| Index: skia/ext/convolver_unittest.cc
|
| diff --git a/skia/ext/convolver_unittest.cc b/skia/ext/convolver_unittest.cc
|
| deleted file mode 100644
|
| index e833b45a7139fd84c817a4789a84d17229082477..0000000000000000000000000000000000000000
|
| --- a/skia/ext/convolver_unittest.cc
|
| +++ /dev/null
|
| @@ -1,532 +0,0 @@
|
| -// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include <string.h>
|
| -#include <time.h>
|
| -#include <algorithm>
|
| -#include <numeric>
|
| -#include <vector>
|
| -
|
| -#include "base/basictypes.h"
|
| -#include "base/logging.h"
|
| -#include "base/time/time.h"
|
| -#include "skia/ext/convolver.h"
|
| -#include "testing/gtest/include/gtest/gtest.h"
|
| -#include "third_party/skia/include/core/SkBitmap.h"
|
| -#include "third_party/skia/include/core/SkColorPriv.h"
|
| -#include "third_party/skia/include/core/SkRect.h"
|
| -#include "third_party/skia/include/core/SkTypes.h"
|
| -
|
| -namespace skia {
|
| -
|
| -namespace {
|
| -
|
| -// Fills the given filter with impulse functions for the range 0->num_entries.
|
| -void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
|
| - float one = 1.0f;
|
| - for (int i = 0; i < num_entries; i++)
|
| - filter->AddFilter(i, &one, 1);
|
| -}
|
| -
|
| -// Filters the given input with the impulse function, and verifies that it
|
| -// does not change.
|
| -void TestImpulseConvolution(const unsigned char* data, int width, int height) {
|
| - int byte_count = width * height * 4;
|
| -
|
| - ConvolutionFilter1D filter_x;
|
| - FillImpulseFilter(width, &filter_x);
|
| -
|
| - ConvolutionFilter1D filter_y;
|
| - FillImpulseFilter(height, &filter_y);
|
| -
|
| - std::vector<unsigned char> output;
|
| - output.resize(byte_count);
|
| - BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
|
| - filter_x.num_values() * 4, &output[0], false);
|
| -
|
| - // Output should exactly match input.
|
| - EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
|
| -}
|
| -
|
| -// Fills the destination filter with a box filter averaging every two pixels
|
| -// to produce the output.
|
| -void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
|
| - const float box[2] = { 0.5, 0.5 };
|
| - for (int i = 0; i < size; i++)
|
| - filter->AddFilter(i * 2, box, 2);
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -// Tests that each pixel, when set and run through the impulse filter, does
|
| -// not change.
|
| -TEST(Convolver, Impulse) {
|
| - // We pick an "odd" size that is not likely to fit on any boundaries so that
|
| - // we can see if all the widths and paddings are handled properly.
|
| - int width = 15;
|
| - int height = 31;
|
| - int byte_count = width * height * 4;
|
| - std::vector<unsigned char> input;
|
| - input.resize(byte_count);
|
| -
|
| - unsigned char* input_ptr = &input[0];
|
| - for (int y = 0; y < height; y++) {
|
| - for (int x = 0; x < width; x++) {
|
| - for (int channel = 0; channel < 3; channel++) {
|
| - memset(input_ptr, 0, byte_count);
|
| - input_ptr[(y * width + x) * 4 + channel] = 0xff;
|
| - // Always set the alpha channel or it will attempt to "fix" it for us.
|
| - input_ptr[(y * width + x) * 4 + 3] = 0xff;
|
| - TestImpulseConvolution(input_ptr, width, height);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -// Tests that using a box filter to halve an image results in every square of 4
|
| -// pixels in the original get averaged to a pixel in the output.
|
| -TEST(Convolver, Halve) {
|
| - static const int kSize = 16;
|
| -
|
| - int src_width = kSize;
|
| - int src_height = kSize;
|
| - int src_row_stride = src_width * 4;
|
| - int src_byte_count = src_row_stride * src_height;
|
| - std::vector<unsigned char> input;
|
| - input.resize(src_byte_count);
|
| -
|
| - int dest_width = src_width / 2;
|
| - int dest_height = src_height / 2;
|
| - int dest_byte_count = dest_width * dest_height * 4;
|
| - std::vector<unsigned char> output;
|
| - output.resize(dest_byte_count);
|
| -
|
| - // First fill the array with a bunch of random data.
|
| - srand(static_cast<unsigned>(time(NULL)));
|
| - for (int i = 0; i < src_byte_count; i++)
|
| - input[i] = rand() * 255 / RAND_MAX;
|
| -
|
| - // Compute the filters.
|
| - ConvolutionFilter1D filter_x, filter_y;
|
| - FillBoxFilter(dest_width, &filter_x);
|
| - FillBoxFilter(dest_height, &filter_y);
|
| -
|
| - // Do the convolution.
|
| - BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y,
|
| - filter_x.num_values() * 4, &output[0], false);
|
| -
|
| - // Compute the expected results and check, allowing for a small difference
|
| - // to account for rounding errors.
|
| - for (int y = 0; y < dest_height; y++) {
|
| - for (int x = 0; x < dest_width; x++) {
|
| - for (int channel = 0; channel < 4; channel++) {
|
| - int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
|
| - int value = input[src_offset] + // Top left source pixel.
|
| - input[src_offset + 4] + // Top right source pixel.
|
| - input[src_offset + src_row_stride] + // Lower left.
|
| - input[src_offset + src_row_stride + 4]; // Lower right.
|
| - value /= 4; // Average.
|
| - int difference = value - output[(y * dest_width + x) * 4 + channel];
|
| - EXPECT_TRUE(difference >= -1 || difference <= 1);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -// Tests the optimization in Convolver1D::AddFilter that avoids storing
|
| -// leading/trailing zeroes.
|
| -TEST(Convolver, AddFilter) {
|
| - skia::ConvolutionFilter1D filter;
|
| -
|
| - const skia::ConvolutionFilter1D::Fixed* values = NULL;
|
| - int filter_offset = 0;
|
| - int filter_length = 0;
|
| -
|
| - // An all-zero filter is handled correctly, all factors ignored
|
| - static const float factors1[] = { 0.0f, 0.0f, 0.0f };
|
| - filter.AddFilter(11, factors1, arraysize(factors1));
|
| - ASSERT_EQ(0, filter.max_filter());
|
| - ASSERT_EQ(1, filter.num_values());
|
| -
|
| - values = filter.FilterForValue(0, &filter_offset, &filter_length);
|
| - ASSERT_TRUE(values == NULL); // No values => NULL.
|
| - ASSERT_EQ(11, filter_offset); // Same as input offset.
|
| - ASSERT_EQ(0, filter_length); // But no factors since all are zeroes.
|
| -
|
| - // Zeroes on the left are ignored
|
| - static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };
|
| - filter.AddFilter(22, factors2, arraysize(factors2));
|
| - ASSERT_EQ(4, filter.max_filter());
|
| - ASSERT_EQ(2, filter.num_values());
|
| -
|
| - values = filter.FilterForValue(1, &filter_offset, &filter_length);
|
| - ASSERT_TRUE(values != NULL);
|
| - ASSERT_EQ(23, filter_offset); // 22 plus 1 leading zero
|
| - ASSERT_EQ(4, filter_length); // 5 - 1 leading zero
|
| -
|
| - // Zeroes on the right are ignored
|
| - static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
|
| - filter.AddFilter(33, factors3, arraysize(factors3));
|
| - ASSERT_EQ(5, filter.max_filter());
|
| - ASSERT_EQ(3, filter.num_values());
|
| -
|
| - values = filter.FilterForValue(2, &filter_offset, &filter_length);
|
| - ASSERT_TRUE(values != NULL);
|
| - ASSERT_EQ(33, filter_offset); // 33, same as input due to no leading zero
|
| - ASSERT_EQ(5, filter_length); // 7 - 2 trailing zeroes
|
| -
|
| - // Zeroes in leading & trailing positions
|
| - static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
|
| - filter.AddFilter(44, factors4, arraysize(factors4));
|
| - ASSERT_EQ(5, filter.max_filter()); // No change from existing value.
|
| - ASSERT_EQ(4, filter.num_values());
|
| -
|
| - values = filter.FilterForValue(3, &filter_offset, &filter_length);
|
| - ASSERT_TRUE(values != NULL);
|
| - ASSERT_EQ(46, filter_offset); // 44 plus 2 leading zeroes
|
| - ASSERT_EQ(3, filter_length); // 7 - (2 leading + 2 trailing) zeroes
|
| -
|
| - // Zeroes surrounded by non-zero values are ignored
|
| - static const float factors5[] = { 0.0f, 0.0f,
|
| - 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
|
| - 0.0f };
|
| - filter.AddFilter(55, factors5, arraysize(factors5));
|
| - ASSERT_EQ(6, filter.max_filter());
|
| - ASSERT_EQ(5, filter.num_values());
|
| -
|
| - values = filter.FilterForValue(4, &filter_offset, &filter_length);
|
| - ASSERT_TRUE(values != NULL);
|
| - ASSERT_EQ(57, filter_offset); // 55 plus 2 leading zeroes
|
| - ASSERT_EQ(6, filter_length); // 9 - (2 leading + 1 trailing) zeroes
|
| -
|
| - // All-zero filters after the first one also work
|
| - static const float factors6[] = { 0.0f };
|
| - filter.AddFilter(66, factors6, arraysize(factors6));
|
| - ASSERT_EQ(6, filter.max_filter());
|
| - ASSERT_EQ(6, filter.num_values());
|
| -
|
| - values = filter.FilterForValue(5, &filter_offset, &filter_length);
|
| - ASSERT_TRUE(values == NULL); // filter_length == 0 => values is NULL
|
| - ASSERT_EQ(66, filter_offset); // value passed in
|
| - ASSERT_EQ(0, filter_length);
|
| -}
|
| -
|
| -void VerifySIMD(unsigned int source_width,
|
| - unsigned int source_height,
|
| - unsigned int dest_width,
|
| - unsigned int dest_height) {
|
| - float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f };
|
| - // Preparing convolve coefficients.
|
| - ConvolutionFilter1D x_filter, y_filter;
|
| - for (unsigned int p = 0; p < dest_width; ++p) {
|
| - unsigned int offset = source_width * p / dest_width;
|
| - EXPECT_LT(offset, source_width);
|
| - x_filter.AddFilter(offset, filter,
|
| - std::min<int>(arraysize(filter),
|
| - source_width - offset));
|
| - }
|
| - x_filter.PaddingForSIMD();
|
| - for (unsigned int p = 0; p < dest_height; ++p) {
|
| - unsigned int offset = source_height * p / dest_height;
|
| - y_filter.AddFilter(offset, filter,
|
| - std::min<int>(arraysize(filter),
|
| - source_height - offset));
|
| - }
|
| - y_filter.PaddingForSIMD();
|
| -
|
| - // Allocate input and output skia bitmap.
|
| - SkBitmap source, result_c, result_sse;
|
| - source.allocN32Pixels(source_width, source_height);
|
| - result_c.allocN32Pixels(dest_width, dest_height);
|
| - result_sse.allocN32Pixels(dest_width, dest_height);
|
| -
|
| - // Randomize source bitmap for testing.
|
| - unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels());
|
| - for (int y = 0; y < source.height(); y++) {
|
| - for (unsigned int x = 0; x < source.rowBytes(); x++)
|
| - src_ptr[x] = rand() % 255;
|
| - src_ptr += source.rowBytes();
|
| - }
|
| -
|
| - // Test both cases with different has_alpha.
|
| - for (int alpha = 0; alpha < 2; alpha++) {
|
| - // Convolve using C code.
|
| - base::TimeTicks resize_start;
|
| - base::TimeDelta delta_c, delta_sse;
|
| - unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels());
|
| - unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels());
|
| -
|
| - resize_start = base::TimeTicks::Now();
|
| - BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
|
| - static_cast<int>(source.rowBytes()),
|
| - (alpha != 0), x_filter, y_filter,
|
| - static_cast<int>(result_c.rowBytes()), r1, false);
|
| - delta_c = base::TimeTicks::Now() - resize_start;
|
| -
|
| - resize_start = base::TimeTicks::Now();
|
| - // Convolve using SSE2 code
|
| - BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
|
| - static_cast<int>(source.rowBytes()),
|
| - (alpha != 0), x_filter, y_filter,
|
| - static_cast<int>(result_sse.rowBytes()), r2, true);
|
| - delta_sse = base::TimeTicks::Now() - resize_start;
|
| -
|
| - // Unfortunately I could not enable the performance check now.
|
| - // Most bots use debug version, and there are great difference between
|
| - // the code generation for intrinsic, etc. In release version speed
|
| - // difference was 150%-200% depend on alpha channel presence;
|
| - // while in debug version speed difference was 96%-120%.
|
| - // TODO(jiesun): optimize further until we could enable this for
|
| - // debug version too.
|
| - // EXPECT_LE(delta_sse, delta_c);
|
| -
|
| - int64 c_us = delta_c.InMicroseconds();
|
| - int64 sse_us = delta_sse.InMicroseconds();
|
| - VLOG(1) << "from:" << source_width << "x" << source_height
|
| - << " to:" << dest_width << "x" << dest_height
|
| - << (alpha ? " with alpha" : " w/o alpha");
|
| - VLOG(1) << "c:" << c_us << " sse:" << sse_us;
|
| - VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us;
|
| -
|
| - // Comparing result.
|
| - for (unsigned int i = 0; i < dest_height; i++) {
|
| - EXPECT_FALSE(memcmp(r1, r2, dest_width * 4)); // RGBA always
|
| - r1 += result_c.rowBytes();
|
| - r2 += result_sse.rowBytes();
|
| - }
|
| - }
|
| -}
|
| -
|
| -TEST(Convolver, VerifySIMDEdgeCases) {
|
| - srand(static_cast<unsigned int>(time(0)));
|
| - // Loop over all possible (small) image sizes
|
| - for (unsigned int width = 1; width < 20; width++) {
|
| - for (unsigned int height = 1; height < 20; height++) {
|
| - VerifySIMD(width, height, 8, 8);
|
| - VerifySIMD(8, 8, width, height);
|
| - }
|
| - }
|
| -}
|
| -
|
| -// Verify that lage upscales/downscales produce the same result
|
| -// with and without SIMD.
|
| -TEST(Convolver, VerifySIMDPrecision) {
|
| - int source_sizes[][2] = { {1920, 1080}, {1377, 523}, {325, 241} };
|
| - int dest_sizes[][2] = { {1280, 1024}, {177, 123} };
|
| -
|
| - srand(static_cast<unsigned int>(time(0)));
|
| -
|
| - // Loop over some specific source and destination dimensions.
|
| - for (unsigned int i = 0; i < arraysize(source_sizes); ++i) {
|
| - unsigned int source_width = source_sizes[i][0];
|
| - unsigned int source_height = source_sizes[i][1];
|
| - for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) {
|
| - unsigned int dest_width = dest_sizes[j][0];
|
| - unsigned int dest_height = dest_sizes[j][1];
|
| - VerifySIMD(source_width, source_height, dest_width, dest_height);
|
| - }
|
| - }
|
| -}
|
| -
|
| -TEST(Convolver, SeparableSingleConvolution) {
|
| - static const int kImgWidth = 1024;
|
| - static const int kImgHeight = 1024;
|
| - static const int kChannelCount = 3;
|
| - static const int kStrideSlack = 22;
|
| - ConvolutionFilter1D filter;
|
| - const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
|
| - filter.AddFilter(0, box, 5);
|
| -
|
| - // Allocate a source image and set to 0.
|
| - const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
|
| - int src_byte_count = src_row_stride * kImgHeight;
|
| - std::vector<unsigned char> input;
|
| - const int signal_x = kImgWidth / 2;
|
| - const int signal_y = kImgHeight / 2;
|
| - input.resize(src_byte_count, 0);
|
| - // The image has a single impulse pixel in channel 1, smack in the middle.
|
| - const int non_zero_pixel_index =
|
| - signal_y * src_row_stride + signal_x * kChannelCount + 1;
|
| - input[non_zero_pixel_index] = 255;
|
| -
|
| - // Destination will be a single channel image with stide matching width.
|
| - const int dest_row_stride = kImgWidth;
|
| - const int dest_byte_count = dest_row_stride * kImgHeight;
|
| - std::vector<unsigned char> output;
|
| - output.resize(dest_byte_count);
|
| -
|
| - // Apply convolution in X.
|
| - SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
|
| - filter, SkISize::Make(kImgWidth, kImgHeight),
|
| - &output[0], dest_row_stride, 0, 1, false);
|
| - for (int x = signal_x - 2; x <= signal_x + 2; ++x)
|
| - EXPECT_GT(output[signal_y * dest_row_stride + x], 0);
|
| -
|
| - EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0);
|
| - EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0);
|
| -
|
| - // Apply convolution in Y.
|
| - SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
|
| - filter, SkISize::Make(kImgWidth, kImgHeight),
|
| - &output[0], dest_row_stride, 0, 1, false);
|
| - for (int y = signal_y - 2; y <= signal_y + 2; ++y)
|
| - EXPECT_GT(output[y * dest_row_stride + signal_x], 0);
|
| -
|
| - EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0);
|
| - EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0);
|
| -
|
| - EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0);
|
| - EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0);
|
| -
|
| - // The main point of calling this is to invoke the routine on input without
|
| - // padding.
|
| - std::vector<unsigned char> output2;
|
| - output2.resize(dest_byte_count);
|
| - SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1,
|
| - filter, SkISize::Make(kImgWidth, kImgHeight),
|
| - &output2[0], dest_row_stride, 0, 1, false);
|
| - // This should be a result of 2D convolution.
|
| - for (int x = signal_x - 2; x <= signal_x + 2; ++x) {
|
| - for (int y = signal_y - 2; y <= signal_y + 2; ++y)
|
| - EXPECT_GT(output2[y * dest_row_stride + x], 0);
|
| - }
|
| - EXPECT_EQ(output2[0], 0);
|
| - EXPECT_EQ(output2[dest_row_stride - 1], 0);
|
| - EXPECT_EQ(output2[dest_byte_count - 1], 0);
|
| -}
|
| -
|
| -TEST(Convolver, SeparableSingleConvolutionEdges) {
|
| - // The purpose of this test is to check if the implementation treats correctly
|
| - // edges of the image.
|
| - static const int kImgWidth = 600;
|
| - static const int kImgHeight = 800;
|
| - static const int kChannelCount = 3;
|
| - static const int kStrideSlack = 22;
|
| - static const int kChannel = 1;
|
| - ConvolutionFilter1D filter;
|
| - const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
|
| - filter.AddFilter(0, box, 5);
|
| -
|
| - // Allocate a source image and set to 0.
|
| - int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
|
| - int src_byte_count = src_row_stride * kImgHeight;
|
| - std::vector<unsigned char> input(src_byte_count);
|
| -
|
| - // Draw a frame around the image.
|
| - for (int i = 0; i < src_byte_count; ++i) {
|
| - int row = i / src_row_stride;
|
| - int col = i % src_row_stride / kChannelCount;
|
| - int channel = i % src_row_stride % kChannelCount;
|
| - if (channel != kChannel || col > kImgWidth) {
|
| - input[i] = 255;
|
| - } else if (row == 0 || col == 0 ||
|
| - col == kImgWidth - 1 || row == kImgHeight - 1) {
|
| - input[i] = 100;
|
| - } else if (row == 1 || col == 1 ||
|
| - col == kImgWidth - 2 || row == kImgHeight - 2) {
|
| - input[i] = 200;
|
| - } else {
|
| - input[i] = 0;
|
| - }
|
| - }
|
| -
|
| - // Destination will be a single channel image with stide matching width.
|
| - int dest_row_stride = kImgWidth;
|
| - int dest_byte_count = dest_row_stride * kImgHeight;
|
| - std::vector<unsigned char> output;
|
| - output.resize(dest_byte_count);
|
| -
|
| - // Apply convolution in X.
|
| - SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
|
| - filter, SkISize::Make(kImgWidth, kImgHeight),
|
| - &output[0], dest_row_stride, 0, 1, false);
|
| -
|
| - // Sadly, comparison is not as simple as retaining all values.
|
| - int invalid_values = 0;
|
| - const unsigned char first_value = output[0];
|
| - EXPECT_NEAR(first_value, 100, 1);
|
| - for (int i = 0; i < dest_row_stride; ++i) {
|
| - if (output[i] != first_value)
|
| - ++invalid_values;
|
| - }
|
| - EXPECT_EQ(0, invalid_values);
|
| -
|
| - int test_row = 22;
|
| - EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1);
|
| - EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1);
|
| - EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1);
|
| - EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1);
|
| - EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1);
|
| - EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1);
|
| - EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1);
|
| - EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1);
|
| -
|
| - SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
|
| - filter, SkISize::Make(kImgWidth, kImgHeight),
|
| - &output[0], dest_row_stride, 0, 1, false);
|
| -
|
| - int test_column = 42;
|
| - EXPECT_NEAR(output[test_column], 100, 1);
|
| - EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1);
|
| - EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1);
|
| - EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1);
|
| -
|
| - EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1);
|
| - EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1);
|
| - EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1);
|
| - EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1);
|
| -}
|
| -
|
| -TEST(Convolver, SetUpGaussianConvolutionFilter) {
|
| - ConvolutionFilter1D smoothing_filter;
|
| - ConvolutionFilter1D gradient_filter;
|
| - SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false);
|
| - SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true);
|
| -
|
| - int specified_filter_length;
|
| - int filter_offset;
|
| - int filter_length;
|
| -
|
| - const ConvolutionFilter1D::Fixed* smoothing_kernel =
|
| - smoothing_filter.GetSingleFilter(
|
| - &specified_filter_length, &filter_offset, &filter_length);
|
| - EXPECT_TRUE(smoothing_kernel);
|
| - std::vector<float> fp_smoothing_kernel(filter_length);
|
| - std::transform(smoothing_kernel,
|
| - smoothing_kernel + filter_length,
|
| - fp_smoothing_kernel.begin(),
|
| - ConvolutionFilter1D::FixedToFloat);
|
| - // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[.
|
| - EXPECT_NEAR(std::accumulate(
|
| - fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f),
|
| - 1.0f, 0.01f);
|
| - EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(),
|
| - fp_smoothing_kernel.end()), 0.0f);
|
| - EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(),
|
| - fp_smoothing_kernel.end()), 1.0f);
|
| -
|
| - const ConvolutionFilter1D::Fixed* gradient_kernel =
|
| - gradient_filter.GetSingleFilter(
|
| - &specified_filter_length, &filter_offset, &filter_length);
|
| - EXPECT_TRUE(gradient_kernel);
|
| - std::vector<float> fp_gradient_kernel(filter_length);
|
| - std::transform(gradient_kernel,
|
| - gradient_kernel + filter_length,
|
| - fp_gradient_kernel.begin(),
|
| - ConvolutionFilter1D::FixedToFloat);
|
| - // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[.
|
| - EXPECT_NEAR(std::accumulate(
|
| - fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f),
|
| - 0.0f, 0.01f);
|
| - EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(),
|
| - fp_gradient_kernel.end()), -1.5f);
|
| - EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(),
|
| - fp_gradient_kernel.end()), 0.0f);
|
| - EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(),
|
| - fp_gradient_kernel.end()), 1.5f);
|
| - EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(),
|
| - fp_gradient_kernel.end()), 0.0f);
|
| -}
|
| -
|
| -} // namespace skia
|
|
|