Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(520)

Unified Diff: packages/analyzer/lib/src/task/strong/rules.dart

Issue 1521693002: Roll Observatory deps (charted -> ^0.3.0) (Closed) Base URL: https://chromium.googlesource.com/external/github.com/dart-lang/observatory_pub_packages.git@master
Patch Set: Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « packages/analyzer/lib/src/task/strong/info.dart ('k') | packages/analyzer/lib/task/model.dart » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: packages/analyzer/lib/src/task/strong/rules.dart
diff --git a/packages/analyzer/lib/src/task/strong/rules.dart b/packages/analyzer/lib/src/task/strong/rules.dart
new file mode 100644
index 0000000000000000000000000000000000000000..b575dbfc65be357f07135d418467cc2cb5fe8d16
--- /dev/null
+++ b/packages/analyzer/lib/src/task/strong/rules.dart
@@ -0,0 +1,770 @@
+// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
+// for details. All rights reserved. Use of this source code is governed by a
+// BSD-style license that can be found in the LICENSE file.
+
+// TODO(jmesserly): this was ported from package:dev_compiler, and needs to be
+// refactored to fit into analyzer.
+library analyzer.src.task.strong.rules;
+
+import 'package:analyzer/src/generated/ast.dart';
+import 'package:analyzer/src/generated/element.dart';
+import 'package:analyzer/src/generated/resolver.dart';
+
+import 'info.dart';
+
+// TODO(jmesserly): this entire file needs to be removed in favor of TypeSystem.
+
+final _objectMap = new Expando('providerToObjectMap');
+Map<String, DartType> getObjectMemberMap(TypeProvider typeProvider) {
+ var map = _objectMap[typeProvider] as Map<String, DartType>;
+ if (map == null) {
+ map = <String, DartType>{};
+ _objectMap[typeProvider] = map;
+ var objectType = typeProvider.objectType;
+ var element = objectType.element;
+ // Only record methods (including getters) with no parameters. As parameters are contravariant wrt
+ // type, using Object's version may be too strict.
+ // Add instance methods.
+ element.methods.where((method) => !method.isStatic).forEach((method) {
+ map[method.name] = method.type;
+ });
+ // Add getters.
+ element.accessors
+ .where((member) => !member.isStatic && member.isGetter)
+ .forEach((member) {
+ map[member.name] = member.type.returnType;
+ });
+ }
+ return map;
+}
+
+class TypeRules {
+ final TypeProvider provider;
+
+ /// Map of fields / properties / methods on Object.
+ final Map<String, DartType> objectMembers;
+
+ DownwardsInference inferrer;
+
+ TypeRules(TypeProvider provider)
+ : provider = provider,
+ objectMembers = getObjectMemberMap(provider) {
+ inferrer = new DownwardsInference(this);
+ }
+
+ /// Given a type t, if t is an interface type with a call method
+ /// defined, return the function type for the call method, otherwise
+ /// return null.
+ FunctionType getCallMethodType(DartType t) {
+ if (t is InterfaceType) {
+ ClassElement element = t.element;
+ InheritanceManager manager = new InheritanceManager(element.library);
+ FunctionType callType = manager.lookupMemberType(t, "call");
+ return callType;
+ }
+ return null;
+ }
+
+ /// Given an expression, return its type assuming it is
+ /// in the caller position of a call (that is, accounting
+ /// for the possibility of a call method). Returns null
+ /// if expression is not statically callable.
+ FunctionType getTypeAsCaller(Expression applicand) {
+ var t = getStaticType(applicand);
+ if (t is InterfaceType) {
+ return getCallMethodType(t);
+ }
+ if (t is FunctionType) return t;
+ return null;
+ }
+
+ /// Gets the expected return type of the given function [body], either from
+ /// a normal return/yield, or from a yield*.
+ DartType getExpectedReturnType(FunctionBody body, {bool yieldStar: false}) {
+ FunctionType functionType;
+ var parent = body.parent;
+ if (parent is Declaration) {
+ functionType = elementType(parent.element);
+ } else {
+ assert(parent is FunctionExpression);
+ functionType = getStaticType(parent);
+ }
+
+ var type = functionType.returnType;
+
+ InterfaceType expectedType = null;
+ if (body.isAsynchronous) {
+ if (body.isGenerator) {
+ // Stream<T> -> T
+ expectedType = provider.streamType;
+ } else {
+ // Future<T> -> T
+ // TODO(vsm): Revisit with issue #228.
+ expectedType = provider.futureType;
+ }
+ } else {
+ if (body.isGenerator) {
+ // Iterable<T> -> T
+ expectedType = provider.iterableType;
+ } else {
+ // T -> T
+ return type;
+ }
+ }
+ if (yieldStar) {
+ if (type.isDynamic) {
+ // Ensure it's at least a Stream / Iterable.
+ return expectedType.substitute4([provider.dynamicType]);
+ } else {
+ // Analyzer will provide a separate error if expected type
+ // is not compatible with type.
+ return type;
+ }
+ }
+ if (type.isDynamic) {
+ return type;
+ } else if (type is InterfaceType && type.element == expectedType.element) {
+ return type.typeArguments[0];
+ } else {
+ // Malformed type - fallback on analyzer error.
+ return null;
+ }
+ }
+
+ DartType getStaticType(Expression expr) {
+ return expr.staticType ?? provider.dynamicType;
+ }
+
+ bool _isBottom(DartType t, {bool dynamicIsBottom: false}) {
+ if (t.isDynamic && dynamicIsBottom) return true;
+ // TODO(vsm): We need direct support for non-nullability in DartType.
+ // This should check on "true/nonnullable" Bottom
+ if (t.isBottom) return true;
+ return false;
+ }
+
+ bool _isTop(DartType t, {bool dynamicIsBottom: false}) {
+ if (t.isDynamic && !dynamicIsBottom) return true;
+ if (t.isObject) return true;
+ return false;
+ }
+
+ bool _anyParameterType(FunctionType ft, bool predicate(DartType t)) {
+ return ft.normalParameterTypes.any(predicate) ||
+ ft.optionalParameterTypes.any(predicate) ||
+ ft.namedParameterTypes.values.any(predicate);
+ }
+
+ // TODO(leafp): Revisit this.
+ bool isGroundType(DartType t) {
+ if (t is TypeParameterType) return false;
+ if (_isTop(t)) return true;
+
+ if (t is FunctionType) {
+ if (!_isTop(t.returnType) ||
+ _anyParameterType(t, (pt) => !_isBottom(pt, dynamicIsBottom: true))) {
+ return false;
+ } else {
+ return true;
+ }
+ }
+
+ if (t is InterfaceType) {
+ var typeArguments = t.typeArguments;
+ for (var typeArgument in typeArguments) {
+ if (!_isTop(typeArgument)) return false;
+ }
+ return true;
+ }
+
+ // We should not see any other type aside from malformed code.
+ return false;
+ }
+
+ /// Check that f1 is a subtype of f2. [ignoreReturn] is used in the DDC
+ /// checker to determine whether f1 would be a subtype of f2 if the return
+ /// type of f1 is set to match f2's return type.
+ // [fuzzyArrows] indicates whether or not the f1 and f2 should be
+ // treated as fuzzy arrow types (and hence dynamic parameters to f2 treated as
+ // bottom).
+ bool isFunctionSubTypeOf(FunctionType f1, FunctionType f2,
+ {bool fuzzyArrows: true, bool ignoreReturn: false}) {
+ final r1s = f1.normalParameterTypes;
+ final o1s = f1.optionalParameterTypes;
+ final n1s = f1.namedParameterTypes;
+ final r2s = f2.normalParameterTypes;
+ final o2s = f2.optionalParameterTypes;
+ final n2s = f2.namedParameterTypes;
+ final ret1 = ignoreReturn ? f2.returnType : f1.returnType;
+ final ret2 = f2.returnType;
+
+ // A -> B <: C -> D if C <: A and
+ // either D is void or B <: D
+ if (!ret2.isVoid && !isSubTypeOf(ret1, ret2)) return false;
+
+ // Reject if one has named and the other has optional
+ if (n1s.length > 0 && o2s.length > 0) return false;
+ if (n2s.length > 0 && o1s.length > 0) return false;
+
+ // f2 has named parameters
+ if (n2s.length > 0) {
+ // Check that every named parameter in f2 has a match in f1
+ for (String k2 in n2s.keys) {
+ if (!n1s.containsKey(k2)) return false;
+ if (!isSubTypeOf(n2s[k2], n1s[k2],
+ dynamicIsBottom: fuzzyArrows)) return false;
+ }
+ }
+ // If we get here, we either have no named parameters,
+ // or else the named parameters match and we have no optional
+ // parameters
+
+ // If f1 has more required parameters, reject
+ if (r1s.length > r2s.length) return false;
+
+ // If f2 has more required + optional parameters, reject
+ if (r2s.length + o2s.length > r1s.length + o1s.length) return false;
+
+ // The parameter lists must look like the following at this point
+ // where rrr is a region of required, and ooo is a region of optionals.
+ // f1: rrr ooo ooo ooo
+ // f2: rrr rrr ooo
+ int rr = r1s.length; // required in both
+ int or = r2s.length - r1s.length; // optional in f1, required in f2
+ int oo = o2s.length; // optional in both
+
+ for (int i = 0; i < rr; ++i) {
+ if (!isSubTypeOf(r2s[i], r1s[i],
+ dynamicIsBottom: fuzzyArrows)) return false;
+ }
+ for (int i = 0, j = rr; i < or; ++i, ++j) {
+ if (!isSubTypeOf(r2s[j], o1s[i],
+ dynamicIsBottom: fuzzyArrows)) return false;
+ }
+ for (int i = or, j = 0; i < oo; ++i, ++j) {
+ if (!isSubTypeOf(o2s[j], o1s[i],
+ dynamicIsBottom: fuzzyArrows)) return false;
+ }
+ return true;
+ }
+
+ bool _isInterfaceSubTypeOf(InterfaceType i1, InterfaceType i2) {
+ if (i1 == i2) return true;
+
+ if (i1.element == i2.element) {
+ List<DartType> tArgs1 = i1.typeArguments;
+ List<DartType> tArgs2 = i2.typeArguments;
+
+ // TODO(leafp): Verify that this is always true
+ // Do raw types get filled in?
+ assert(tArgs1.length == tArgs2.length);
+
+ for (int i = 0; i < tArgs1.length; i++) {
+ DartType t1 = tArgs1[i];
+ DartType t2 = tArgs2[i];
+ if (!isSubTypeOf(t1, t2)) return false;
+ }
+ return true;
+ }
+
+ if (i2.isDartCoreFunction) {
+ if (i1.element.getMethod("call") != null) return true;
+ }
+
+ if (i1 == provider.objectType) return false;
+
+ if (_isInterfaceSubTypeOf(i1.superclass, i2)) return true;
+
+ for (final parent in i1.interfaces) {
+ if (_isInterfaceSubTypeOf(parent, i2)) return true;
+ }
+
+ for (final parent in i1.mixins) {
+ if (_isInterfaceSubTypeOf(parent, i2)) return true;
+ }
+
+ return false;
+ }
+
+ bool isSubTypeOf(DartType t1, DartType t2, {bool dynamicIsBottom: false}) {
+ if (t1 == t2) return true;
+
+ // Trivially true.
+ if (_isTop(t2, dynamicIsBottom: dynamicIsBottom) ||
+ _isBottom(t1, dynamicIsBottom: dynamicIsBottom)) {
+ return true;
+ }
+
+ // Trivially false.
+ if (_isTop(t1, dynamicIsBottom: dynamicIsBottom) ||
+ _isBottom(t2, dynamicIsBottom: dynamicIsBottom)) {
+ return false;
+ }
+
+ // The null type is a subtype of any nullable type, which is all Dart types.
+ // TODO(vsm): Note, t1.isBottom still allows for null confusingly.
+ // _isBottom(t1) does not necessarily imply t1.isBottom if there are
+ // nonnullable types in the system.
+ if (t1.isBottom) {
+ return true;
+ }
+
+ // S <: T where S is a type variable
+ // T is not dynamic or object (handled above)
+ // S != T (handled above)
+ // So only true if bound of S is S' and
+ // S' <: T
+ if (t1 is TypeParameterType) {
+ DartType bound = t1.element.bound;
+ if (bound == null) return false;
+ return isSubTypeOf(bound, t2);
+ }
+
+ if (t2 is TypeParameterType) {
+ return false;
+ }
+
+ if (t2.isDartCoreFunction) {
+ if (t1 is FunctionType) return true;
+ if (t1.element is ClassElement) {
+ if ((t1.element as ClassElement).getMethod("call") != null) return true;
+ }
+ }
+
+ // "Traditional" name-based subtype check.
+ if (t1 is InterfaceType && t2 is InterfaceType) {
+ return _isInterfaceSubTypeOf(t1, t2);
+ }
+
+ if (t1 is! FunctionType && t2 is! FunctionType) return false;
+
+ if (t1 is InterfaceType && t2 is FunctionType) {
+ var callType = getCallMethodType(t1);
+ if (callType == null) return false;
+ return isFunctionSubTypeOf(callType, t2);
+ }
+
+ if (t1 is FunctionType && t2 is InterfaceType) {
+ return false;
+ }
+
+ // Functions
+ // Note: it appears under the hood all Dart functions map to a class /
+ // hidden type that:
+ // (a) subtypes Object (an internal _FunctionImpl in the VM)
+ // (b) implements Function
+ // (c) provides standard Object members (hashCode, toString)
+ // (d) contains private members (corresponding to _FunctionImpl?)
+ // (e) provides a call method to handle the actual function invocation
+ //
+ // The standard Dart subtyping rules are structural in nature. I.e.,
+ // bivariant on arguments and return type.
+ //
+ // The below tries for a more traditional subtyping rule:
+ // - covariant on return type
+ // - contravariant on parameters
+ // - 'sensible' (?) rules on optional and/or named params
+ // but doesn't properly mix with class subtyping. I suspect Java 8 lambdas
+ // essentially map to dynamic (and rely on invokedynamic) due to similar
+ // issues.
+ return isFunctionSubTypeOf(t1 as FunctionType, t2 as FunctionType);
+ }
+
+ bool isAssignable(DartType t1, DartType t2) {
+ return isSubTypeOf(t1, t2);
+ }
+
+ // Produce a coercion which coerces something of type fromT
+ // to something of type toT.
+ // If wrap is true and both are function types, a closure
+ // wrapper coercion is produced using _wrapTo (see above)
+ // Returns the error coercion if the types cannot be coerced
+ // according to our current criteria.
+ Coercion _coerceTo(DartType fromT, DartType toT) {
+ // We can use anything as void
+ if (toT.isVoid) return Coercion.identity(toT);
+
+ // fromT <: toT, no coercion needed
+ if (isSubTypeOf(fromT, toT)) return Coercion.identity(toT);
+
+ // For now, reject conversions between function types and
+ // call method objects. We could choose to allow casts here.
+ // Wrapping a function type to assign it to a call method
+ // object will never succeed. Wrapping the other way could
+ // be allowed.
+ if ((fromT is FunctionType && getCallMethodType(toT) != null) ||
+ (toT is FunctionType && getCallMethodType(fromT) != null)) {
+ return Coercion.error();
+ }
+
+ // Downcast if toT <: fromT
+ if (isSubTypeOf(toT, fromT)) return Coercion.cast(fromT, toT);
+
+ // Downcast if toT <===> fromT
+ // The intention here is to allow casts that are sideways in the restricted
+ // type system, but allowed in the regular dart type system, since these
+ // are likely to succeed. The canonical example is List<dynamic> and
+ // Iterable<T> for some concrete T (e.g. Object). These are unrelated
+ // in the restricted system, but List<dynamic> <: Iterable<T> in dart.
+ if (fromT.isAssignableTo(toT)) {
+ return Coercion.cast(fromT, toT);
+ }
+ return Coercion.error();
+ }
+
+ StaticInfo checkAssignment(Expression expr, DartType toT) {
+ final fromT = getStaticType(expr);
+ final Coercion c = _coerceTo(fromT, toT);
+ if (c is Identity) return null;
+ if (c is CoercionError) return new StaticTypeError(this, expr, toT);
+ var reason = null;
+
+ var errors = <String>[];
+ var ok = inferrer.inferExpression(expr, toT, errors);
+ if (ok) return InferredType.create(this, expr, toT);
+ reason = (errors.isNotEmpty) ? errors.first : null;
+
+ if (c is Cast) return DownCast.create(this, expr, c, reason: reason);
+ assert(false);
+ return null;
+ }
+
+ DartType elementType(Element e) {
+ if (e == null) {
+ // Malformed code - just return dynamic.
+ return provider.dynamicType;
+ }
+ return (e as dynamic).type;
+ }
+
+ bool _isLibraryPrefix(Expression node) =>
+ node is SimpleIdentifier && node.staticElement is PrefixElement;
+
+ /// Returns `true` if the target expression is dynamic.
+ bool isDynamicTarget(Expression node) {
+ if (node == null) return false;
+
+ if (_isLibraryPrefix(node)) return false;
+
+ // Null type happens when we have unknown identifiers, like a dart: import
+ // that doesn't resolve.
+ var type = node.staticType;
+ return type == null || type.isDynamic;
+ }
+
+ /// Returns `true` if the expression is a dynamic function call or method
+ /// invocation.
+ bool isDynamicCall(Expression call) {
+ var ft = getTypeAsCaller(call);
+ // TODO(leafp): This will currently return true if t is Function
+ // This is probably the most correct thing to do for now, since
+ // this code is also used by the back end. Maybe revisit at some
+ // point?
+ if (ft == null) return true;
+ // Dynamic as the parameter type is treated as bottom. A function with
+ // a dynamic parameter type requires a dynamic call in general.
+ // However, as an optimization, if we have an original definition, we know
+ // dynamic is reified as Object - in this case a regular call is fine.
+ if (call is SimpleIdentifier) {
+ var element = call.staticElement;
+ if (element is FunctionElement || element is MethodElement) {
+ // An original declaration.
+ return false;
+ }
+ }
+
+ return _anyParameterType(ft, (pt) => pt.isDynamic);
+ }
+}
+
+class DownwardsInference {
+ final TypeRules rules;
+
+ DownwardsInference(this.rules);
+
+ /// Called for each list literal which gets inferred
+ void annotateListLiteral(ListLiteral e, List<DartType> targs) {}
+
+ /// Called for each map literal which gets inferred
+ void annotateMapLiteral(MapLiteral e, List<DartType> targs) {}
+
+ /// Called for each new/const which gets inferred
+ void annotateInstanceCreationExpression(
+ InstanceCreationExpression e, List<DartType> targs) {}
+
+ /// Called for cast from dynamic required for inference to succeed
+ void annotateCastFromDynamic(Expression e, DartType t) {}
+
+ /// Called for each function expression return type inferred
+ void annotateFunctionExpression(FunctionExpression e, DartType returnType) {}
+
+ /// Downward inference
+ bool inferExpression(Expression e, DartType t, List<String> errors) {
+ // Don't cast top level expressions, only sub-expressions
+ return _inferExpression(e, t, errors, cast: false);
+ }
+
+ /// Downward inference
+ bool _inferExpression(Expression e, DartType t, List<String> errors,
+ {cast: true}) {
+ if (e is ConditionalExpression) {
+ return _inferConditionalExpression(e, t, errors);
+ }
+ if (e is ParenthesizedExpression) {
+ return _inferParenthesizedExpression(e, t, errors);
+ }
+ if (rules.isSubTypeOf(rules.getStaticType(e), t)) return true;
+ if (cast && rules.getStaticType(e).isDynamic) {
+ annotateCastFromDynamic(e, t);
+ return true;
+ }
+ if (e is FunctionExpression) return _inferFunctionExpression(e, t, errors);
+ if (e is ListLiteral) return _inferListLiteral(e, t, errors);
+ if (e is MapLiteral) return _inferMapLiteral(e, t, errors);
+ if (e is NamedExpression) return _inferNamedExpression(e, t, errors);
+ if (e is InstanceCreationExpression) {
+ return _inferInstanceCreationExpression(e, t, errors);
+ }
+ errors.add("$e cannot be typed as $t");
+ return false;
+ }
+
+ /// If t1 = I<dynamic, ..., dynamic>, then look for a supertype
+ /// of t1 of the form K<S0, ..., Sm> where t2 = K<S0', ..., Sm'>
+ /// If the supertype exists, use the constraints S0 <: S0', ... Sm <: Sm'
+ /// to derive a concrete instantation for I of the form <T0, ..., Tn>,
+ /// such that I<T0, .., Tn> <: t2
+ List<DartType> _matchTypes(InterfaceType t1, InterfaceType t2) {
+ if (t1 == t2) return t2.typeArguments;
+ var tArgs1 = t1.typeArguments;
+ var tArgs2 = t2.typeArguments;
+ // If t1 isn't a raw type, bail out
+ if (tArgs1 != null && tArgs1.any((t) => !t.isDynamic)) return null;
+
+ // This is our inferred type argument list. We start at all dynamic,
+ // and fill in with inferred types when we reach a match.
+ var actuals =
+ new List<DartType>.filled(tArgs1.length, rules.provider.dynamicType);
+
+ // When we find the supertype of t1 with the same
+ // classname as t2 (see below), we have the following:
+ // If t1 is an instantiation of a class T1<X0, ..., Xn>
+ // and t2 is an instantiation of a class T2<Y0, ...., Ym>
+ // of the form t2 = T2<S0, ..., Sm>
+ // then we want to choose instantiations for the Xi
+ // T0, ..., Tn such that T1<T0, ..., Tn> <: t2 .
+ // To find this, we simply instantate T1 with
+ // X0, ..., Xn, and then find its superclass
+ // T2<T0', ..., Tn'>. We then solve the constraint
+ // set T0' <: S0, ..., Tn' <: Sn for the Xi.
+ // Currently, we only handle constraints where
+ // the Ti' is one of the Xi'. If there are multiple
+ // constraints on some Xi, we choose the lower of the
+ // two (if it exists).
+ bool permute(List<DartType> permutedArgs) {
+ if (permutedArgs == null) return false;
+ var ps = t1.typeParameters;
+ var ts = ps.map((p) => p.type).toList();
+ for (int i = 0; i < permutedArgs.length; i++) {
+ var tVar = permutedArgs[i];
+ var tActual = tArgs2[i];
+ var index = ts.indexOf(tVar);
+ if (index >= 0 && rules.isSubTypeOf(tActual, actuals[index])) {
+ actuals[index] = tActual;
+ }
+ }
+ return actuals.any((x) => !x.isDynamic);
+ }
+
+ // Look for the first supertype of t1 with the same class name as t2.
+ bool match(InterfaceType t1) {
+ if (t1.element == t2.element) {
+ return permute(t1.typeArguments);
+ }
+
+ if (t1 == rules.provider.objectType) return false;
+
+ if (match(t1.superclass)) return true;
+
+ for (final parent in t1.interfaces) {
+ if (match(parent)) return true;
+ }
+
+ for (final parent in t1.mixins) {
+ if (match(parent)) return true;
+ }
+ return false;
+ }
+
+ // We have that t1 = T1<dynamic, ..., dynamic>.
+ // To match t1 against t2, we use the uninstantiated version
+ // of t1, essentially treating it as an instantiation with
+ // fresh variables, and solve for the variables.
+ // t1.element.type will be of the form T1<X0, ..., Xn>
+ if (!match(t1.element.type)) return null;
+ var newT1 = t1.element.type.substitute4(actuals);
+ // If we found a solution, return it.
+ if (rules.isSubTypeOf(newT1, t2)) return actuals;
+ return null;
+ }
+
+ /// These assume that e is not already a subtype of t
+
+ bool _inferConditionalExpression(
+ ConditionalExpression e, DartType t, errors) {
+ return _inferExpression(e.thenExpression, t, errors) &&
+ _inferExpression(e.elseExpression, t, errors);
+ }
+
+ bool _inferParenthesizedExpression(
+ ParenthesizedExpression e, DartType t, errors) {
+ return _inferExpression(e.expression, t, errors);
+ }
+
+ bool _inferInstanceCreationExpression(
+ InstanceCreationExpression e, DartType t, errors) {
+ var arguments = e.argumentList.arguments;
+ var rawType = rules.getStaticType(e);
+ // rawType is the instantiated type of the instance
+ if (rawType is! InterfaceType) return false;
+ var type = (rawType as InterfaceType);
+ if (type.typeParameters == null ||
+ type.typeParameters.length == 0) return false;
+ if (e.constructorName.type == null) return false;
+ // classTypeName is the type name of the class being instantiated
+ var classTypeName = e.constructorName.type;
+ // Check that we were not passed any type arguments
+ if (classTypeName.typeArguments != null) return false;
+ // Infer type arguments
+ if (t is! InterfaceType) return false;
+ var targs = _matchTypes(type, t);
+ if (targs == null) return false;
+ if (e.staticElement == null) return false;
+ var constructorElement = e.staticElement;
+ // From the constructor element get:
+ // the instantiated type of the constructor, then
+ // the uninstantiated element for the constructor, then
+ // the uninstantiated type for the constructor
+ var rawConstructorElement =
+ constructorElement.type.element as ConstructorElement;
+ var baseType = rawConstructorElement.type;
+ if (baseType == null) return false;
+ // From the interface type (instantiated), get:
+ // the uninstantiated element, then
+ // the uninstantiated type, then
+ // the type arguments (aka the type parameters)
+ var tparams = type.element.type.typeArguments;
+ // Take the uninstantiated constructor type, and replace the type
+ // parameters with the inferred arguments.
+ var fType = baseType.substitute2(targs, tparams);
+ {
+ var rTypes = fType.normalParameterTypes;
+ var oTypes = fType.optionalParameterTypes;
+ var pTypes = new List.from(rTypes)..addAll(oTypes);
+ var pArgs = arguments.where((x) => x is! NamedExpression);
+ var pi = 0;
+ for (var arg in pArgs) {
+ if (pi >= pTypes.length) return false;
+ var argType = pTypes[pi];
+ if (!_inferExpression(arg, argType, errors)) return false;
+ pi++;
+ }
+ var nTypes = fType.namedParameterTypes;
+ for (var arg0 in arguments) {
+ if (arg0 is! NamedExpression) continue;
+ var arg = arg0 as NamedExpression;
+ SimpleIdentifier nameNode = arg.name.label;
+ String name = nameNode.name;
+ var argType = nTypes[name];
+ if (argType == null) return false;
+ if (!_inferExpression(arg, argType, errors)) return false;
+ }
+ }
+ annotateInstanceCreationExpression(e, targs);
+ return true;
+ }
+
+ bool _inferNamedExpression(NamedExpression e, DartType t, errors) {
+ return _inferExpression(e.expression, t, errors);
+ }
+
+ bool _inferFunctionExpression(FunctionExpression e, DartType t, errors) {
+ if (t is! FunctionType) return false;
+ var fType = t as FunctionType;
+ var eType = e.staticType as FunctionType;
+ if (eType is! FunctionType) return false;
+
+ // We have a function literal, so we can treat the arrow type
+ // as non-fuzzy. Since we're not improving on parameter types
+ // currently, if this check fails then we cannot succeed, so
+ // bail out. Otherwise, we never need to check the parameter types
+ // again.
+ if (!rules.isFunctionSubTypeOf(eType, fType,
+ fuzzyArrows: false, ignoreReturn: true)) return false;
+
+ // This only entered inference because of fuzzy typing.
+ // The function type is already specific enough, we can just
+ // succeed and treat it as a successful inference
+ if (rules.isSubTypeOf(eType.returnType, fType.returnType)) return true;
+
+ // Fuzzy typing again, handle the void case (not caught by the previous)
+ if (fType.returnType.isVoid) return true;
+
+ if (e.body is! ExpressionFunctionBody) return false;
+ var body = (e.body as ExpressionFunctionBody).expression;
+ if (!_inferExpression(body, fType.returnType, errors)) return false;
+
+ // TODO(leafp): Try narrowing the argument types if possible
+ // to get better code in the function body. This requires checking
+ // that the body is well-typed at the more specific type.
+
+ // At this point, we know that the parameter types are in the appropriate subtype
+ // relation, and we have checked that we can type the body at the appropriate return
+ // type, so we can are done.
+ annotateFunctionExpression(e, fType.returnType);
+ return true;
+ }
+
+ bool _inferListLiteral(ListLiteral e, DartType t, errors) {
+ var dyn = rules.provider.dynamicType;
+ var listT = rules.provider.listType.substitute4([dyn]);
+ // List <: t (using dart rules) must be true
+ if (!listT.isSubtypeOf(t)) return false;
+ // The list literal must have no type arguments
+ if (e.typeArguments != null) return false;
+ if (t is! InterfaceType) return false;
+ var targs = _matchTypes(listT, t);
+ if (targs == null) return false;
+ assert(targs.length == 1);
+ var etype = targs[0];
+ assert(!etype.isDynamic);
+ var elements = e.elements;
+ var b = elements.every((e) => _inferExpression(e, etype, errors));
+ if (b) annotateListLiteral(e, targs);
+ return b;
+ }
+
+ bool _inferMapLiteral(MapLiteral e, DartType t, errors) {
+ var dyn = rules.provider.dynamicType;
+ var mapT = rules.provider.mapType.substitute4([dyn, dyn]);
+ // Map <: t (using dart rules) must be true
+ if (!mapT.isSubtypeOf(t)) return false;
+ // The map literal must have no type arguments
+ if (e.typeArguments != null) return false;
+ if (t is! InterfaceType) return false;
+ var targs = _matchTypes(mapT, t);
+ if (targs == null) return false;
+ assert(targs.length == 2);
+ var kType = targs[0];
+ var vType = targs[1];
+ assert(!(kType.isDynamic && vType.isDynamic));
+ var entries = e.entries;
+ bool inferEntry(MapLiteralEntry entry) {
+ return _inferExpression(entry.key, kType, errors) &&
+ _inferExpression(entry.value, vType, errors);
+ }
+ var b = entries.every(inferEntry);
+ if (b) annotateMapLiteral(e, targs);
+ return b;
+ }
+}
« no previous file with comments | « packages/analyzer/lib/src/task/strong/info.dart ('k') | packages/analyzer/lib/task/model.dart » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698