room for nastack_ == 2*prog->size() + nmark | |
806 // instructions, which is enough: each instruction can be | |
807 // processed by the switch below only once, and the processing | |
808 // pushes at most two instructions plus maybe a mark. | |
809 // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.) | |
810 int* stk = astack_; | |
811 int nstk = 0; | |
812 | |
813 stk[nstk++] = id; | |
814 while (nstk > 0) { | |
815 DCHECK_LE(nstk, nastack_); | |
816 id = stk[--nstk]; | |
817 | |
818 if (id == Mark) { | |
819 q->mark(); | |
820 continue; | |
821 } | |
822 | |
823 if (id == 0) | |
824 continue; | |
825 | |
826 // If ip is already on the queue, nothing to do. | |
827 // Otherwise add it. We don't actually keep all the ones | |
828 // that get added -- for example, kInstAlt is ignored | |
829 // when on a work queue -- but adding all ip's here | |
830 // increases the likelihood of q->contains(id), | |
831 // reducing the amount of duplicated work. | |
832 if (q->contains(id)) | |
833 continue; | |
834 q->insert_new(id); | |
835 | |
836 // Process instruction. | |
837 Prog::Inst* ip = prog_->inst(id); | |
838 switch (ip->opcode()) { | |
839 case kInstFail: // can't happen: discarded above | |
840 break; | |
841 | |
842 case kInstByteRange: // just save these on the queue | |
843 case kInstMatch: | |
844 break; | |
845 | |
846 case kInstCapture: // DFA treats captures as no-ops. | |
847 case kInstNop: | |
848 stk[nstk++] = ip->out(); | |
849 break; | |
850 | |
851 case kInstAlt: // two choices: expand both, in order | |
852 case kInstAltMatch: | |
853 // Want to visit out then out1, so push on stack in reverse order. | |
854 // This instruction is the [00-FF]* loop at the beginning of | |
855 // a leftmost-longest unanchored search, separate out from out1 | |
856 // with a Mark, so that out1's threads (which will start farther | |
857 // to the right in the string being searched) are lower priority | |
858 // than the current ones. | |
859 stk[nstk++] = ip->out1(); | |
860 if (q->maxmark() > 0 && | |
861 id == prog_->start_unanchored() && id != prog_->start()) | |
862 stk[nstk++] = Mark; | |
863 stk[nstk++] = ip->out(); | |
864 break; | |
865 | |
866 case kInstEmptyWidth: | |
867 // Continue on if we have all the right flag bits. | |
868 if (ip->empty() & ~flag) | |
869 break; | |
870 stk[nstk++] = ip->out(); | |
871 break; | |
872 } | |
873 } | |
874 } | |
875 | |
876 // Running of work queues. In the work queue, order matters: | |
877 // the queue is sorted in priority order. If instruction i comes before j, | |
878 // then the instructions that i produces during the run must come before | |
879 // the ones that j produces. In order to keep this invariant, all the | |
880 // work queue runners have to take an old queue to process and then | |
881 // also a new queue to fill in. It's not acceptable to add to the end of | |
882 // an existing queue, because new instructions will not end up in the | |
883 // correct position. | |
884 | |
885 // Runs the work queue, processing the empty strings indicated by flag. | |
886 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match | |
887 // both ^ and $. It is important that callers pass all flags at once: | |
888 // processing both ^ and $ is not the same as first processing only ^ | |
889 // and then processing only $. Doing the two-step sequence won't match | |
890 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior | |
891 // exhibited by existing implementations). | |
892 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) { | |
893 newq->clear(); | |
894 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { | |
895 if (oldq->is_mark(*i)) | |
896 AddToQueue(newq, Mark, flag); | |
897 else | |
898 AddToQueue(newq, *i, flag); | |
899 } | |
900 } | |
901 | |
902 // Runs the work queue, processing the single byte c followed by any empty | |
903 // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine, | |
904 // means to match c$. Sets the bool *ismatch to true if the end of the | |
905 // regular expression program has been reached (the regexp has matched). | |
906 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq, | |
907 int c, uint flag, bool* ismatch, | |
908 Prog::MatchKind kind) { | |
909 if (DEBUG_MODE) | |
910 mutex_.AssertHeld(); | |
911 | |
912 newq->clear(); | |
913 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { | |
914 if (oldq->is_mark(*i)) { | |
915 if (*ismatch) | |
916 return; | |
917 newq->mark(); | |
918 continue; | |
919 } | |
920 int id = *i; | |
921 Prog::Inst* ip = prog_->inst(id); | |
922 switch (ip->opcode()) { | |
923 case kInstFail: // never succeeds | |
924 case kInstCapture: // already followed | |
925 case kInstNop: // already followed | |
926 case kInstAlt: // already followed | |
927 case kInstAltMatch: // already followed | |
928 case kInstEmptyWidth: // already followed | |
929 break; | |
930 | |
931 case kInstByteRange: // can follow if c is in range | |
932 if (ip->Matches(c)) | |
933 AddToQueue(newq, ip->out(), flag); | |
934 break; | |
935 | |
936 case kInstMatch: | |
937 if (prog_->anchor_end() && c != kByteEndText) | |
938 break; | |
939 *ismatch = true; | |
940 if (kind == Prog::kFirstMatch) { | |
941 // Can stop processing work queue since we found a match. | |
942 return; | |
943 } | |
944 break; | |
945 } | |
946 } | |
947 | |
948 if (DebugDFA) | |
949 fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(), | |
950 c, flag, DumpWorkq(newq).c_str(), *ismatch); | |
951 } | |
952 | |
953 // Processes input byte c in state, returning new state. | |
954 // Caller does not hold mutex. | |
955 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) { | |
956 // Keep only one RunStateOnByte going | |
957 // even if the DFA is being run by multiple threads. | |
958 MutexLock l(&mutex_); | |
959 return RunStateOnByte(state, c); | |
960 } | |
961 | |
962 // Processes input byte c in state, returning new state. | |
963 DFA::State* DFA::RunStateOnByte(State* state, int c) { | |
964 if (DEBUG_MODE) | |
965 mutex_.AssertHeld(); | |
966 if (state <= SpecialStateMax) { | |
967 if (state == FullMatchState) { | |
968 // It is convenient for routines like PossibleMatchRange | |
969 // if we implement RunStateOnByte for FullMatchState: | |
970 // once you get into this state you never get out, | |
971 // so it's pretty easy. | |
972 return FullMatchState; | |
973 } | |
974 if (state == DeadState) { | |
975 LOG(DFATAL) << "DeadState in RunStateOnByte"; | |
976 return NULL; | |
977 } | |
978 if (state == NULL) { | |
979 LOG(DFATAL) << "NULL state in RunStateOnByte"; | |
980 return NULL; | |
981 } | |
982 LOG(DFATAL) << "Unexpected special state in RunStateOnByte"; | |
983 return NULL; | |
984 } | |
985 | |
986 // If someone else already computed this, return it. | |
987 State* ns; | |
988 ATOMIC_LOAD_CONSUME(ns, &state->next_[ByteMap(c)]); | |
989 if (ns != NULL) | |
990 return ns; | |
991 | |
992 // Convert state into Workq. | |
993 StateToWorkq(state, q0_); | |
994 | |
995 // Flags marking the kinds of empty-width things (^ $ etc) | |
996 // around this byte. Before the byte we have the flags recorded | |
997 // in the State structure itself. After the byte we have | |
998 // nothing yet (but that will change: read on). | |
999 uint needflag = state->flag_ >> kFlagNeedShift; | |
1000 uint beforeflag = state->flag_ & kFlagEmptyMask; | |
1001 uint oldbeforeflag = beforeflag; | |
1002 uint afterflag = 0; | |
1003 | |
1004 if (c == '\n') { | |
1005 // Insert implicit $ and ^ around \n | |
1006 beforeflag |= kEmptyEndLine; | |
1007 afterflag |= kEmptyBeginLine; | |
1008 } | |
1009 | |
1010 if (c == kByteEndText) { | |
1011 // Insert implicit $ and \z before the fake "end text" byte. | |
1012 beforeflag |= kEmptyEndLine | kEmptyEndText; | |
1013 } | |
1014 | |
1015 // The state flag kFlagLastWord says whether the last | |
1016 // byte processed was a word character. Use that info to | |
1017 // insert empty-width (non-)word boundaries. | |
1018 bool islastword = (state->flag_ & kFlagLastWord) != 0; | |
1019 bool isword = (c != kByteEndText && Prog::IsWordChar(static_cast<uint8>(c))); | |
1020 if (isword == islastword) | |
1021 beforeflag |= kEmptyNonWordBoundary; | |
1022 else | |
1023 beforeflag |= kEmptyWordBoundary; | |
1024 | |
1025 // Okay, finally ready to run. | |
1026 // Only useful to rerun on empty string if there are new, useful flags. | |
1027 if (beforeflag & ~oldbeforeflag & needflag) { | |
1028 RunWorkqOnEmptyString(q0_, q1_, beforeflag); | |
1029 swap(q0_, q1_); | |
1030 } | |
1031 bool ismatch = false; | |
1032 RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_); | |
1033 | |
1034 // Most of the time, we build the state from the output of | |
1035 // RunWorkqOnByte, so swap q0_ and q1_ here. However, so that | |
1036 // RE2::Set can tell exactly which match instructions | |
1037 // contributed to the match, don't swap if c is kByteEndText. | |
1038 // The resulting state wouldn't be correct for further processing | |
1039 // of the string, but we're at the end of the text so that's okay. | |
1040 // Leaving q0_ alone preseves the match instructions that led to | |
1041 // the current setting of ismatch. | |
1042 if (c != kByteEndText || kind_ != Prog::kManyMatch) | |
1043 swap(q0_, q1_); | |
1044 | |
1045 // Save afterflag along with ismatch and isword in new state. | |
1046 uint flag = afterflag; | |
1047 if (ismatch) | |
1048 flag |= kFlagMatch; | |
1049 if (isword) | |
1050 flag |= kFlagLastWord; | |
1051 | |
1052 ns = WorkqToCachedState(q0_, flag); | |
1053 | |
1054 // Flush ns before linking to it. | |
1055 // Write barrier before updating state->next_ so that the | |
1056 // main search loop can proceed without any locking, for speed. | |
1057 // (Otherwise it would need one mutex operation per input byte.) | |
1058 ATOMIC_STORE_RELEASE(&state->next_[ByteMap(c)], ns); | |
1059 return ns; | |
1060 } | |
1061 | |
1062 | |
1063 ////////////////////////////////////////////////////////////////////// | |
1064 // DFA cache reset. | |
1065 | |
1066 // Reader-writer lock helper. | |
1067 // | |
1068 // The DFA uses a reader-writer mutex to protect the state graph itself. | |
1069 // Traversing the state graph requires holding the mutex for reading, | |
1070 // and discarding the state graph and starting over requires holding the | |
1071 // lock for writing. If a search needs to expand the graph but is out | |
1072 // of memory, it will need to drop its read lock and then acquire the | |
1073 // write lock. Since it cannot then atomically downgrade from write lock | |
1074 // to read lock, it runs the rest of the search holding the write lock. | |
1075 // (This probably helps avoid repeated contention, but really the decision | |
1076 // is forced by the Mutex interface.) It's a bit complicated to keep | |
1077 // track of whether the lock is held for reading or writing and thread | |
1078 // that through the search, so instead we encapsulate it in the RWLocker | |
1079 // and pass that around. | |
1080 | |
1081 class DFA::RWLocker { | |
1082 public: | |
1083 explicit RWLocker(Mutex* mu); | |
1084 ~RWLocker(); | |
1085 | |
1086 // If the lock is only held for reading right now, | |
1087 // drop the read lock and re-acquire for writing. | |
1088 // Subsequent calls to LockForWriting are no-ops. | |
1089 // Notice that the lock is *released* temporarily. | |
1090 void LockForWriting(); | |
1091 | |
1092 // Returns whether the lock is already held for writing. | |
1093 bool IsLockedForWriting() { | |
1094 return writing_; | |
1095 } | |
1096 | |
1097 private: | |
1098 Mutex* mu_; | |
1099 bool writing_; | |
1100 | |
1101 DISALLOW_COPY_AND_ASSIGN(RWLocker); | |
1102 }; | |
1103 | |
1104 DFA::RWLocker::RWLocker(Mutex* mu) | |
1105 : mu_(mu), writing_(false) { | |
1106 | |
1107 mu_->ReaderLock(); | |
1108 } | |
1109 | |
1110 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations | |
1111 // does not support lock upgrade. | |
1112 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS { | |
1113 if (!writing_) { | |
1114 mu_->ReaderUnlock(); | |
1115 mu_->Lock(); | |
1116 writing_ = true; | |
1117 } | |
1118 } | |
1119 | |
1120 DFA::RWLocker::~RWLocker() { | |
1121 if (writing_) | |
1122 mu_->WriterUnlock(); | |
1123 else | |
1124 mu_->ReaderUnlock(); | |
1125 } | |
1126 | |
1127 | |
1128 // When the DFA's State cache fills, we discard all the states in the | |
1129 // cache and start over. Many threads can be using and adding to the | |
1130 // cache at the same time, so we synchronize using the cache_mutex_ | |
1131 // to keep from stepping on other threads. Specifically, all the | |
1132 // threads using the current cache hold cache_mutex_ for reading. | |
1133 // When a thread decides to flush the cache, it drops cache_mutex_ | |
1134 // and then re-acquires it for writing. That ensures there are no | |
1135 // other threads accessing the cache anymore. The rest of the search | |
1136 // runs holding cache_mutex_ for writing, avoiding any contention | |
1137 // with or cache pollution caused by other threads. | |
1138 | |
1139 void DFA::ResetCache(RWLocker* cache_lock) { | |
1140 // Re-acquire the cache_mutex_ for writing (exclusive use). | |
1141 bool was_writing = cache_lock->IsLockedForWriting(); | |
1142 cache_lock->LockForWriting(); | |
1143 | |
1144 // If we already held cache_mutex_ for writing, it means | |
1145 // this invocation of Search() has already reset the | |
1146 // cache once already. That's a pretty clear indication | |
1147 // that the cache is too small. Warn about that, once. | |
1148 // TODO(rsc): Only warn if state_cache_.size() < some threshold. | |
1149 if (was_writing && !cache_warned_) { | |
1150 LOG(INFO) << "DFA memory cache could be too small: " | |
1151 << "only room for " << state_cache_.size() << " states."; | |
1152 cache_warned_ = true; | |
1153 } | |
1154 | |
1155 // Clear the cache, reset the memory budget. | |
1156 for (int i = 0; i < kMaxStart; i++) { | |
1157 start_[i].start = NULL; | |
1158 start_[i].firstbyte = kFbUnknown; | |
1159 } | |
1160 ClearCache(); | |
1161 mem_budget_ = state_budget_; | |
1162 } | |
1163 | |
1164 // Typically, a couple States do need to be preserved across a cache | |
1165 // reset, like the State at the current point in the search. | |
1166 // The StateSaver class helps keep States across cache resets. | |
1167 // It makes a copy of the state's guts outside the cache (before the reset) | |
1168 // and then can be asked, after the reset, to recreate the State | |
1169 // in the new cache. For example, in a DFA method ("this" is a DFA): | |
1170 // | |
1171 // StateSaver saver(this, s); | |
1172 // ResetCache(cache_lock); | |
1173 // s = saver.Restore(); | |
1174 // | |
1175 // The saver should always have room in the cache to re-create the state, | |
1176 // because resetting the cache locks out all other threads, and the cache | |
1177 // is known to have room for at least a couple states (otherwise the DFA | |
1178 // constructor fails). | |
1179 | |
1180 class DFA::StateSaver { | |
1181 public: | |
1182 explicit StateSaver(DFA* dfa, State* state); | |
1183 ~StateSaver(); | |
1184 | |
1185 // Recreates and returns a state equivalent to the | |
1186 // original state passed to the constructor. | |
1187 // Returns NULL if the cache has filled, but | |
1188 // since the DFA guarantees to have room in the cache | |
1189 // for a couple states, should never return NULL | |
1190 // if used right after ResetCache. | |
1191 State* Restore(); | |
1192 | |
1193 private: | |
1194 DFA* dfa_; // the DFA to use | |
1195 int* inst_; // saved info from State | |
1196 int ninst_; | |
1197 uint flag_; | |
1198 bool is_special_; // whether original state was special | |
1199 State* special_; // if is_special_, the original state | |
1200 | |
1201 DISALLOW_COPY_AND_ASSIGN(StateSaver); | |
1202 }; | |
1203 | |
1204 DFA::StateSaver::StateSaver(DFA* dfa, State* state) { | |
1205 dfa_ = dfa; | |
1206 if (state <= SpecialStateMax) { | |
1207 inst_ = NULL; | |
1208 ninst_ = 0; | |
1209 flag_ = 0; | |
1210 is_special_ = true; | |
1211 special_ = state; | |
1212 return; | |
1213 } | |
1214 is_special_ = false; | |
1215 special_ = NULL; | |
1216 flag_ = state->flag_; | |
1217 ninst_ = state->ninst_; | |
1218 inst_ = new int[ninst_]; | |
1219 memmove(inst_, state->inst_, ninst_*sizeof inst_[0]); | |
1220 } | |
1221 | |
1222 DFA::StateSaver::~StateSaver() { | |
1223 if (!is_special_) | |
1224 delete[] inst_; | |
1225 } | |
1226 | |
1227 DFA::State* DFA::StateSaver::Restore() { | |
1228 if (is_special_) | |
1229 return special_; | |
1230 MutexLock l(&dfa_->mutex_); | |
1231 State* s = dfa_->CachedState(inst_, ninst_, flag_); | |
1232 if (s == NULL) | |
1233 LOG(DFATAL) << "StateSaver failed to restore state."; | |
1234 return s; | |
1235 } | |
1236 | |
1237 | |
1238 ////////////////////////////////////////////////////////////////////// | |
1239 // | |
1240 // DFA execution. | |
1241 // | |
1242 // The basic search loop is easy: start in a state s and then for each | |
1243 // byte c in the input, s = s->next[c]. | |
1244 // | |
1245 // This simple description omits a few efficiency-driven complications. | |
1246 // | |
1247 // First, the State graph is constructed incrementally: it is possible | |
1248 // that s->next[c] is null, indicating that that state has not been | |
1249 // fully explored. In this case, RunStateOnByte must be invoked to | |
1250 // determine the next state, which is cached in s->next[c] to save | |
1251 // future effort. An alternative reason for s->next[c] to be null is | |
1252 // that the DFA has reached a so-called "dead state", in which any match | |
1253 // is no longer possible. In this case RunStateOnByte will return NULL | |
1254 // and the processing of the string can stop early. | |
1255 // | |
1256 // Second, a 256-element pointer array for s->next_ makes each State | |
1257 // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[] | |
1258 // maps from bytes to "byte classes" and then next_ only needs to have | |
1259 // as many pointers as there are byte classes. A byte class is simply a | |
1260 // range of bytes that the regexp never distinguishes between. | |
1261 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1, | |
1262 // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit | |
1263 // but in exchange we typically cut the size of a State (and thus our | |
1264 // memory footprint) by about 5-10x. The comments still refer to | |
1265 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]]. | |
1266 // | |
1267 // Third, it is common for a DFA for an unanchored match to begin in a | |
1268 // state in which only one particular byte value can take the DFA to a | |
1269 // different state. That is, s->next[c] != s for only one c. In this | |
1270 // situation, the DFA can do better than executing the simple loop. | |
1271 // Instead, it can call memchr to search very quickly for the byte c. | |
1272 // Whether the start state has this property is determined during a | |
1273 // pre-compilation pass, and if so, the byte b is passed to the search | |
1274 // loop as the "firstbyte" argument, along with a boolean "have_firstbyte". | |
1275 // | |
1276 // Fourth, the desired behavior is to search for the leftmost-best match | |
1277 // (approximately, the same one that Perl would find), which is not | |
1278 // necessarily the match ending earliest in the string. Each time a | |
1279 // match is found, it must be noted, but the DFA must continue on in | |
1280 // hope of finding a higher-priority match. In some cases, the caller only | |
1281 // cares whether there is any match at all, not which one is found. | |
1282 // The "want_earliest_match" flag causes the search to stop at the first | |
1283 // match found. | |
1284 // | |
1285 // Fifth, one algorithm that uses the DFA needs it to run over the | |
1286 // input string backward, beginning at the end and ending at the beginning. | |
1287 // Passing false for the "run_forward" flag causes the DFA to run backward. | |
1288 // | |
1289 // The checks for these last three cases, which in a naive implementation | |
1290 // would be performed once per input byte, slow the general loop enough | |
1291 // to merit specialized versions of the search loop for each of the | |
1292 // eight possible settings of the three booleans. Rather than write | |
1293 // eight different functions, we write one general implementation and then | |
1294 // inline it to create the specialized ones. | |
1295 // | |
1296 // Note that matches are delayed by one byte, to make it easier to | |
1297 // accomodate match conditions depending on the next input byte (like $ and \b). | |
1298 // When s->next[c]->IsMatch(), it means that there is a match ending just | |
1299 // *before* byte c. | |
1300 | |
1301 // The generic search loop. Searches text for a match, returning | |
1302 // the pointer to the end of the chosen match, or NULL if no match. | |
1303 // The bools are equal to the same-named variables in params, but | |
1304 // making them function arguments lets the inliner specialize | |
1305 // this function to each combination (see two paragraphs above). | |
1306 inline bool DFA::InlinedSearchLoop(SearchParams* params, | |
1307 bool have_firstbyte, | |
1308 bool want_earliest_match, | |
1309 bool run_forward) { | |
1310 State* start = params->start; | |
1311 const uint8* bp = BytePtr(params->text.begin()); // start of text | |
1312 const uint8* p = bp; // text scanning point | |
1313 const uint8* ep = BytePtr(params->text.end()); // end of text | |
1314 const uint8* resetp = NULL; // p at last cache reset | |
1315 if (!run_forward) | |
1316 swap(p, ep); | |
1317 | |
1318 const uint8* bytemap = prog_->bytemap(); | |
1319 const uint8* lastmatch = NULL; // most recent matching position in text | |
1320 bool matched = false; | |
1321 State* s = start; | |
1322 | |
1323 if (s->IsMatch()) { | |
1324 matched = true; | |
1325 lastmatch = p; | |
1326 if (want_earliest_match) { | |
1327 params->ep = reinterpret_cast<const char*>(lastmatch); | |
1328 return true; | |
1329 } | |
1330 } | |
1331 | |
1332 while (p != ep) { | |
1333 if (DebugDFA) | |
1334 fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp), | |
1335 DumpState(s).c_str()); | |
1336 if (have_firstbyte && s == start) { | |
1337 // In start state, only way out is to find firstbyte, | |
1338 // so use optimized assembly in memchr to skip ahead. | |
1339 // If firstbyte isn't found, we can skip to the end | |
1340 // of the string. | |
1341 if (run_forward) { | |
1342 if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) { | |
1343 p = ep; | |
1344 break; | |
1345 } | |
1346 } else { | |
1347 if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) { | |
1348 p = ep; | |
1349 break; | |
1350 } | |
1351 p++; | |
1352 } | |
1353 } | |
1354 | |
1355 int c; | |
1356 if (run_forward) | |
1357 c = *p++; | |
1358 else | |
1359 c = *--p; | |
1360 | |
1361 // Note that multiple threads might be consulting | |
1362 // s->next_[bytemap[c]] simultaneously. | |
1363 // RunStateOnByte takes care of the appropriate locking, | |
1364 // including a memory barrier so that the unlocked access | |
1365 // (sometimes known as "double-checked locking") is safe. | |
1366 // The alternative would be either one DFA per thread | |
1367 // or one mutex operation per input byte. | |
1368 // | |
1369 // ns == DeadState means the state is known to be dead | |
1370 // (no more matches are possible). | |
1371 // ns == NULL means the state has not yet been computed | |
1372 // (need to call RunStateOnByteUnlocked). | |
1373 // RunStateOnByte returns ns == NULL if it is out of memory. | |
1374 // ns == FullMatchState means the rest of the string matches. | |
1375 // | |
1376 // Okay to use bytemap[] not ByteMap() here, because | |
1377 // c is known to be an actual byte and not kByteEndText. | |
1378 | |
1379 State* ns; | |
1380 ATOMIC_LOAD_CONSUME(ns, &s->next_[bytemap[c]]); | |
1381 if (ns == NULL) { | |
1382 ns = RunStateOnByteUnlocked(s, c); | |
1383 if (ns == NULL) { | |
1384 // After we reset the cache, we hold cache_mutex exclusively, | |
1385 // so if resetp != NULL, it means we filled the DFA state | |
1386 // cache with this search alone (without any other threads). | |
1387 // Benchmarks show that doing a state computation on every | |
1388 // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the | |
1389 // same at about 2 MB/s. Unless we're processing an average | |
1390 // of 10 bytes per state computation, fail so that RE2 can | |
1391 // fall back to the NFA. | |
1392 if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL && | |
1393 static_cast<unsigned long>(p - resetp) < 10*state_cache_.size()) { | |
1394 params->failed = true; | |
1395 return false; | |
1396 } | |
1397 resetp = p; | |
1398 | |
1399 // Prepare to save start and s across the reset. | |
1400 StateSaver save_start(this, start); | |
1401 StateSaver save_s(this, s); | |
1402 | |
1403 // Discard all the States in the cache. | |
1404 ResetCache(params->cache_lock); | |
1405 | |
1406 // Restore start and s so we can continue. | |
1407 if ((start = save_start.Restore()) == NULL || | |
1408 (s = save_s.Restore()) == NULL) { | |
1409 // Restore already did LOG(DFATAL). | |
1410 params->failed = true; | |
1411 return false; | |
1412 } | |
1413 ns = RunStateOnByteUnlocked(s, c); | |
1414 if (ns == NULL) { | |
1415 LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache"; | |
1416 params->failed = true; | |
1417 return false; | |
1418 } | |
1419 } | |
1420 } | |
1421 if (ns <= SpecialStateMax) { | |
1422 if (ns == DeadState) { | |
1423 params->ep = reinterpret_cast<const char*>(lastmatch); | |
1424 return matched; | |
1425 } | |
1426 // FullMatchState | |
1427 params->ep = reinterpret_cast<const char*>(ep); | |
1428 return true; | |
1429 } | |
1430 s = ns; | |
1431 | |
1432 if (s->IsMatch()) { | |
1433 matched = true; | |
1434 // The DFA notices the match one byte late, | |
1435 // so adjust p before using it in the match. | |
1436 if (run_forward) | |
1437 lastmatch = p - 1; | |
1438 else | |
1439 lastmatch = p + 1; | |
1440 if (DebugDFA) | |
1441 fprintf(stderr, "match @%d! [%s]\n", | |
1442 static_cast<int>(lastmatch - bp), | |
1443 DumpState(s).c_str()); | |
1444 | |
1445 if (want_earliest_match) { | |
1446 params->ep = reinterpret_cast<const char*>(lastmatch); | |
1447 return true; | |
1448 } | |
1449 } | |
1450 } | |
1451 | |
1452 // Process one more byte to see if it triggers a match. | |
1453 // (Remember, matches are delayed one byte.) | |
1454 int lastbyte; | |
1455 if (run_forward) { | |
1456 if (params->text.end() == params->context.end()) | |
1457 lastbyte = kByteEndText; | |
1458 else | |
1459 lastbyte = params->text.end()[0] & 0xFF; | |
1460 } else { | |
1461 if (params->text.begin() == params->context.begin()) | |
1462 lastbyte = kByteEndText; | |
1463 else | |
1464 lastbyte = params->text.begin()[-1] & 0xFF; | |
1465 } | |
1466 | |
1467 State* ns; | |
1468 ATOMIC_LOAD_CONSUME(ns, &s->next_[ByteMap(lastbyte)]); | |
1469 if (ns == NULL) { | |
1470 ns = RunStateOnByteUnlocked(s, lastbyte); | |
1471 if (ns == NULL) { | |
1472 StateSaver save_s(this, s); | |
1473 ResetCache(params->cache_lock); | |
1474 if ((s = save_s.Restore()) == NULL) { | |
1475 params->failed = true; | |
1476 return false; | |
1477 } | |
1478 ns = RunStateOnByteUnlocked(s, lastbyte); | |
1479 if (ns == NULL) { | |
1480 LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset"; | |
1481 params->failed = true; | |
1482 return false; | |
1483 } | |
1484 } | |
1485 } | |
1486 s = ns; | |
1487 if (DebugDFA) | |
1488 fprintf(stderr, "@_: %s\n", DumpState(s).c_str()); | |
1489 if (s == FullMatchState) { | |
1490 params->ep = reinterpret_cast<const char*>(ep); | |
1491 return true; | |
1492 } | |
1493 if (s > SpecialStateMax && s->IsMatch()) { | |
1494 matched = true; | |
1495 lastmatch = p; | |
1496 if (params->matches && kind_ == Prog::kManyMatch) { | |
1497 vector<int>* v = params->matches; | |
1498 v->clear(); | |
1499 for (int i = 0; i < s->ninst_; i++) { | |
1500 Prog::Inst* ip = prog_->inst(s->inst_[i]); | |
1501 if (ip->opcode() == kInstMatch) | |
1502 v->push_back(ip->match_id()); | |
1503 } | |
1504 } | |
1505 if (DebugDFA) | |
1506 fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp), | |
1507 DumpState(s).c_str()); | |
1508 } | |
1509 params->ep = reinterpret_cast<const char*>(lastmatch); | |
1510 return matched; | |
1511 } | |
1512 | |
1513 // Inline specializations of the general loop. | |
1514 bool DFA::SearchFFF(SearchParams* params) { | |
1515 return InlinedSearchLoop(params, 0, 0, 0); | |
1516 } | |
1517 bool DFA::SearchFFT(SearchParams* params) { | |
1518 return InlinedSearchLoop(params, 0, 0, 1); | |
1519 } | |
1520 bool DFA::SearchFTF(SearchParams* params) { | |
1521 return InlinedSearchLoop(params, 0, 1, 0); | |
1522 } | |
1523 bool DFA::SearchFTT(SearchParams* params) { | |
1524 return InlinedSearchLoop(params, 0, 1, 1); | |
1525 } | |
1526 bool DFA::SearchTFF(SearchParams* params) { | |
1527 return InlinedSearchLoop(params, 1, 0, 0); | |
1528 } | |
1529 bool DFA::SearchTFT(SearchParams* params) { | |
1530 return InlinedSearchLoop(params, 1, 0, 1); | |
1531 } | |
1532 bool DFA::SearchTTF(SearchParams* params) { | |
1533 return InlinedSearchLoop(params, 1, 1, 0); | |
1534 } | |
1535 bool DFA::SearchTTT(SearchParams* params) { | |
1536 return InlinedSearchLoop(params, 1, 1, 1); | |
1537 } | |
1538 | |
1539 // For debugging, calls the general code directly. | |
1540 bool DFA::SlowSearchLoop(SearchParams* params) { | |
1541 return InlinedSearchLoop(params, | |
1542 params->firstbyte >= 0, | |
1543 params->want_earliest_match, | |
1544 params->run_forward); | |
1545 } | |
1546 | |
1547 // For performance, calls the appropriate specialized version | |
1548 // of InlinedSearchLoop. | |
1549 bool DFA::FastSearchLoop(SearchParams* params) { | |
1550 // Because the methods are private, the Searches array | |
1551 // cannot be declared at top level. | |
1552 static bool (DFA::*Searches[])(SearchParams*) = { | |
1553 &DFA::SearchFFF, | |
1554 &DFA::SearchFFT, | |
1555 &DFA::SearchFTF, | |
1556 &DFA::SearchFTT, | |
1557 &DFA::SearchTFF, | |
1558 &DFA::SearchTFT, | |
1559 &DFA::SearchTTF, | |
1560 &DFA::SearchTTT, | |
1561 }; | |
1562 | |
1563 bool have_firstbyte = (params->firstbyte >= 0); | |
1564 int index = 4 * have_firstbyte + | |
1565 2 * params->want_earliest_match + | |
1566 1 * params->run_forward; | |
1567 return (this->*Searches[index])(params); | |
1568 } | |
1569 | |
1570 | |
1571 // The discussion of DFA execution above ignored the question of how | |
1572 // to determine the initial state for the search loop. There are two | |
1573 // factors that influence the choice of start state. | |
1574 // | |
1575 // The first factor is whether the search is anchored or not. | |
1576 // The regexp program (Prog*) itself has | |
1577 // two different entry points: one for anchored searches and one for | |
1578 // unanchored searches. (The unanchored version starts with a leading ".*?" | |
1579 // and then jumps to the anchored one.) | |
1580 // | |
1581 // The second factor is where text appears in the larger context, which | |
1582 // determines which empty-string operators can be matched at the beginning | |
1583 // of execution. If text is at the very beginning of context, \A and ^ match. | |
1584 // Otherwise if text is at the beginning of a line, then ^ matches. | |
1585 // Otherwise it matters whether the character before text is a word character | |
1586 // or a non-word character. | |
1587 // | |
1588 // The two cases (unanchored vs not) and four cases (empty-string flags) | |
1589 // combine to make the eight cases recorded in the DFA's begin_text_[2], | |
1590 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached | |
1591 // StartInfos. The start state for each is filled in the first time it | |
1592 // is used for an actual search. | |
1593 | |
1594 // Examines text, context, and anchored to determine the right start | |
1595 // state for the DFA search loop. Fills in params and returns true on success. | |
1596 // Returns false on failure. | |
1597 bool DFA::AnalyzeSearch(SearchParams* params) { | |
1598 const StringPiece& text = params->text; | |
1599 const StringPiece& context = params->context; | |
1600 | |
1601 // Sanity check: make sure that text lies within context. | |
1602 if (text.begin() < context.begin() || text.end() > context.end()) { | |
1603 LOG(DFATAL) << "Text is not inside context."; | |
1604 params->start = DeadState; | |
1605 return true; | |
1606 } | |
1607 | |
1608 // Determine correct search type. | |
1609 int start; | |
1610 uint flags; | |
1611 if (params->run_forward) { | |
1612 if (text.begin() == context.begin()) { | |
1613 start = kStartBeginText; | |
1614 flags = kEmptyBeginText|kEmptyBeginLine; | |
1615 } else if (text.begin()[-1] == '\n') { | |
1616 start = kStartBeginLine; | |
1617 flags = kEmptyBeginLine; | |
1618 } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) { | |
1619 start = kStartAfterWordChar; | |
1620 flags = kFlagLastWord; | |
1621 } else { | |
1622 start = kStartAfterNonWordChar; | |
1623 flags = 0; | |
1624 } | |
1625 } else { | |
1626 if (text.end() == context.end()) { | |
1627 start = kStartBeginText; | |
1628 flags = kEmptyBeginText|kEmptyBeginLine; | |
1629 } else if (text.end()[0] == '\n') { | |
1630 start = kStartBeginLine; | |
1631 flags = kEmptyBeginLine; | |
1632 } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) { | |
1633 start = kStartAfterWordChar; | |
1634 flags = kFlagLastWord; | |
1635 } else { | |
1636 start = kStartAfterNonWordChar; | |
1637 flags = 0; | |
1638 } | |
1639 } | |
1640 if (params->anchored || prog_->anchor_start()) | |
1641 start |= kStartAnchored; | |
1642 StartInfo* info = &start_[start]; | |
1643 | |
1644 // Try once without cache_lock for writing. | |
1645 // Try again after resetting the cache | |
1646 // (ResetCache will relock cache_lock for writing). | |
1647 if (!AnalyzeSearchHelper(params, info, flags)) { | |
1648 ResetCache(params->cache_lock); | |
1649 if (!AnalyzeSearchHelper(params, info, flags)) { | |
1650 LOG(DFATAL) << "Failed to analyze start state."; | |
1651 params->failed = true; | |
1652 return false; | |
1653 } | |
1654 } | |
1655 | |
1656 if (DebugDFA) { | |
1657 int fb; | |
1658 ATOMIC_LOAD_RELAXED(fb, &info->firstbyte); | |
1659 fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n", | |
1660 params->anchored, params->run_forward, flags, | |
1661 DumpState(info->start).c_str(), fb); | |
1662 } | |
1663 | |
1664 params->start = info->start; | |
1665 ATOMIC_LOAD_ACQUIRE(params->firstbyte, &info->firstbyte); | |
1666 | |
1667 return true; | |
1668 } | |
1669 | |
1670 // Fills in info if needed. Returns true on success, false on failure. | |
1671 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info, | |
1672 uint flags) { | |
1673 // Quick check. | |
1674 int fb; | |
1675 ATOMIC_LOAD_ACQUIRE(fb, &info->firstbyte); | |
1676 if (fb != kFbUnknown) | |
1677 return true; | |
1678 | |
1679 MutexLock l(&mutex_); | |
1680 if (info->firstbyte != kFbUnknown) | |
1681 return true; | |
1682 | |
1683 q0_->clear(); | |
1684 AddToQueue(q0_, | |
1685 params->anchored ? prog_->start() : prog_->start_unanchored(), | |
1686 flags); | |
1687 info->start = WorkqToCachedState(q0_, flags); | |
1688 if (info->start == NULL) | |
1689 return false; | |
1690 | |
1691 if (info->start == DeadState) { | |
1692 // Synchronize with "quick check" above. | |
1693 ATOMIC_STORE_RELEASE(&info->firstbyte, kFbNone); | |
1694 return true; | |
1695 } | |
1696 | |
1697 if (info->start == FullMatchState) { | |
1698 // Synchronize with "quick check" above. | |
1699 ATOMIC_STORE_RELEASE(&info->firstbyte, kFbNone); // will be ignored | |
1700 return true; | |
1701 } | |
1702 | |
1703 // Compute info->firstbyte by running state on all | |
1704 // possible byte values, looking for a single one that | |
1705 // leads to a different state. | |
1706 int firstbyte = kFbNone; | |
1707 for (int i = 0; i < 256; i++) { | |
1708 State* s = RunStateOnByte(info->start, i); | |
1709 if (s == NULL) { | |
1710 // Synchronize with "quick check" above. | |
1711 ATOMIC_STORE_RELEASE(&info->firstbyte, firstbyte); | |
1712 return false; | |
1713 } | |
1714 if (s == info->start) | |
1715 continue; | |
1716 // Goes to new state... | |
1717 if (firstbyte == kFbNone) { | |
1718 firstbyte = i; // ... first one | |
1719 } else { | |
1720 firstbyte = kFbMany; // ... too many | |
1721 break; | |
1722 } | |
1723 } | |
1724 // Synchronize with "quick check" above. | |
1725 ATOMIC_STORE_RELEASE(&info->firstbyte, firstbyte); | |
1726 return true; | |
1727 } | |
1728 | |
1729 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop. | |
1730 bool DFA::Search(const StringPiece& text, | |
1731 const StringPiece& context, | |
1732 bool anchored, | |
1733 bool want_earliest_match, | |
1734 bool run_forward, | |
1735 bool* failed, | |
1736 const char** epp, | |
1737 vector<int>* matches) { | |
1738 *epp = NULL; | |
1739 if (!ok()) { | |
1740 *failed = true; | |
1741 return false; | |
1742 } | |
1743 *failed = false; | |
1744 | |
1745 if (DebugDFA) { | |
1746 fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str()); | |
1747 fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n", | |
1748 text.as_string().c_str(), anchored, want_earliest_match, | |
1749 run_forward, kind_); | |
1750 } | |
1751 | |
1752 RWLocker l(&cache_mutex_); | |
1753 SearchParams params(text, context, &l); | |
1754 params.anchored = anchored; | |
1755 params.want_earliest_match = want_earliest_match; | |
1756 params.run_forward = run_forward; | |
1757 params.matches = matches; | |
1758 | |
1759 if (!AnalyzeSearch(¶ms)) { | |
1760 *failed = true; | |
1761 return false; | |
1762 } | |
1763 if (params.start == DeadState) | |
1764 return false; | |
1765 if (params.start == FullMatchState) { | |
1766 if (run_forward == want_earliest_match) | |
1767 *epp = text.begin(); | |
1768 else | |
1769 *epp = text.end(); | |
1770 return true; | |
1771 } | |
1772 if (DebugDFA) | |
1773 fprintf(stderr, "start %s\n", DumpState(params.start).c_str()); | |
1774 bool ret = FastSearchLoop(¶ms); | |
1775 if (params.failed) { | |
1776 *failed = true; | |
1777 return false; | |
1778 } | |
1779 *epp = params.ep; | |
1780 return ret; | |
1781 } | |
1782 | |
1783 // Deletes dfa. | |
1784 // | |
1785 // This is a separate function so that | |
1786 // prog.h can be used without moving the definition of | |
1787 // class DFA out of this file. If you set | |
1788 // prog->dfa_ = dfa; | |
1789 // then you also have to set | |
1790 // prog->delete_dfa_ = DeleteDFA; | |
1791 // so that ~Prog can delete the dfa. | |
1792 static void DeleteDFA(DFA* dfa) { | |
1793 delete dfa; | |
1794 } | |
1795 | |
1796 DFA* Prog::GetDFA(MatchKind kind) { | |
1797 DFA*volatile* pdfa; | |
1798 if (kind == kFirstMatch || kind == kManyMatch) { | |
1799 pdfa = &dfa_first_; | |
1800 } else { | |
1801 kind = kLongestMatch; | |
1802 pdfa = &dfa_longest_; | |
1803 } | |
1804 | |
1805 // Quick check. | |
1806 DFA *dfa; | |
1807 ATOMIC_LOAD_ACQUIRE(dfa, pdfa); | |
1808 if (dfa != NULL) | |
1809 return dfa; | |
1810 | |
1811 MutexLock l(&dfa_mutex_); | |
1812 dfa = *pdfa; | |
1813 if (dfa != NULL) | |
1814 return dfa; | |
1815 | |
1816 // For a forward DFA, half the memory goes to each DFA. | |
1817 // For a reverse DFA, all the memory goes to the | |
1818 // "longest match" DFA, because RE2 never does reverse | |
1819 // "first match" searches. | |
1820 int64 m = dfa_mem_/2; | |
1821 if (reversed_) { | |
1822 if (kind == kLongestMatch || kind == kManyMatch) | |
1823 m = dfa_mem_; | |
1824 else | |
1825 m = 0; | |
1826 } | |
1827 dfa = new DFA(this, kind, m); | |
1828 delete_dfa_ = DeleteDFA; | |
1829 | |
1830 // Synchronize with "quick check" above. | |
1831 ATOMIC_STORE_RELEASE(pdfa, dfa); | |
1832 | |
1833 return dfa; | |
1834 } | |
1835 | |
1836 | |
1837 // Executes the regexp program to search in text, | |
1838 // which itself is inside the larger context. (As a convenience, | |
1839 // passing a NULL context is equivalent to passing text.) | |
1840 // Returns true if a match is found, false if not. | |
1841 // If a match is found, fills in match0->end() to point at the end of the match | |
1842 // and sets match0->begin() to text.begin(), since the DFA can't track | |
1843 // where the match actually began. | |
1844 // | |
1845 // This is the only external interface (class DFA only exists in this file). | |
1846 // | |
1847 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context, | |
1848 Anchor anchor, MatchKind kind, | |
1849 StringPiece* match0, bool* failed, vector<int>* matches) { | |
1850 *failed = false; | |
1851 | |
1852 StringPiece context = const_context; | |
1853 if (context.begin() == NULL) | |
1854 context = text; | |
1855 bool carat = anchor_start(); | |
1856 bool dollar = anchor_end(); | |
1857 if (reversed_) { | |
1858 bool t = carat; | |
1859 carat = dollar; | |
1860 dollar = t; | |
1861 } | |
1862 if (carat && context.begin() != text.begin()) | |
1863 return false; | |
1864 if (dollar && context.end() != text.end()) | |
1865 return false; | |
1866 | |
1867 // Handle full match by running an anchored longest match | |
1868 // and then checking if it covers all of text. | |
1869 bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch; | |
1870 bool endmatch = false; | |
1871 if (kind == kManyMatch) { | |
1872 endmatch = true; | |
1873 } else if (kind == kFullMatch || anchor_end()) { | |
1874 endmatch = true; | |
1875 kind = kLongestMatch; | |
1876 } | |
1877 | |
1878 // If the caller doesn't care where the match is (just whether one exists), | |
1879 // then we can stop at the very first match we find, the so-called | |
1880 // "shortest match". | |
1881 bool want_shortest_match = false; | |
1882 if (match0 == NULL && !endmatch) { | |
1883 want_shortest_match = true; | |
1884 kind = kLongestMatch; | |
1885 } | |
1886 | |
1887 DFA* dfa = GetDFA(kind); | |
1888 const char* ep; | |
1889 bool matched = dfa->Search(text, context, anchored, | |
1890 want_shortest_match, !reversed_, | |
1891 failed, &ep, matches); | |
1892 if (*failed) | |
1893 return false; | |
1894 if (!matched) | |
1895 return false; | |
1896 if (endmatch && ep != (reversed_ ? text.begin() : text.end())) | |
1897 return false; | |
1898 | |
1899 // If caller cares, record the boundary of the match. | |
1900 // We only know where it ends, so use the boundary of text | |
1901 // as the beginning. | |
1902 if (match0) { | |
1903 if (reversed_) | |
1904 match0->set(ep, static_cast<int>(text.end() - ep)); | |
1905 else | |
1906 match0->set(text.begin(), static_cast<int>(ep - text.begin())); | |
1907 } | |
1908 return true; | |
1909 } | |
1910 | |
1911 // Build out all states in DFA. Returns number of states. | |
1912 int DFA::BuildAllStates() { | |
1913 if (!ok()) | |
1914 return 0; | |
1915 | |
1916 // Pick out start state for unanchored search | |
1917 // at beginning of text. | |
1918 RWLocker l(&cache_mutex_); | |
1919 SearchParams params(NULL, NULL, &l); | |
1920 params.anchored = false; | |
1921 if (!AnalyzeSearch(¶ms) || params.start <= SpecialStateMax) | |
1922 return 0; | |
1923 | |
1924 // Add start state to work queue. | |
1925 StateSet queued; | |
1926 vector<State*> q; | |
1927 queued.insert(params.start); | |
1928 q.push_back(params.start); | |
1929 | |
1930 // Flood to expand every state. | |
1931 for (size_t i = 0; i < q.size(); i++) { | |
1932 State* s = q[i]; | |
1933 for (int c = 0; c < 257; c++) { | |
1934 State* ns = RunStateOnByteUnlocked(s, c); | |
1935 if (ns > SpecialStateMax && queued.find(ns) == queued.end()) { | |
1936 queued.insert(ns); | |
1937 q.push_back(ns); | |
1938 } | |
1939 } | |
1940 } | |
1941 | |
1942 return static_cast<int>(q.size()); | |
1943 } | |
1944 | |
1945 // Build out all states in DFA for kind. Returns number of states. | |
1946 int Prog::BuildEntireDFA(MatchKind kind) { | |
1947 //LOG(ERROR) << "BuildEntireDFA is only for testing."; | |
1948 return GetDFA(kind)->BuildAllStates(); | |
1949 } | |
1950 | |
1951 // Computes min and max for matching string. | |
1952 // Won't return strings bigger than maxlen. | |
1953 bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) { | |
1954 if (!ok()) | |
1955 return false; | |
1956 | |
1957 // NOTE: if future users of PossibleMatchRange want more precision when | |
1958 // presented with infinitely repeated elements, consider making this a | |
1959 // parameter to PossibleMatchRange. | |
1960 static int kMaxEltRepetitions = 0; | |
1961 | |
1962 // Keep track of the number of times we've visited states previously. We only | |
1963 // revisit a given state if it's part of a repeated group, so if the value | |
1964 // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set | |
1965 // |*max| to |PrefixSuccessor(*max)|. | |
1966 // | |
1967 // Also note that previously_visited_states[UnseenStatePtr] will, in the STL | |
1968 // tradition, implicitly insert a '0' value at first use. We take advantage | |
1969 // of that property below. | |
1970 map<State*, int> previously_visited_states; | |
1971 | |
1972 // Pick out start state for anchored search at beginning of text. | |
1973 RWLocker l(&cache_mutex_); | |
1974 SearchParams params(NULL, NULL, &l); | |
1975 params.anchored = true; | |
1976 if (!AnalyzeSearch(¶ms)) | |
1977 return false; | |
1978 if (params.start == DeadState) { // No matching strings | |
1979 *min = ""; | |
1980 *max = ""; | |
1981 return true; | |
1982 } | |
1983 if (params.start == FullMatchState) // Every string matches: no max | |
1984 return false; | |
1985 | |
1986 // The DFA is essentially a big graph rooted at params.start, | |
1987 // and paths in the graph correspond to accepted strings. | |
1988 // Each node in the graph has potentially 256+1 arrows | |
1989 // coming out, one for each byte plus the magic end of | |
1990 // text character kByteEndText. | |
1991 | |
1992 // To find the smallest possible prefix of an accepted | |
1993 // string, we just walk the graph preferring to follow | |
1994 // arrows with the lowest bytes possible. To find the | |
1995 // largest possible prefix, we follow the largest bytes | |
1996 // possible. | |
1997 | |
1998 // The test for whether there is an arrow from s on byte j is | |
1999 // ns = RunStateOnByteUnlocked(s, j); | |
2000 // if (ns == NULL) | |
2001 // return false; | |
2002 // if (ns != DeadState && ns->ninst > 0) | |
2003 // The RunStateOnByteUnlocked call asks the DFA to build out the graph. | |
2004 // It returns NULL only if the DFA has run out of memory, | |
2005 // in which case we can't be sure of anything. | |
2006 // The second check sees whether there was graph built | |
2007 // and whether it is interesting graph. Nodes might have | |
2008 // ns->ninst == 0 if they exist only to represent the fact | |
2009 // that a match was found on the previous byte. | |
2010 | |
2011 // Build minimum prefix. | |
2012 State* s = params.start; | |
2013 min->clear(); | |
2014 MutexLock lock(&mutex_); | |
2015 for (int i = 0; i < maxlen; i++) { | |
2016 if (previously_visited_states[s] > kMaxEltRepetitions) { | |
2017 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions | |
2018 << " for state s=" << s << " and min=" << CEscape(*min); | |
2019 break; | |
2020 } | |
2021 previously_visited_states[s]++; | |
2022 | |
2023 // Stop if min is a match. | |
2024 State* ns = RunStateOnByte(s, kByteEndText); | |
2025 if (ns == NULL) // DFA out of memory | |
2026 return false; | |
2027 if (ns != DeadState && (ns == FullMatchState || ns->IsMatch())) | |
2028 break; | |
2029 | |
2030 // Try to extend the string with low bytes. | |
2031 bool extended = false; | |
2032 for (int j = 0; j < 256; j++) { | |
2033 ns = RunStateOnByte(s, j); | |
2034 if (ns == NULL) // DFA out of memory | |
2035 return false; | |
2036 if (ns == FullMatchState || | |
2037 (ns > SpecialStateMax && ns->ninst_ > 0)) { | |
2038 extended = true; | |
2039 min->append(1, static_cast<char>(j)); | |
2040 s = ns; | |
2041 break; | |
2042 } | |
2043 } | |
2044 if (!extended) | |
2045 break; | |
2046 } | |
2047 | |
2048 // Build maximum prefix. | |
2049 previously_visited_states.clear(); | |
2050 s = params.start; | |
2051 max->clear(); | |
2052 for (int i = 0; i < maxlen; i++) { | |
2053 if (previously_visited_states[s] > kMaxEltRepetitions) { | |
2054 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions | |
2055 << " for state s=" << s << " and max=" << CEscape(*max); | |
2056 break; | |
2057 } | |
2058 previously_visited_states[s] += 1; | |
2059 | |
2060 // Try to extend the string with high bytes. | |
2061 bool extended = false; | |
2062 for (int j = 255; j >= 0; j--) { | |
2063 State* ns = RunStateOnByte(s, j); | |
2064 if (ns == NULL) | |
2065 return false; | |
2066 if (ns == FullMatchState || | |
2067 (ns > SpecialStateMax && ns->ninst_ > 0)) { | |
2068 extended = true; | |
2069 max->append(1, static_cast<char>(j)); | |
2070 s = ns; | |
2071 break; | |
2072 } | |
2073 } | |
2074 if (!extended) { | |
2075 // Done, no need for PrefixSuccessor. | |
2076 return true; | |
2077 } | |
2078 } | |
2079 | |
2080 // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b | |
2081 *max = PrefixSuccessor(*max); | |
2082 | |
2083 // If there are no bytes left, we have no way to say "there is no maximum | |
2084 // string". We could make the interface more complicated and be able to | |
2085 // return "there is no maximum but here is a minimum", but that seems like | |
2086 // overkill -- the most common no-max case is all possible strings, so not | |
2087 // telling the caller that the empty string is the minimum match isn't a | |
2088 // great loss. | |
2089 if (max->empty()) | |
2090 return false; | |
2091 | |
2092 return true; | |
2093 } | |
2094 | |
2095 // PossibleMatchRange for a Prog. | |
2096 bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) { | |
2097 DFA* dfa = NULL; | |
2098 { | |
2099 MutexLock l(&dfa_mutex_); | |
2100 // Have to use dfa_longest_ to get all strings for full matches. | |
2101 // For example, (a|aa) never matches aa in first-match mode. | |
2102 dfa = dfa_longest_; | |
2103 if (dfa == NULL) { | |
2104 dfa = new DFA(this, Prog::kLongestMatch, dfa_mem_/2); | |
2105 ATOMIC_STORE_RELEASE(&dfa_longest_, dfa); | |
2106 delete_dfa_ = DeleteDFA; | |
2107 } | |
2108 } | |
2109 return dfa->PossibleMatchRange(min, max, maxlen); | |
2110 } | |
2111 | |
2112 } // namespace re2 | |
OLD | NEW |