OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "cc/quads/draw_polygon.h" |
| 6 |
| 7 #include <vector> |
| 8 |
| 9 #include "cc/output/bsp_compare_result.h" |
| 10 #include "cc/quads/draw_quad.h" |
| 11 |
| 12 namespace { |
| 13 // This allows for some imperfection in the normal comparison when checking if |
| 14 // two pieces of geometry are coplanar. |
| 15 static const float coplanar_dot_epsilon = 0.001f; |
| 16 // This threshold controls how "thick" a plane is. If a point's distance is |
| 17 // <= |compare_threshold|, then it is considered on the plane. Only when this |
| 18 // boundary is crossed do we consider doing splitting. |
| 19 static const float compare_threshold = 1.0f; |
| 20 // |split_threshold| is lower in this case because we want the points created |
| 21 // during splitting to be well within the range of |compare_threshold| for |
| 22 // comparison purposes. The splitting operation will produce intersection points |
| 23 // that fit within a tighter distance to the splitting plane as a result of this |
| 24 // value. By using a value >= |compare_threshold| we run the risk of creating |
| 25 // points that SHOULD be intersecting the "thick plane", but actually fail to |
| 26 // test positively for it because |split_threshold| allowed them to be outside |
| 27 // this range. |
| 28 // This is really supposd to be compare_threshold / 2.0f, but that would |
| 29 // create another static initializer. |
| 30 static const float split_threshold = 0.5f; |
| 31 |
| 32 static const float normalized_threshold = 0.001f; |
| 33 } // namespace |
| 34 |
| 35 namespace cc { |
| 36 |
| 37 DrawPolygon::DrawPolygon() { |
| 38 } |
| 39 |
| 40 DrawPolygon::DrawPolygon(const DrawQuad* original, |
| 41 const std::vector<gfx::Point3F>& in_points, |
| 42 const gfx::Vector3dF& normal, |
| 43 int draw_order_index) |
| 44 : order_index_(draw_order_index), original_ref_(original), is_split_(true) { |
| 45 for (size_t i = 0; i < in_points.size(); i++) { |
| 46 points_.push_back(in_points[i]); |
| 47 } |
| 48 normal_ = normal; |
| 49 } |
| 50 |
| 51 // This takes the original DrawQuad that this polygon should be based on, |
| 52 // a visible content rect to make the 4 corner points from, and a transformation |
| 53 // to move it and its normal into screen space. |
| 54 DrawPolygon::DrawPolygon(const DrawQuad* original_ref, |
| 55 const gfx::RectF& visible_content_rect, |
| 56 const gfx::Transform& transform, |
| 57 int draw_order_index) |
| 58 : normal_(0.0f, 0.0f, 1.0f), |
| 59 order_index_(draw_order_index), |
| 60 original_ref_(original_ref), |
| 61 is_split_(false) { |
| 62 gfx::Point3F points[8]; |
| 63 int num_vertices_in_clipped_quad; |
| 64 gfx::QuadF send_quad(visible_content_rect); |
| 65 |
| 66 // Doing this mapping here is very important, since we can't just transform |
| 67 // the points without clipping and not run into strange geometry issues when |
| 68 // crossing w = 0. At this point, in the constructor, we know that we're |
| 69 // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d |
| 70 // function instead of writing a generic polygon version of it. |
| 71 MathUtil::MapClippedQuad3d( |
| 72 transform, send_quad, points, &num_vertices_in_clipped_quad); |
| 73 for (int i = 0; i < num_vertices_in_clipped_quad; i++) { |
| 74 points_.push_back(points[i]); |
| 75 } |
| 76 ApplyTransformToNormal(transform); |
| 77 } |
| 78 |
| 79 DrawPolygon::~DrawPolygon() { |
| 80 } |
| 81 |
| 82 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { |
| 83 scoped_ptr<DrawPolygon> new_polygon(new DrawPolygon()); |
| 84 new_polygon->order_index_ = order_index_; |
| 85 new_polygon->original_ref_ = original_ref_; |
| 86 new_polygon->points_.reserve(points_.size()); |
| 87 new_polygon->points_ = points_; |
| 88 new_polygon->normal_.set_x(normal_.x()); |
| 89 new_polygon->normal_.set_y(normal_.y()); |
| 90 new_polygon->normal_.set_z(normal_.z()); |
| 91 return new_polygon.Pass(); |
| 92 } |
| 93 |
| 94 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { |
| 95 return gfx::DotProduct(point - points_[0], normal_); |
| 96 } |
| 97 |
| 98 // Checks whether or not shape a lies on the front or back side of b, or |
| 99 // whether they should be considered coplanar. If on the back side, we |
| 100 // say A_BEFORE_B because it should be drawn in that order. |
| 101 // Assumes that layers are split and there are no intersecting planes. |
| 102 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, |
| 103 const DrawPolygon& b) { |
| 104 // Let's make sure that both of these are normalized. |
| 105 DCHECK_GE(normalized_threshold, std::abs(a.normal_.LengthSquared() - 1.0f)); |
| 106 DCHECK_GE(normalized_threshold, std::abs(b.normal_.LengthSquared() - 1.0f)); |
| 107 // Right away let's check if they're coplanar |
| 108 double dot = gfx::DotProduct(a.normal_, b.normal_); |
| 109 float sign = 0.0f; |
| 110 bool normal_match = false; |
| 111 // This check assumes that the normals are normalized. |
| 112 if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) { |
| 113 normal_match = true; |
| 114 // The normals are matching enough that we only have to test one point. |
| 115 sign = b.SignedPointDistance(a.points_[0]); |
| 116 // Is it on either side of the splitter? |
| 117 if (sign < -compare_threshold) { |
| 118 return BSP_BACK; |
| 119 } |
| 120 |
| 121 if (sign > compare_threshold) { |
| 122 return BSP_FRONT; |
| 123 } |
| 124 |
| 125 // No it wasn't, so the sign of the dot product of the normals |
| 126 // along with document order determines which side it goes on. |
| 127 if (dot >= 0.0f) { |
| 128 if (a.order_index_ < b.order_index_) { |
| 129 return BSP_COPLANAR_FRONT; |
| 130 } |
| 131 return BSP_COPLANAR_BACK; |
| 132 } |
| 133 |
| 134 if (a.order_index_ < b.order_index_) { |
| 135 return BSP_COPLANAR_BACK; |
| 136 } |
| 137 return BSP_COPLANAR_FRONT; |
| 138 } |
| 139 |
| 140 int pos_count = 0; |
| 141 int neg_count = 0; |
| 142 for (size_t i = 0; i < a.points_.size(); i++) { |
| 143 if (!normal_match || (normal_match && i > 0)) { |
| 144 sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_); |
| 145 } |
| 146 |
| 147 if (sign < -compare_threshold) { |
| 148 ++neg_count; |
| 149 } else if (sign > compare_threshold) { |
| 150 ++pos_count; |
| 151 } |
| 152 |
| 153 if (pos_count && neg_count) { |
| 154 return BSP_SPLIT; |
| 155 } |
| 156 } |
| 157 |
| 158 if (pos_count) { |
| 159 return BSP_FRONT; |
| 160 } |
| 161 return BSP_BACK; |
| 162 } |
| 163 |
| 164 static bool LineIntersectPlane(const gfx::Point3F& line_start, |
| 165 const gfx::Point3F& line_end, |
| 166 const gfx::Point3F& plane_origin, |
| 167 const gfx::Vector3dF& plane_normal, |
| 168 gfx::Point3F* intersection, |
| 169 float distance_threshold) { |
| 170 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; |
| 171 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; |
| 172 |
| 173 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); |
| 174 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); |
| 175 |
| 176 // The case where one vertex lies on the thick-plane and the other |
| 177 // is outside of it. |
| 178 if (std::abs(start_distance) <= distance_threshold && |
| 179 std::abs(end_distance) > distance_threshold) { |
| 180 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); |
| 181 return true; |
| 182 } |
| 183 |
| 184 // This is the case where we clearly cross the thick-plane. |
| 185 if ((start_distance > distance_threshold && |
| 186 end_distance < -distance_threshold) || |
| 187 (start_distance < -distance_threshold && |
| 188 end_distance > distance_threshold)) { |
| 189 gfx::Vector3dF v = line_end - line_start; |
| 190 float total_distance = std::abs(start_distance) + std::abs(end_distance); |
| 191 float lerp_factor = std::abs(start_distance) / total_distance; |
| 192 |
| 193 intersection->SetPoint(line_start.x() + (v.x() * lerp_factor), |
| 194 line_start.y() + (v.y() * lerp_factor), |
| 195 line_start.z() + (v.z() * lerp_factor)); |
| 196 |
| 197 return true; |
| 198 } |
| 199 return false; |
| 200 } |
| 201 |
| 202 // This function is separate from ApplyTransform because it is often unnecessary |
| 203 // to transform the normal with the rest of the polygon. |
| 204 // When drawing these polygons, it is necessary to move them back into layer |
| 205 // space before sending them to OpenGL, which requires using ApplyTransform, |
| 206 // but normal information is no longer needed after sorting. |
| 207 void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { |
| 208 // Now we use the inverse transpose of |transform| to transform the normal. |
| 209 gfx::Transform inverse_transform; |
| 210 bool inverted = transform.GetInverse(&inverse_transform); |
| 211 DCHECK(inverted); |
| 212 if (!inverted) |
| 213 return; |
| 214 inverse_transform.Transpose(); |
| 215 |
| 216 gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); |
| 217 inverse_transform.TransformPoint(&new_normal); |
| 218 // Make sure our normal is still normalized. |
| 219 normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); |
| 220 float normal_magnitude = normal_.Length(); |
| 221 if (normal_magnitude != 0 && normal_magnitude != 1) { |
| 222 normal_.Scale(1.0f / normal_magnitude); |
| 223 } |
| 224 } |
| 225 |
| 226 void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { |
| 227 for (size_t i = 0; i < points_.size(); i++) { |
| 228 transform.TransformPoint(&points_[i]); |
| 229 } |
| 230 } |
| 231 |
| 232 // TransformToScreenSpace assumes we're moving a layer from its layer space |
| 233 // into 3D screen space, which for sorting purposes requires the normal to |
| 234 // be transformed along with the vertices. |
| 235 void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) { |
| 236 ApplyTransform(transform); |
| 237 ApplyTransformToNormal(transform); |
| 238 } |
| 239 |
| 240 // In the case of TransformToLayerSpace, we assume that we are giving the |
| 241 // inverse transformation back to the polygon to move it back into layer space |
| 242 // but we can ignore the costly process of applying the inverse to the normal |
| 243 // since we know the normal will just reset to its original state. |
| 244 void DrawPolygon::TransformToLayerSpace( |
| 245 const gfx::Transform& inverse_transform) { |
| 246 ApplyTransform(inverse_transform); |
| 247 normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f); |
| 248 } |
| 249 |
| 250 bool DrawPolygon::Split(const DrawPolygon& splitter, |
| 251 scoped_ptr<DrawPolygon>* front, |
| 252 scoped_ptr<DrawPolygon>* back) { |
| 253 gfx::Point3F intersections[2]; |
| 254 std::vector<gfx::Point3F> out_points[2]; |
| 255 // vertex_before stores the index of the vertex before its matching |
| 256 // intersection. |
| 257 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane |
| 258 // which resulted in the line/plane intersection giving us intersections[0]. |
| 259 size_t vertex_before[2]; |
| 260 size_t points_size = points_.size(); |
| 261 size_t current_intersection = 0; |
| 262 |
| 263 size_t current_vertex = 0; |
| 264 // We will only have two intersection points because we assume all polygons |
| 265 // are convex. |
| 266 while (current_intersection < 2) { |
| 267 if (LineIntersectPlane(points_[(current_vertex % points_size)], |
| 268 points_[(current_vertex + 1) % points_size], |
| 269 splitter.points_[0], |
| 270 splitter.normal_, |
| 271 &intersections[current_intersection], |
| 272 split_threshold)) { |
| 273 vertex_before[current_intersection] = current_vertex % points_size; |
| 274 current_intersection++; |
| 275 // We found both intersection points so we're done already. |
| 276 if (current_intersection == 2) { |
| 277 break; |
| 278 } |
| 279 } |
| 280 if (current_vertex++ > (points_size)) { |
| 281 break; |
| 282 } |
| 283 } |
| 284 DCHECK_EQ(current_intersection, static_cast<size_t>(2)); |
| 285 |
| 286 // Since we found both the intersection points, we can begin building the |
| 287 // vertex set for both our new polygons. |
| 288 size_t start1 = (vertex_before[0] + 1) % points_size; |
| 289 size_t start2 = (vertex_before[1] + 1) % points_size; |
| 290 size_t points_remaining = points_size; |
| 291 |
| 292 // First polygon. |
| 293 out_points[0].push_back(intersections[0]); |
| 294 DCHECK_GE(vertex_before[1], start1); |
| 295 for (size_t i = start1; i <= vertex_before[1]; i++) { |
| 296 out_points[0].push_back(points_[i]); |
| 297 --points_remaining; |
| 298 } |
| 299 out_points[0].push_back(intersections[1]); |
| 300 |
| 301 // Second polygon. |
| 302 out_points[1].push_back(intersections[1]); |
| 303 size_t index = start2; |
| 304 for (size_t i = 0; i < points_remaining; i++) { |
| 305 out_points[1].push_back(points_[index % points_size]); |
| 306 ++index; |
| 307 } |
| 308 out_points[1].push_back(intersections[0]); |
| 309 |
| 310 // Give both polygons the original splitting polygon's ID, so that they'll |
| 311 // still be sorted properly in co-planar instances. |
| 312 scoped_ptr<DrawPolygon> poly1( |
| 313 new DrawPolygon(original_ref_, out_points[0], normal_, order_index_)); |
| 314 scoped_ptr<DrawPolygon> poly2( |
| 315 new DrawPolygon(original_ref_, out_points[1], normal_, order_index_)); |
| 316 |
| 317 DCHECK_GE(poly1->points().size(), 3u); |
| 318 DCHECK_GE(poly2->points().size(), 3u); |
| 319 |
| 320 if (SideCompare(*poly1, splitter) == BSP_FRONT) { |
| 321 *front = poly1.Pass(); |
| 322 *back = poly2.Pass(); |
| 323 } else { |
| 324 *front = poly2.Pass(); |
| 325 *back = poly1.Pass(); |
| 326 } |
| 327 return true; |
| 328 } |
| 329 |
| 330 // This algorithm takes the first vertex in the polygon and uses that as a |
| 331 // pivot point to fan out and create quads from the rest of the vertices. |
| 332 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate |
| 333 // offset+1 and offset+2 respectively. |
| 334 // After the first quad is created, the first vertex in the next quad is the |
| 335 // same as all the rest, the pivot point. The second vertex in the next quad is |
| 336 // the old |op2|, the last vertex added to the previous quad. This continues |
| 337 // until all points are exhausted. |
| 338 // The special case here is where there are only 3 points remaining, in which |
| 339 // case we use the same values for vertex 3 and 4 to make a degenerate quad |
| 340 // that represents a triangle. |
| 341 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { |
| 342 if (points_.size() <= 2) |
| 343 return; |
| 344 |
| 345 gfx::PointF first(points_[0].x(), points_[0].y()); |
| 346 size_t offset = 1; |
| 347 while (offset < points_.size() - 1) { |
| 348 size_t op1 = offset + 1; |
| 349 size_t op2 = offset + 2; |
| 350 if (op2 >= points_.size()) { |
| 351 // It's going to be a degenerate triangle. |
| 352 op2 = op1; |
| 353 } |
| 354 quads->push_back( |
| 355 gfx::QuadF(first, |
| 356 gfx::PointF(points_[offset].x(), points_[offset].y()), |
| 357 gfx::PointF(points_[op1].x(), points_[op1].y()), |
| 358 gfx::PointF(points_[op2].x(), points_[op2].y()))); |
| 359 offset = op2; |
| 360 } |
| 361 } |
| 362 |
| 363 } // namespace cc |
OLD | NEW |