Index: src/opts/SkOpts_avx2.cpp |
diff --git a/src/opts/SkOpts_avx2.cpp b/src/opts/SkOpts_avx2.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b943317227a245df3b7a3c195c0b8a995d7a6b61 |
--- /dev/null |
+++ b/src/opts/SkOpts_avx2.cpp |
@@ -0,0 +1,237 @@ |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkOpts.h" |
+#define SK_OPTS_NS sk_avx2 |
+ |
+#ifndef SK_SUPPORT_LEGACY_X86_BLITS |
+ |
+namespace sk_avx2 { |
+ |
+// AVX2 has masked loads and stores. We'll use them for N<4 pixels. |
+static __m128i mask(int n) { |
+ static const int masks[][4] = { |
+ { 0, 0, 0, 0}, |
+ {~0, 0, 0, 0}, |
+ {~0,~0, 0, 0}, |
+ {~0,~0,~0, 0}, |
+ }; |
+ return _mm_load_si128((const __m128i*)masks+n); |
+} |
+ |
+// Load 8, 4, or 1-3 constant pixels or coverages (4x replicated). |
+static __m256i next8( uint32_t val) { return _mm256_set1_epi32(val); } |
+static __m128i next4( uint32_t val) { return _mm_set1_epi32(val); } |
+static __m128i tail(int, uint32_t val) { return _mm_set1_epi32(val); } |
+ |
+static __m256i next8( uint8_t val) { return _mm256_set1_epi8(val); } |
+static __m128i next4( uint8_t val) { return _mm_set1_epi8(val); } |
+static __m128i tail(int, uint8_t val) { return _mm_set1_epi8(val); } |
+ |
+// Load 8, 4, or 1-3 variable pixels or coverages (4x replicated). |
+// next8() and next4() increment their pointer past what they just read. tail() doesn't bother. |
+static __m256i next8(const uint32_t*& ptr) { |
+ auto r = _mm256_loadu_si256((const __m256i*)ptr); |
+ ptr += 8; |
+ return r; |
+} |
+static __m128i next4(const uint32_t*& ptr) { |
+ auto r = _mm_loadu_si128((const __m128i*)ptr); |
+ ptr += 4; |
+ return r; |
+} |
+static __m128i tail(int n, const uint32_t* ptr) { |
+ return _mm_maskload_epi32((const int*)ptr, mask(n)); |
+} |
+ |
+static __m256i next8(const uint8_t*& ptr) { |
+ auto r = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)ptr)); |
+ r = _mm256_shuffle_epi8(r, _mm256_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12, |
+ 0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12)); |
+ ptr += 8; |
+ return r; |
+} |
+static __m128i next4(const uint8_t*& ptr) { |
+ auto r = _mm_shuffle_epi8(_mm_cvtsi32_si128(*(const uint32_t*)ptr), |
+ _mm_setr_epi8(0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3)); |
+ ptr += 4; |
+ return r; |
+} |
+static __m128i tail(int n, const uint8_t* ptr) { |
+ uint32_t x = 0; |
+ switch (n) { |
+ case 3: x |= (uint32_t)ptr[2] << 16; |
+ case 2: x |= (uint32_t)ptr[1] << 8; |
+ case 1: x |= (uint32_t)ptr[0] << 0; |
+ } |
+ auto p = (const uint8_t*)&x; |
+ return next4(p); |
+} |
+ |
+// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. |
+template <typename Dst, typename Src, typename Cov, typename Fn> |
+static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
+ // We don't want to muck with the callers' pointers, so we make them const and copy here. |
+ Dst d = dst; |
+ Src s = src; |
+ Cov c = cov; |
+ |
+ // Writing this as a single while-loop helps hoist loop invariants from fn. |
+ while (n) { |
+ if (n >= 8) { |
+ _mm256_storeu_si256((__m256i*)t, fn(next8(d), next8(s), next8(c))); |
+ t += 8; |
+ n -= 8; |
+ continue; |
+ } |
+ if (n >= 4) { |
+ _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
+ t += 4; |
+ n -= 4; |
+ } |
+ if (n) { |
+ _mm_maskstore_epi32((int*)t, mask(n), fn(tail(n,d), tail(n,s), tail(n,c))); |
+ } |
+ return; |
+ } |
+} |
+ |
+// packed // |
+// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
+// unpacked // |
+ |
+// Everything on the packed side of the squiggly line deals with densely packed 8-bit data, |
+// e.g [ BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
+// |
+// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, |
+// e.g. [ B_G_ R_A_ b_g_ r_a_ ... ] for pixels or [ C_C_ C_C_ c_c_ c_c_ ... ] for coverage, |
+// where _ is a zero byte. |
+// |
+// Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
+// by unpacking arguments, calling fn, then packing the results. |
+// |
+// This lets us write most of our code in terms of unpacked inputs (considerably simpler) |
+// and all the packing and unpacking is handled automatically. |
+ |
+template <typename Fn> |
+struct Adapt { |
+ Fn fn; |
+ |
+ __m256i operator()(__m256i d, __m256i s, __m256i c) { |
+ auto lo = [](__m256i x) { return _mm256_unpacklo_epi8(x, _mm256_setzero_si256()); }; |
+ auto hi = [](__m256i x) { return _mm256_unpackhi_epi8(x, _mm256_setzero_si256()); }; |
+ return _mm256_packus_epi16(fn(lo(d), lo(s), lo(c)), |
+ fn(hi(d), hi(s), hi(c))); |
+ } |
+ |
+ __m128i operator()(__m128i d, __m128i s, __m128i c) { |
+ auto unpack = [](__m128i x) { return _mm256_cvtepu8_epi16(x); }; |
+ auto pack = [](__m256i x) { |
+ auto x01 = x, |
+ x23 = _mm256_permute4x64_epi64(x, 0xe); // 0b1110 |
+ return _mm256_castsi256_si128(_mm256_packus_epi16(x01, x23)); |
+ }; |
+ return pack(fn(unpack(d), unpack(s), unpack(c))); |
+ } |
+}; |
+ |
+template <typename Fn> |
+static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
+ |
+// These helpers all work exclusively with unpacked 8-bit values, |
+// except div255() which is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. |
+ |
+// Divide by 255 with rounding. |
+// (x+127)/255 == ((x+128)*257)>>16. |
+// Sometimes we can be more efficient by breaking this into two parts. |
+static __m256i div255_part1(__m256i x) { return _mm256_add_epi16 (x, _mm256_set1_epi16(128)); } |
+static __m256i div255_part2(__m256i x) { return _mm256_mulhi_epu16(x, _mm256_set1_epi16(257)); } |
+static __m256i div255(__m256i x) { return div255_part2(div255_part1(x)); } |
+ |
+// (x*y+127)/255, a byte multiply. |
+static __m256i scale(__m256i x, __m256i y) { return div255(_mm256_mullo_epi16(x, y)); } |
+ |
+// (255 * x). |
+static __m256i mul255(__m256i x) { return _mm256_sub_epi16(_mm256_slli_epi16(x, 8), x); } |
+ |
+// (255 - x). |
+static __m256i inv(__m256i x) { return _mm256_xor_si256(_mm256_set1_epi16(0x00ff), x); } |
+ |
+// ARGB argb ... -> AAAA aaaa ... |
+static __m256i alphas(__m256i px) { |
+ const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
+ const int _ = ~0; |
+ return _mm256_shuffle_epi8(px, _mm256_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, |
+ a+8,_,a+8,_,a+8,_,a+8,_, |
+ a+0,_,a+0,_,a+0,_,a+0,_, |
+ a+8,_,a+8,_,a+8,_,a+8,_)); |
+} |
+ |
+ |
+// SrcOver, with a constant source and full coverage. |
+static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { |
+ // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
+ // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. |
+ |
+ // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. |
+ // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
+ auto s = _mm256_cvtepu8_epi16(_mm_set1_epi32(src)), |
+ s_255_128 = div255_part1(mul255(s)), |
+ A = inv(alphas(s)); |
+ |
+ const uint8_t cov = 0xff; |
+ loop(n, tgt, dst, src, cov, adapt([=](__m256i d, __m256i, __m256i) { |
+ return div255_part2(_mm256_add_epi16(s_255_128, _mm256_mullo_epi16(d, A))); |
+ })); |
+} |
+ |
+// SrcOver, with a constant source and variable coverage. |
+// If the source is opaque, SrcOver becomes Src. |
+static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
+ const SkAlpha* cov, size_t covRB, |
+ SkColor color, int w, int h) { |
+ if (SkColorGetA(color) == 0xFF) { |
+ const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
+ while (h --> 0) { |
+ loop(w, dst, (const SkPMColor*)dst, src, cov, |
+ adapt([](__m256i d, __m256i s, __m256i c) { |
+ // Src blend mode: a simple lerp from d to s by c. |
+ // TODO: try a pmaddubsw version? |
+ return div255(_mm256_add_epi16(_mm256_mullo_epi16(inv(c),d), |
+ _mm256_mullo_epi16( c ,s))); |
+ })); |
+ dst += dstRB / sizeof(*dst); |
+ cov += covRB / sizeof(*cov); |
+ } |
+ } else { |
+ const SkPMColor src = SkPreMultiplyColor(color); |
+ while (h --> 0) { |
+ loop(w, dst, (const SkPMColor*)dst, src, cov, |
+ adapt([](__m256i d, __m256i s, __m256i c) { |
+ // SrcOver blend mode, with coverage folded into source alpha. |
+ auto sc = scale(s,c), |
+ AC = inv(alphas(sc)); |
+ return _mm256_add_epi16(sc, scale(d,AC)); |
+ })); |
+ dst += dstRB / sizeof(*dst); |
+ cov += covRB / sizeof(*cov); |
+ } |
+ } |
+} |
+ |
+} // namespace sk_avx2 |
+ |
+#endif |
+ |
+namespace SkOpts { |
+ void Init_avx2() { |
+ #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
+ blit_row_color32 = sk_avx2::blit_row_color32; |
+ blit_mask_d32_a8 = sk_avx2::blit_mask_d32_a8; |
+ #endif |
+ } |
+} |