| Index: cc/quads/draw_polygon.cc
|
| diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..6544b641acb237d07d6525015df5ae3abc93b369
|
| --- /dev/null
|
| +++ b/cc/quads/draw_polygon.cc
|
| @@ -0,0 +1,363 @@
|
| +// Copyright 2014 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "cc/quads/draw_polygon.h"
|
| +
|
| +#include <vector>
|
| +
|
| +#include "cc/output/bsp_compare_result.h"
|
| +#include "cc/quads/draw_quad.h"
|
| +
|
| +namespace {
|
| +// This allows for some imperfection in the normal comparison when checking if
|
| +// two pieces of geometry are coplanar.
|
| +static const float coplanar_dot_epsilon = 0.001f;
|
| +// This threshold controls how "thick" a plane is. If a point's distance is
|
| +// <= |compare_threshold|, then it is considered on the plane. Only when this
|
| +// boundary is crossed do we consider doing splitting.
|
| +static const float compare_threshold = 1.0f;
|
| +// |split_threshold| is lower in this case because we want the points created
|
| +// during splitting to be well within the range of |compare_threshold| for
|
| +// comparison purposes. The splitting operation will produce intersection points
|
| +// that fit within a tighter distance to the splitting plane as a result of this
|
| +// value. By using a value >= |compare_threshold| we run the risk of creating
|
| +// points that SHOULD be intersecting the "thick plane", but actually fail to
|
| +// test positively for it because |split_threshold| allowed them to be outside
|
| +// this range.
|
| +// This is really supposd to be compare_threshold / 2.0f, but that would
|
| +// create another static initializer.
|
| +static const float split_threshold = 0.5f;
|
| +
|
| +static const float normalized_threshold = 0.001f;
|
| +} // namespace
|
| +
|
| +namespace cc {
|
| +
|
| +DrawPolygon::DrawPolygon() {
|
| +}
|
| +
|
| +DrawPolygon::DrawPolygon(const DrawQuad* original,
|
| + const std::vector<gfx::Point3F>& in_points,
|
| + const gfx::Vector3dF& normal,
|
| + int draw_order_index)
|
| + : order_index_(draw_order_index), original_ref_(original), is_split_(true) {
|
| + for (size_t i = 0; i < in_points.size(); i++) {
|
| + points_.push_back(in_points[i]);
|
| + }
|
| + normal_ = normal;
|
| +}
|
| +
|
| +// This takes the original DrawQuad that this polygon should be based on,
|
| +// a visible content rect to make the 4 corner points from, and a transformation
|
| +// to move it and its normal into screen space.
|
| +DrawPolygon::DrawPolygon(const DrawQuad* original_ref,
|
| + const gfx::RectF& visible_content_rect,
|
| + const gfx::Transform& transform,
|
| + int draw_order_index)
|
| + : normal_(0.0f, 0.0f, 1.0f),
|
| + order_index_(draw_order_index),
|
| + original_ref_(original_ref),
|
| + is_split_(false) {
|
| + gfx::Point3F points[8];
|
| + int num_vertices_in_clipped_quad;
|
| + gfx::QuadF send_quad(visible_content_rect);
|
| +
|
| + // Doing this mapping here is very important, since we can't just transform
|
| + // the points without clipping and not run into strange geometry issues when
|
| + // crossing w = 0. At this point, in the constructor, we know that we're
|
| + // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d
|
| + // function instead of writing a generic polygon version of it.
|
| + MathUtil::MapClippedQuad3d(
|
| + transform, send_quad, points, &num_vertices_in_clipped_quad);
|
| + for (int i = 0; i < num_vertices_in_clipped_quad; i++) {
|
| + points_.push_back(points[i]);
|
| + }
|
| + ApplyTransformToNormal(transform);
|
| +}
|
| +
|
| +DrawPolygon::~DrawPolygon() {
|
| +}
|
| +
|
| +scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
|
| + scoped_ptr<DrawPolygon> new_polygon(new DrawPolygon());
|
| + new_polygon->order_index_ = order_index_;
|
| + new_polygon->original_ref_ = original_ref_;
|
| + new_polygon->points_.reserve(points_.size());
|
| + new_polygon->points_ = points_;
|
| + new_polygon->normal_.set_x(normal_.x());
|
| + new_polygon->normal_.set_y(normal_.y());
|
| + new_polygon->normal_.set_z(normal_.z());
|
| + return new_polygon.Pass();
|
| +}
|
| +
|
| +float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
|
| + return gfx::DotProduct(point - points_[0], normal_);
|
| +}
|
| +
|
| +// Checks whether or not shape a lies on the front or back side of b, or
|
| +// whether they should be considered coplanar. If on the back side, we
|
| +// say A_BEFORE_B because it should be drawn in that order.
|
| +// Assumes that layers are split and there are no intersecting planes.
|
| +BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
|
| + const DrawPolygon& b) {
|
| + // Let's make sure that both of these are normalized.
|
| + DCHECK_GE(normalized_threshold, std::abs(a.normal_.LengthSquared() - 1.0f));
|
| + DCHECK_GE(normalized_threshold, std::abs(b.normal_.LengthSquared() - 1.0f));
|
| + // Right away let's check if they're coplanar
|
| + double dot = gfx::DotProduct(a.normal_, b.normal_);
|
| + float sign = 0.0f;
|
| + bool normal_match = false;
|
| + // This check assumes that the normals are normalized.
|
| + if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) {
|
| + normal_match = true;
|
| + // The normals are matching enough that we only have to test one point.
|
| + sign = b.SignedPointDistance(a.points_[0]);
|
| + // Is it on either side of the splitter?
|
| + if (sign < -compare_threshold) {
|
| + return BSP_BACK;
|
| + }
|
| +
|
| + if (sign > compare_threshold) {
|
| + return BSP_FRONT;
|
| + }
|
| +
|
| + // No it wasn't, so the sign of the dot product of the normals
|
| + // along with document order determines which side it goes on.
|
| + if (dot >= 0.0f) {
|
| + if (a.order_index_ < b.order_index_) {
|
| + return BSP_COPLANAR_FRONT;
|
| + }
|
| + return BSP_COPLANAR_BACK;
|
| + }
|
| +
|
| + if (a.order_index_ < b.order_index_) {
|
| + return BSP_COPLANAR_BACK;
|
| + }
|
| + return BSP_COPLANAR_FRONT;
|
| + }
|
| +
|
| + int pos_count = 0;
|
| + int neg_count = 0;
|
| + for (size_t i = 0; i < a.points_.size(); i++) {
|
| + if (!normal_match || (normal_match && i > 0)) {
|
| + sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_);
|
| + }
|
| +
|
| + if (sign < -compare_threshold) {
|
| + ++neg_count;
|
| + } else if (sign > compare_threshold) {
|
| + ++pos_count;
|
| + }
|
| +
|
| + if (pos_count && neg_count) {
|
| + return BSP_SPLIT;
|
| + }
|
| + }
|
| +
|
| + if (pos_count) {
|
| + return BSP_FRONT;
|
| + }
|
| + return BSP_BACK;
|
| +}
|
| +
|
| +static bool LineIntersectPlane(const gfx::Point3F& line_start,
|
| + const gfx::Point3F& line_end,
|
| + const gfx::Point3F& plane_origin,
|
| + const gfx::Vector3dF& plane_normal,
|
| + gfx::Point3F* intersection,
|
| + float distance_threshold) {
|
| + gfx::Vector3dF start_to_origin_vector = plane_origin - line_start;
|
| + gfx::Vector3dF end_to_origin_vector = plane_origin - line_end;
|
| +
|
| + double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal);
|
| + double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal);
|
| +
|
| + // The case where one vertex lies on the thick-plane and the other
|
| + // is outside of it.
|
| + if (std::abs(start_distance) <= distance_threshold &&
|
| + std::abs(end_distance) > distance_threshold) {
|
| + intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
|
| + return true;
|
| + }
|
| +
|
| + // This is the case where we clearly cross the thick-plane.
|
| + if ((start_distance > distance_threshold &&
|
| + end_distance < -distance_threshold) ||
|
| + (start_distance < -distance_threshold &&
|
| + end_distance > distance_threshold)) {
|
| + gfx::Vector3dF v = line_end - line_start;
|
| + float total_distance = std::abs(start_distance) + std::abs(end_distance);
|
| + float lerp_factor = std::abs(start_distance) / total_distance;
|
| +
|
| + intersection->SetPoint(line_start.x() + (v.x() * lerp_factor),
|
| + line_start.y() + (v.y() * lerp_factor),
|
| + line_start.z() + (v.z() * lerp_factor));
|
| +
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// This function is separate from ApplyTransform because it is often unnecessary
|
| +// to transform the normal with the rest of the polygon.
|
| +// When drawing these polygons, it is necessary to move them back into layer
|
| +// space before sending them to OpenGL, which requires using ApplyTransform,
|
| +// but normal information is no longer needed after sorting.
|
| +void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) {
|
| + // Now we use the inverse transpose of |transform| to transform the normal.
|
| + gfx::Transform inverse_transform;
|
| + bool inverted = transform.GetInverse(&inverse_transform);
|
| + DCHECK(inverted);
|
| + if (!inverted)
|
| + return;
|
| + inverse_transform.Transpose();
|
| +
|
| + gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z());
|
| + inverse_transform.TransformPoint(&new_normal);
|
| + // Make sure our normal is still normalized.
|
| + normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z());
|
| + float normal_magnitude = normal_.Length();
|
| + if (normal_magnitude != 0 && normal_magnitude != 1) {
|
| + normal_.Scale(1.0f / normal_magnitude);
|
| + }
|
| +}
|
| +
|
| +void DrawPolygon::ApplyTransform(const gfx::Transform& transform) {
|
| + for (size_t i = 0; i < points_.size(); i++) {
|
| + transform.TransformPoint(&points_[i]);
|
| + }
|
| +}
|
| +
|
| +// TransformToScreenSpace assumes we're moving a layer from its layer space
|
| +// into 3D screen space, which for sorting purposes requires the normal to
|
| +// be transformed along with the vertices.
|
| +void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) {
|
| + ApplyTransform(transform);
|
| + ApplyTransformToNormal(transform);
|
| +}
|
| +
|
| +// In the case of TransformToLayerSpace, we assume that we are giving the
|
| +// inverse transformation back to the polygon to move it back into layer space
|
| +// but we can ignore the costly process of applying the inverse to the normal
|
| +// since we know the normal will just reset to its original state.
|
| +void DrawPolygon::TransformToLayerSpace(
|
| + const gfx::Transform& inverse_transform) {
|
| + ApplyTransform(inverse_transform);
|
| + normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
|
| +}
|
| +
|
| +bool DrawPolygon::Split(const DrawPolygon& splitter,
|
| + scoped_ptr<DrawPolygon>* front,
|
| + scoped_ptr<DrawPolygon>* back) {
|
| + gfx::Point3F intersections[2];
|
| + std::vector<gfx::Point3F> out_points[2];
|
| + // vertex_before stores the index of the vertex before its matching
|
| + // intersection.
|
| + // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
|
| + // which resulted in the line/plane intersection giving us intersections[0].
|
| + size_t vertex_before[2];
|
| + size_t points_size = points_.size();
|
| + size_t current_intersection = 0;
|
| +
|
| + size_t current_vertex = 0;
|
| + // We will only have two intersection points because we assume all polygons
|
| + // are convex.
|
| + while (current_intersection < 2) {
|
| + if (LineIntersectPlane(points_[(current_vertex % points_size)],
|
| + points_[(current_vertex + 1) % points_size],
|
| + splitter.points_[0],
|
| + splitter.normal_,
|
| + &intersections[current_intersection],
|
| + split_threshold)) {
|
| + vertex_before[current_intersection] = current_vertex % points_size;
|
| + current_intersection++;
|
| + // We found both intersection points so we're done already.
|
| + if (current_intersection == 2) {
|
| + break;
|
| + }
|
| + }
|
| + if (current_vertex++ > (points_size)) {
|
| + break;
|
| + }
|
| + }
|
| + DCHECK_EQ(current_intersection, static_cast<size_t>(2));
|
| +
|
| + // Since we found both the intersection points, we can begin building the
|
| + // vertex set for both our new polygons.
|
| + size_t start1 = (vertex_before[0] + 1) % points_size;
|
| + size_t start2 = (vertex_before[1] + 1) % points_size;
|
| + size_t points_remaining = points_size;
|
| +
|
| + // First polygon.
|
| + out_points[0].push_back(intersections[0]);
|
| + DCHECK_GE(vertex_before[1], start1);
|
| + for (size_t i = start1; i <= vertex_before[1]; i++) {
|
| + out_points[0].push_back(points_[i]);
|
| + --points_remaining;
|
| + }
|
| + out_points[0].push_back(intersections[1]);
|
| +
|
| + // Second polygon.
|
| + out_points[1].push_back(intersections[1]);
|
| + size_t index = start2;
|
| + for (size_t i = 0; i < points_remaining; i++) {
|
| + out_points[1].push_back(points_[index % points_size]);
|
| + ++index;
|
| + }
|
| + out_points[1].push_back(intersections[0]);
|
| +
|
| + // Give both polygons the original splitting polygon's ID, so that they'll
|
| + // still be sorted properly in co-planar instances.
|
| + scoped_ptr<DrawPolygon> poly1(
|
| + new DrawPolygon(original_ref_, out_points[0], normal_, order_index_));
|
| + scoped_ptr<DrawPolygon> poly2(
|
| + new DrawPolygon(original_ref_, out_points[1], normal_, order_index_));
|
| +
|
| + DCHECK_GE(poly1->points().size(), 3u);
|
| + DCHECK_GE(poly2->points().size(), 3u);
|
| +
|
| + if (SideCompare(*poly1, splitter) == BSP_FRONT) {
|
| + *front = poly1.Pass();
|
| + *back = poly2.Pass();
|
| + } else {
|
| + *front = poly2.Pass();
|
| + *back = poly1.Pass();
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// This algorithm takes the first vertex in the polygon and uses that as a
|
| +// pivot point to fan out and create quads from the rest of the vertices.
|
| +// |offset| starts off as the second vertex, and then |op1| and |op2| indicate
|
| +// offset+1 and offset+2 respectively.
|
| +// After the first quad is created, the first vertex in the next quad is the
|
| +// same as all the rest, the pivot point. The second vertex in the next quad is
|
| +// the old |op2|, the last vertex added to the previous quad. This continues
|
| +// until all points are exhausted.
|
| +// The special case here is where there are only 3 points remaining, in which
|
| +// case we use the same values for vertex 3 and 4 to make a degenerate quad
|
| +// that represents a triangle.
|
| +void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
|
| + if (points_.size() <= 2)
|
| + return;
|
| +
|
| + gfx::PointF first(points_[0].x(), points_[0].y());
|
| + size_t offset = 1;
|
| + while (offset < points_.size() - 1) {
|
| + size_t op1 = offset + 1;
|
| + size_t op2 = offset + 2;
|
| + if (op2 >= points_.size()) {
|
| + // It's going to be a degenerate triangle.
|
| + op2 = op1;
|
| + }
|
| + quads->push_back(
|
| + gfx::QuadF(first,
|
| + gfx::PointF(points_[offset].x(), points_[offset].y()),
|
| + gfx::PointF(points_[op1].x(), points_[op1].y()),
|
| + gfx::PointF(points_[op2].x(), points_[op2].y())));
|
| + offset = op2;
|
| + }
|
| +}
|
| +
|
| +} // namespace cc
|
|
|