OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2015 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "SkOpts.h" |
| 9 #define SK_OPTS_NS sk_avx2 |
| 10 |
| 11 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| 12 |
| 13 namespace sk_avx2 { |
| 14 |
| 15 // AVX2 has masked loads and stores. We'll use them for N<4 pixels. |
| 16 static __m128i mask(int n) { |
| 17 static const int masks[][4] = { |
| 18 { 0, 0, 0, 0}, |
| 19 {~0, 0, 0, 0}, |
| 20 {~0,~0, 0, 0}, |
| 21 {~0,~0,~0, 0}, |
| 22 }; |
| 23 return _mm_load_si128((const __m128i*)masks+n); |
| 24 } |
| 25 |
| 26 // Load 8, 4, or 1-3 constant pixels or coverages (4x replicated). |
| 27 static __m256i next8( uint32_t val) { return _mm256_set1_epi32(val); } |
| 28 static __m128i next4( uint32_t val) { return _mm_set1_epi32(val); } |
| 29 static __m128i tail(int, uint32_t val) { return _mm_set1_epi32(val); } |
| 30 |
| 31 static __m256i next8( uint8_t val) { return _mm256_set1_epi8(val); } |
| 32 static __m128i next4( uint8_t val) { return _mm_set1_epi8(val); } |
| 33 static __m128i tail(int, uint8_t val) { return _mm_set1_epi8(val); } |
| 34 |
| 35 // Load 8, 4, or 1-3 variable pixels or coverages (4x replicated). |
| 36 // next8() and next4() increment their pointer past what they just read. tail()
doesn't bother. |
| 37 static __m256i next8(const uint32_t*& ptr) { |
| 38 auto r = _mm256_loadu_si256((const __m256i*)ptr); |
| 39 ptr += 8; |
| 40 return r; |
| 41 } |
| 42 static __m128i next4(const uint32_t*& ptr) { |
| 43 auto r = _mm_loadu_si128((const __m128i*)ptr); |
| 44 ptr += 4; |
| 45 return r; |
| 46 } |
| 47 static __m128i tail(int n, const uint32_t* ptr) { |
| 48 return _mm_maskload_epi32((const int*)ptr, mask(n)); |
| 49 } |
| 50 |
| 51 static __m256i next8(const uint8_t*& ptr) { |
| 52 auto r = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)ptr)); |
| 53 r = _mm256_shuffle_epi8(r, _mm256_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12
,12,12, |
| 54 0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12
,12,12)); |
| 55 ptr += 8; |
| 56 return r; |
| 57 } |
| 58 static __m128i next4(const uint8_t*& ptr) { |
| 59 auto r = _mm_shuffle_epi8(_mm_cvtsi32_si128(*(const uint32_t*)ptr), |
| 60 _mm_setr_epi8(0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3))
; |
| 61 ptr += 4; |
| 62 return r; |
| 63 } |
| 64 static __m128i tail(int n, const uint8_t* ptr) { |
| 65 uint32_t x = 0; |
| 66 switch (n) { |
| 67 case 3: x |= (uint32_t)ptr[2] << 16; |
| 68 case 2: x |= (uint32_t)ptr[1] << 8; |
| 69 case 1: x |= (uint32_t)ptr[0] << 0; |
| 70 } |
| 71 auto p = (const uint8_t*)&x; |
| 72 return next4(p); |
| 73 } |
| 74 |
| 75 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants
or arrays. |
| 76 template <typename Dst, typename Src, typename Cov, typename Fn> |
| 77 static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov
, Fn&& fn) { |
| 78 // We don't want to muck with the callers' pointers, so we make them const a
nd copy here. |
| 79 Dst d = dst; |
| 80 Src s = src; |
| 81 Cov c = cov; |
| 82 |
| 83 // Writing this as a single while-loop helps hoist loop invariants from fn. |
| 84 while (n) { |
| 85 if (n >= 8) { |
| 86 _mm256_storeu_si256((__m256i*)t, fn(next8(d), next8(s), next8(c))); |
| 87 t += 8; |
| 88 n -= 8; |
| 89 continue; |
| 90 } |
| 91 if (n >= 4) { |
| 92 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
| 93 t += 4; |
| 94 n -= 4; |
| 95 } |
| 96 if (n) { |
| 97 _mm_maskstore_epi32((int*)t, mask(n), fn(tail(n,d), tail(n,s), tail(
n,c))); |
| 98 } |
| 99 return; |
| 100 } |
| 101 } |
| 102 |
| 103 // packed
// |
| 104 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~ // |
| 105 // unpacked
// |
| 106 |
| 107 // Everything on the packed side of the squiggly line deals with densely packed
8-bit data, |
| 108 // e.g [ BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
| 109 // |
| 110 // Everything on the unpacked side of the squiggly line deals with unpacked 8-bi
t data, |
| 111 // e.g. [ B_G_ R_A_ b_g_ r_a_ ... ] for pixels or [ C_C_ C_C_ c_c_ c_c_ ... ] fo
r coverage, |
| 112 // where _ is a zero byte. |
| 113 // |
| 114 // Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
| 115 // by unpacking arguments, calling fn, then packing the results. |
| 116 // |
| 117 // This lets us write most of our code in terms of unpacked inputs (considerably
simpler) |
| 118 // and all the packing and unpacking is handled automatically. |
| 119 |
| 120 template <typename Fn> |
| 121 struct Adapt { |
| 122 Fn fn; |
| 123 |
| 124 __m256i operator()(__m256i d, __m256i s, __m256i c) { |
| 125 auto lo = [](__m256i x) { return _mm256_unpacklo_epi8(x, _mm256_setzero_
si256()); }; |
| 126 auto hi = [](__m256i x) { return _mm256_unpackhi_epi8(x, _mm256_setzero_
si256()); }; |
| 127 return _mm256_packus_epi16(fn(lo(d), lo(s), lo(c)), |
| 128 fn(hi(d), hi(s), hi(c))); |
| 129 } |
| 130 |
| 131 __m128i operator()(__m128i d, __m128i s, __m128i c) { |
| 132 auto unpack = [](__m128i x) { return _mm256_cvtepu8_epi16(x); }; |
| 133 auto pack = [](__m256i x) { |
| 134 auto x01 = x, |
| 135 x23 = _mm256_permute4x64_epi64(x, 0xe); // 0b1110 |
| 136 return _mm256_castsi256_si128(_mm256_packus_epi16(x01, x23)); |
| 137 }; |
| 138 return pack(fn(unpack(d), unpack(s), unpack(c))); |
| 139 } |
| 140 }; |
| 141 |
| 142 template <typename Fn> |
| 143 static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
| 144 |
| 145 // These helpers all work exclusively with unpacked 8-bit values, |
| 146 // except div255() which is 16-bit -> unpacked 8-bit, and mul255() which is the
reverse. |
| 147 |
| 148 // Divide by 255 with rounding. |
| 149 // (x+127)/255 == ((x+128)*257)>>16. |
| 150 // Sometimes we can be more efficient by breaking this into two parts. |
| 151 static __m256i div255_part1(__m256i x) { return _mm256_add_epi16 (x, _mm256_set
1_epi16(128)); } |
| 152 static __m256i div255_part2(__m256i x) { return _mm256_mulhi_epu16(x, _mm256_set
1_epi16(257)); } |
| 153 static __m256i div255(__m256i x) { return div255_part2(div255_part1(x)); } |
| 154 |
| 155 // (x*y+127)/255, a byte multiply. |
| 156 static __m256i scale(__m256i x, __m256i y) { return div255(_mm256_mullo_epi16(x,
y)); } |
| 157 |
| 158 // (255 * x). |
| 159 static __m256i mul255(__m256i x) { return _mm256_sub_epi16(_mm256_slli_epi16(x,
8), x); } |
| 160 |
| 161 // (255 - x). |
| 162 static __m256i inv(__m256i x) { return _mm256_xor_si256(_mm256_set1_epi16(0x00ff
), x); } |
| 163 |
| 164 // ARGB argb ... -> AAAA aaaa ... |
| 165 static __m256i alphas(__m256i px) { |
| 166 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi
s is typically 6. |
| 167 const int _ = ~0; |
| 168 return _mm256_shuffle_epi8(px, _mm256_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, |
| 169 a+8,_,a+8,_,a+8,_,a+8,_, |
| 170 a+0,_,a+0,_,a+0,_,a+0,_, |
| 171 a+8,_,a+8,_,a+8,_,a+8,_)); |
| 172 } |
| 173 |
| 174 |
| 175 // SrcOver, with a constant source and full coverage. |
| 176 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
lor src) { |
| 177 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
| 178 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16
. |
| 179 |
| 180 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>
>16. |
| 181 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
| 182 auto s = _mm256_cvtepu8_epi16(_mm_set1_epi32(src)), |
| 183 s_255_128 = div255_part1(mul255(s)), |
| 184 A = inv(alphas(s)); |
| 185 |
| 186 const uint8_t cov = 0xff; |
| 187 loop(n, tgt, dst, src, cov, adapt([=](__m256i d, __m256i, __m256i) { |
| 188 return div255_part2(_mm256_add_epi16(s_255_128, _mm256_mullo_epi16(d, A)
)); |
| 189 })); |
| 190 } |
| 191 |
| 192 // SrcOver, with a constant source and variable coverage. |
| 193 // If the source is opaque, SrcOver becomes Src. |
| 194 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
| 195 const SkAlpha* cov, size_t covRB, |
| 196 SkColor color, int w, int h) { |
| 197 if (SkColorGetA(color) == 0xFF) { |
| 198 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
| 199 while (h --> 0) { |
| 200 loop(w, dst, (const SkPMColor*)dst, src, cov, |
| 201 adapt([](__m256i d, __m256i s, __m256i c) { |
| 202 // Src blend mode: a simple lerp from d to s by c. |
| 203 // TODO: try a pmaddubsw version? |
| 204 return div255(_mm256_add_epi16(_mm256_mullo_epi16(inv(c),d), |
| 205 _mm256_mullo_epi16( c ,s))); |
| 206 })); |
| 207 dst += dstRB / sizeof(*dst); |
| 208 cov += covRB / sizeof(*cov); |
| 209 } |
| 210 } else { |
| 211 const SkPMColor src = SkPreMultiplyColor(color); |
| 212 while (h --> 0) { |
| 213 loop(w, dst, (const SkPMColor*)dst, src, cov, |
| 214 adapt([](__m256i d, __m256i s, __m256i c) { |
| 215 // SrcOver blend mode, with coverage folded into source alpha. |
| 216 auto sc = scale(s,c), |
| 217 AC = inv(alphas(sc)); |
| 218 return _mm256_add_epi16(sc, scale(d,AC)); |
| 219 })); |
| 220 dst += dstRB / sizeof(*dst); |
| 221 cov += covRB / sizeof(*cov); |
| 222 } |
| 223 } |
| 224 } |
| 225 |
| 226 } // namespace sk_avx2 |
| 227 |
| 228 #endif |
| 229 |
| 230 namespace SkOpts { |
| 231 void Init_avx2() { |
| 232 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| 233 blit_row_color32 = sk_avx2::blit_row_color32; |
| 234 blit_mask_d32_a8 = sk_avx2::blit_mask_d32_a8; |
| 235 #endif |
| 236 } |
| 237 } |
OLD | NEW |