OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <string.h> | |
6 #include <time.h> | |
7 #include <algorithm> | |
8 #include <numeric> | |
9 #include <vector> | |
10 | |
11 #include "base/basictypes.h" | |
12 #include "base/logging.h" | |
13 #include "base/time/time.h" | |
14 #include "skia/ext/convolver.h" | |
15 #include "testing/gtest/include/gtest/gtest.h" | |
16 #include "third_party/skia/include/core/SkBitmap.h" | |
17 #include "third_party/skia/include/core/SkColorPriv.h" | |
18 #include "third_party/skia/include/core/SkRect.h" | |
19 #include "third_party/skia/include/core/SkTypes.h" | |
20 | |
21 namespace skia { | |
22 | |
23 namespace { | |
24 | |
25 // Fills the given filter with impulse functions for the range 0->num_entries. | |
26 void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) { | |
27 float one = 1.0f; | |
28 for (int i = 0; i < num_entries; i++) | |
29 filter->AddFilter(i, &one, 1); | |
30 } | |
31 | |
32 // Filters the given input with the impulse function, and verifies that it | |
33 // does not change. | |
34 void TestImpulseConvolution(const unsigned char* data, int width, int height) { | |
35 int byte_count = width * height * 4; | |
36 | |
37 ConvolutionFilter1D filter_x; | |
38 FillImpulseFilter(width, &filter_x); | |
39 | |
40 ConvolutionFilter1D filter_y; | |
41 FillImpulseFilter(height, &filter_y); | |
42 | |
43 std::vector<unsigned char> output; | |
44 output.resize(byte_count); | |
45 BGRAConvolve2D(data, width * 4, true, filter_x, filter_y, | |
46 filter_x.num_values() * 4, &output[0], false); | |
47 | |
48 // Output should exactly match input. | |
49 EXPECT_EQ(0, memcmp(data, &output[0], byte_count)); | |
50 } | |
51 | |
52 // Fills the destination filter with a box filter averaging every two pixels | |
53 // to produce the output. | |
54 void FillBoxFilter(int size, ConvolutionFilter1D* filter) { | |
55 const float box[2] = { 0.5, 0.5 }; | |
56 for (int i = 0; i < size; i++) | |
57 filter->AddFilter(i * 2, box, 2); | |
58 } | |
59 | |
60 } // namespace | |
61 | |
62 // Tests that each pixel, when set and run through the impulse filter, does | |
63 // not change. | |
64 TEST(Convolver, Impulse) { | |
65 // We pick an "odd" size that is not likely to fit on any boundaries so that | |
66 // we can see if all the widths and paddings are handled properly. | |
67 int width = 15; | |
68 int height = 31; | |
69 int byte_count = width * height * 4; | |
70 std::vector<unsigned char> input; | |
71 input.resize(byte_count); | |
72 | |
73 unsigned char* input_ptr = &input[0]; | |
74 for (int y = 0; y < height; y++) { | |
75 for (int x = 0; x < width; x++) { | |
76 for (int channel = 0; channel < 3; channel++) { | |
77 memset(input_ptr, 0, byte_count); | |
78 input_ptr[(y * width + x) * 4 + channel] = 0xff; | |
79 // Always set the alpha channel or it will attempt to "fix" it for us. | |
80 input_ptr[(y * width + x) * 4 + 3] = 0xff; | |
81 TestImpulseConvolution(input_ptr, width, height); | |
82 } | |
83 } | |
84 } | |
85 } | |
86 | |
87 // Tests that using a box filter to halve an image results in every square of 4 | |
88 // pixels in the original get averaged to a pixel in the output. | |
89 TEST(Convolver, Halve) { | |
90 static const int kSize = 16; | |
91 | |
92 int src_width = kSize; | |
93 int src_height = kSize; | |
94 int src_row_stride = src_width * 4; | |
95 int src_byte_count = src_row_stride * src_height; | |
96 std::vector<unsigned char> input; | |
97 input.resize(src_byte_count); | |
98 | |
99 int dest_width = src_width / 2; | |
100 int dest_height = src_height / 2; | |
101 int dest_byte_count = dest_width * dest_height * 4; | |
102 std::vector<unsigned char> output; | |
103 output.resize(dest_byte_count); | |
104 | |
105 // First fill the array with a bunch of random data. | |
106 srand(static_cast<unsigned>(time(NULL))); | |
107 for (int i = 0; i < src_byte_count; i++) | |
108 input[i] = rand() * 255 / RAND_MAX; | |
109 | |
110 // Compute the filters. | |
111 ConvolutionFilter1D filter_x, filter_y; | |
112 FillBoxFilter(dest_width, &filter_x); | |
113 FillBoxFilter(dest_height, &filter_y); | |
114 | |
115 // Do the convolution. | |
116 BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y, | |
117 filter_x.num_values() * 4, &output[0], false); | |
118 | |
119 // Compute the expected results and check, allowing for a small difference | |
120 // to account for rounding errors. | |
121 for (int y = 0; y < dest_height; y++) { | |
122 for (int x = 0; x < dest_width; x++) { | |
123 for (int channel = 0; channel < 4; channel++) { | |
124 int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel; | |
125 int value = input[src_offset] + // Top left source pixel. | |
126 input[src_offset + 4] + // Top right source pixel. | |
127 input[src_offset + src_row_stride] + // Lower left. | |
128 input[src_offset + src_row_stride + 4]; // Lower right. | |
129 value /= 4; // Average. | |
130 int difference = value - output[(y * dest_width + x) * 4 + channel]; | |
131 EXPECT_TRUE(difference >= -1 || difference <= 1); | |
132 } | |
133 } | |
134 } | |
135 } | |
136 | |
137 // Tests the optimization in Convolver1D::AddFilter that avoids storing | |
138 // leading/trailing zeroes. | |
139 TEST(Convolver, AddFilter) { | |
140 skia::ConvolutionFilter1D filter; | |
141 | |
142 const skia::ConvolutionFilter1D::Fixed* values = NULL; | |
143 int filter_offset = 0; | |
144 int filter_length = 0; | |
145 | |
146 // An all-zero filter is handled correctly, all factors ignored | |
147 static const float factors1[] = { 0.0f, 0.0f, 0.0f }; | |
148 filter.AddFilter(11, factors1, arraysize(factors1)); | |
149 ASSERT_EQ(0, filter.max_filter()); | |
150 ASSERT_EQ(1, filter.num_values()); | |
151 | |
152 values = filter.FilterForValue(0, &filter_offset, &filter_length); | |
153 ASSERT_TRUE(values == NULL); // No values => NULL. | |
154 ASSERT_EQ(11, filter_offset); // Same as input offset. | |
155 ASSERT_EQ(0, filter_length); // But no factors since all are zeroes. | |
156 | |
157 // Zeroes on the left are ignored | |
158 static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f }; | |
159 filter.AddFilter(22, factors2, arraysize(factors2)); | |
160 ASSERT_EQ(4, filter.max_filter()); | |
161 ASSERT_EQ(2, filter.num_values()); | |
162 | |
163 values = filter.FilterForValue(1, &filter_offset, &filter_length); | |
164 ASSERT_TRUE(values != NULL); | |
165 ASSERT_EQ(23, filter_offset); // 22 plus 1 leading zero | |
166 ASSERT_EQ(4, filter_length); // 5 - 1 leading zero | |
167 | |
168 // Zeroes on the right are ignored | |
169 static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f }; | |
170 filter.AddFilter(33, factors3, arraysize(factors3)); | |
171 ASSERT_EQ(5, filter.max_filter()); | |
172 ASSERT_EQ(3, filter.num_values()); | |
173 | |
174 values = filter.FilterForValue(2, &filter_offset, &filter_length); | |
175 ASSERT_TRUE(values != NULL); | |
176 ASSERT_EQ(33, filter_offset); // 33, same as input due to no leading zero | |
177 ASSERT_EQ(5, filter_length); // 7 - 2 trailing zeroes | |
178 | |
179 // Zeroes in leading & trailing positions | |
180 static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f }; | |
181 filter.AddFilter(44, factors4, arraysize(factors4)); | |
182 ASSERT_EQ(5, filter.max_filter()); // No change from existing value. | |
183 ASSERT_EQ(4, filter.num_values()); | |
184 | |
185 values = filter.FilterForValue(3, &filter_offset, &filter_length); | |
186 ASSERT_TRUE(values != NULL); | |
187 ASSERT_EQ(46, filter_offset); // 44 plus 2 leading zeroes | |
188 ASSERT_EQ(3, filter_length); // 7 - (2 leading + 2 trailing) zeroes | |
189 | |
190 // Zeroes surrounded by non-zero values are ignored | |
191 static const float factors5[] = { 0.0f, 0.0f, | |
192 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, | |
193 0.0f }; | |
194 filter.AddFilter(55, factors5, arraysize(factors5)); | |
195 ASSERT_EQ(6, filter.max_filter()); | |
196 ASSERT_EQ(5, filter.num_values()); | |
197 | |
198 values = filter.FilterForValue(4, &filter_offset, &filter_length); | |
199 ASSERT_TRUE(values != NULL); | |
200 ASSERT_EQ(57, filter_offset); // 55 plus 2 leading zeroes | |
201 ASSERT_EQ(6, filter_length); // 9 - (2 leading + 1 trailing) zeroes | |
202 | |
203 // All-zero filters after the first one also work | |
204 static const float factors6[] = { 0.0f }; | |
205 filter.AddFilter(66, factors6, arraysize(factors6)); | |
206 ASSERT_EQ(6, filter.max_filter()); | |
207 ASSERT_EQ(6, filter.num_values()); | |
208 | |
209 values = filter.FilterForValue(5, &filter_offset, &filter_length); | |
210 ASSERT_TRUE(values == NULL); // filter_length == 0 => values is NULL | |
211 ASSERT_EQ(66, filter_offset); // value passed in | |
212 ASSERT_EQ(0, filter_length); | |
213 } | |
214 | |
215 void VerifySIMD(unsigned int source_width, | |
216 unsigned int source_height, | |
217 unsigned int dest_width, | |
218 unsigned int dest_height) { | |
219 float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f }; | |
220 // Preparing convolve coefficients. | |
221 ConvolutionFilter1D x_filter, y_filter; | |
222 for (unsigned int p = 0; p < dest_width; ++p) { | |
223 unsigned int offset = source_width * p / dest_width; | |
224 EXPECT_LT(offset, source_width); | |
225 x_filter.AddFilter(offset, filter, | |
226 std::min<int>(arraysize(filter), | |
227 source_width - offset)); | |
228 } | |
229 x_filter.PaddingForSIMD(); | |
230 for (unsigned int p = 0; p < dest_height; ++p) { | |
231 unsigned int offset = source_height * p / dest_height; | |
232 y_filter.AddFilter(offset, filter, | |
233 std::min<int>(arraysize(filter), | |
234 source_height - offset)); | |
235 } | |
236 y_filter.PaddingForSIMD(); | |
237 | |
238 // Allocate input and output skia bitmap. | |
239 SkBitmap source, result_c, result_sse; | |
240 source.allocN32Pixels(source_width, source_height); | |
241 result_c.allocN32Pixels(dest_width, dest_height); | |
242 result_sse.allocN32Pixels(dest_width, dest_height); | |
243 | |
244 // Randomize source bitmap for testing. | |
245 unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels()); | |
246 for (int y = 0; y < source.height(); y++) { | |
247 for (unsigned int x = 0; x < source.rowBytes(); x++) | |
248 src_ptr[x] = rand() % 255; | |
249 src_ptr += source.rowBytes(); | |
250 } | |
251 | |
252 // Test both cases with different has_alpha. | |
253 for (int alpha = 0; alpha < 2; alpha++) { | |
254 // Convolve using C code. | |
255 base::TimeTicks resize_start; | |
256 base::TimeDelta delta_c, delta_sse; | |
257 unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels()); | |
258 unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels()); | |
259 | |
260 resize_start = base::TimeTicks::Now(); | |
261 BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()), | |
262 static_cast<int>(source.rowBytes()), | |
263 (alpha != 0), x_filter, y_filter, | |
264 static_cast<int>(result_c.rowBytes()), r1, false); | |
265 delta_c = base::TimeTicks::Now() - resize_start; | |
266 | |
267 resize_start = base::TimeTicks::Now(); | |
268 // Convolve using SSE2 code | |
269 BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()), | |
270 static_cast<int>(source.rowBytes()), | |
271 (alpha != 0), x_filter, y_filter, | |
272 static_cast<int>(result_sse.rowBytes()), r2, true); | |
273 delta_sse = base::TimeTicks::Now() - resize_start; | |
274 | |
275 // Unfortunately I could not enable the performance check now. | |
276 // Most bots use debug version, and there are great difference between | |
277 // the code generation for intrinsic, etc. In release version speed | |
278 // difference was 150%-200% depend on alpha channel presence; | |
279 // while in debug version speed difference was 96%-120%. | |
280 // TODO(jiesun): optimize further until we could enable this for | |
281 // debug version too. | |
282 // EXPECT_LE(delta_sse, delta_c); | |
283 | |
284 int64 c_us = delta_c.InMicroseconds(); | |
285 int64 sse_us = delta_sse.InMicroseconds(); | |
286 VLOG(1) << "from:" << source_width << "x" << source_height | |
287 << " to:" << dest_width << "x" << dest_height | |
288 << (alpha ? " with alpha" : " w/o alpha"); | |
289 VLOG(1) << "c:" << c_us << " sse:" << sse_us; | |
290 VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us; | |
291 | |
292 // Comparing result. | |
293 for (unsigned int i = 0; i < dest_height; i++) { | |
294 EXPECT_FALSE(memcmp(r1, r2, dest_width * 4)); // RGBA always | |
295 r1 += result_c.rowBytes(); | |
296 r2 += result_sse.rowBytes(); | |
297 } | |
298 } | |
299 } | |
300 | |
301 TEST(Convolver, VerifySIMDEdgeCases) { | |
302 srand(static_cast<unsigned int>(time(0))); | |
303 // Loop over all possible (small) image sizes | |
304 for (unsigned int width = 1; width < 20; width++) { | |
305 for (unsigned int height = 1; height < 20; height++) { | |
306 VerifySIMD(width, height, 8, 8); | |
307 VerifySIMD(8, 8, width, height); | |
308 } | |
309 } | |
310 } | |
311 | |
312 // Verify that lage upscales/downscales produce the same result | |
313 // with and without SIMD. | |
314 TEST(Convolver, VerifySIMDPrecision) { | |
315 int source_sizes[][2] = { {1920, 1080}, {1377, 523}, {325, 241} }; | |
316 int dest_sizes[][2] = { {1280, 1024}, {177, 123} }; | |
317 | |
318 srand(static_cast<unsigned int>(time(0))); | |
319 | |
320 // Loop over some specific source and destination dimensions. | |
321 for (unsigned int i = 0; i < arraysize(source_sizes); ++i) { | |
322 unsigned int source_width = source_sizes[i][0]; | |
323 unsigned int source_height = source_sizes[i][1]; | |
324 for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) { | |
325 unsigned int dest_width = dest_sizes[j][0]; | |
326 unsigned int dest_height = dest_sizes[j][1]; | |
327 VerifySIMD(source_width, source_height, dest_width, dest_height); | |
328 } | |
329 } | |
330 } | |
331 | |
332 TEST(Convolver, SeparableSingleConvolution) { | |
333 static const int kImgWidth = 1024; | |
334 static const int kImgHeight = 1024; | |
335 static const int kChannelCount = 3; | |
336 static const int kStrideSlack = 22; | |
337 ConvolutionFilter1D filter; | |
338 const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f }; | |
339 filter.AddFilter(0, box, 5); | |
340 | |
341 // Allocate a source image and set to 0. | |
342 const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack; | |
343 int src_byte_count = src_row_stride * kImgHeight; | |
344 std::vector<unsigned char> input; | |
345 const int signal_x = kImgWidth / 2; | |
346 const int signal_y = kImgHeight / 2; | |
347 input.resize(src_byte_count, 0); | |
348 // The image has a single impulse pixel in channel 1, smack in the middle. | |
349 const int non_zero_pixel_index = | |
350 signal_y * src_row_stride + signal_x * kChannelCount + 1; | |
351 input[non_zero_pixel_index] = 255; | |
352 | |
353 // Destination will be a single channel image with stide matching width. | |
354 const int dest_row_stride = kImgWidth; | |
355 const int dest_byte_count = dest_row_stride * kImgHeight; | |
356 std::vector<unsigned char> output; | |
357 output.resize(dest_byte_count); | |
358 | |
359 // Apply convolution in X. | |
360 SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, | |
361 filter, SkISize::Make(kImgWidth, kImgHeight), | |
362 &output[0], dest_row_stride, 0, 1, false); | |
363 for (int x = signal_x - 2; x <= signal_x + 2; ++x) | |
364 EXPECT_GT(output[signal_y * dest_row_stride + x], 0); | |
365 | |
366 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0); | |
367 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0); | |
368 | |
369 // Apply convolution in Y. | |
370 SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, | |
371 filter, SkISize::Make(kImgWidth, kImgHeight), | |
372 &output[0], dest_row_stride, 0, 1, false); | |
373 for (int y = signal_y - 2; y <= signal_y + 2; ++y) | |
374 EXPECT_GT(output[y * dest_row_stride + signal_x], 0); | |
375 | |
376 EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0); | |
377 EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0); | |
378 | |
379 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0); | |
380 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0); | |
381 | |
382 // The main point of calling this is to invoke the routine on input without | |
383 // padding. | |
384 std::vector<unsigned char> output2; | |
385 output2.resize(dest_byte_count); | |
386 SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1, | |
387 filter, SkISize::Make(kImgWidth, kImgHeight), | |
388 &output2[0], dest_row_stride, 0, 1, false); | |
389 // This should be a result of 2D convolution. | |
390 for (int x = signal_x - 2; x <= signal_x + 2; ++x) { | |
391 for (int y = signal_y - 2; y <= signal_y + 2; ++y) | |
392 EXPECT_GT(output2[y * dest_row_stride + x], 0); | |
393 } | |
394 EXPECT_EQ(output2[0], 0); | |
395 EXPECT_EQ(output2[dest_row_stride - 1], 0); | |
396 EXPECT_EQ(output2[dest_byte_count - 1], 0); | |
397 } | |
398 | |
399 TEST(Convolver, SeparableSingleConvolutionEdges) { | |
400 // The purpose of this test is to check if the implementation treats correctly | |
401 // edges of the image. | |
402 static const int kImgWidth = 600; | |
403 static const int kImgHeight = 800; | |
404 static const int kChannelCount = 3; | |
405 static const int kStrideSlack = 22; | |
406 static const int kChannel = 1; | |
407 ConvolutionFilter1D filter; | |
408 const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f }; | |
409 filter.AddFilter(0, box, 5); | |
410 | |
411 // Allocate a source image and set to 0. | |
412 int src_row_stride = kImgWidth * kChannelCount + kStrideSlack; | |
413 int src_byte_count = src_row_stride * kImgHeight; | |
414 std::vector<unsigned char> input(src_byte_count); | |
415 | |
416 // Draw a frame around the image. | |
417 for (int i = 0; i < src_byte_count; ++i) { | |
418 int row = i / src_row_stride; | |
419 int col = i % src_row_stride / kChannelCount; | |
420 int channel = i % src_row_stride % kChannelCount; | |
421 if (channel != kChannel || col > kImgWidth) { | |
422 input[i] = 255; | |
423 } else if (row == 0 || col == 0 || | |
424 col == kImgWidth - 1 || row == kImgHeight - 1) { | |
425 input[i] = 100; | |
426 } else if (row == 1 || col == 1 || | |
427 col == kImgWidth - 2 || row == kImgHeight - 2) { | |
428 input[i] = 200; | |
429 } else { | |
430 input[i] = 0; | |
431 } | |
432 } | |
433 | |
434 // Destination will be a single channel image with stide matching width. | |
435 int dest_row_stride = kImgWidth; | |
436 int dest_byte_count = dest_row_stride * kImgHeight; | |
437 std::vector<unsigned char> output; | |
438 output.resize(dest_byte_count); | |
439 | |
440 // Apply convolution in X. | |
441 SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, | |
442 filter, SkISize::Make(kImgWidth, kImgHeight), | |
443 &output[0], dest_row_stride, 0, 1, false); | |
444 | |
445 // Sadly, comparison is not as simple as retaining all values. | |
446 int invalid_values = 0; | |
447 const unsigned char first_value = output[0]; | |
448 EXPECT_NEAR(first_value, 100, 1); | |
449 for (int i = 0; i < dest_row_stride; ++i) { | |
450 if (output[i] != first_value) | |
451 ++invalid_values; | |
452 } | |
453 EXPECT_EQ(0, invalid_values); | |
454 | |
455 int test_row = 22; | |
456 EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1); | |
457 EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1); | |
458 EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1); | |
459 EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1); | |
460 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1); | |
461 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1); | |
462 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1); | |
463 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1); | |
464 | |
465 SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, | |
466 filter, SkISize::Make(kImgWidth, kImgHeight), | |
467 &output[0], dest_row_stride, 0, 1, false); | |
468 | |
469 int test_column = 42; | |
470 EXPECT_NEAR(output[test_column], 100, 1); | |
471 EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1); | |
472 EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1); | |
473 EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1); | |
474 | |
475 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1); | |
476 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1); | |
477 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1); | |
478 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1); | |
479 } | |
480 | |
481 TEST(Convolver, SetUpGaussianConvolutionFilter) { | |
482 ConvolutionFilter1D smoothing_filter; | |
483 ConvolutionFilter1D gradient_filter; | |
484 SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false); | |
485 SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true); | |
486 | |
487 int specified_filter_length; | |
488 int filter_offset; | |
489 int filter_length; | |
490 | |
491 const ConvolutionFilter1D::Fixed* smoothing_kernel = | |
492 smoothing_filter.GetSingleFilter( | |
493 &specified_filter_length, &filter_offset, &filter_length); | |
494 EXPECT_TRUE(smoothing_kernel); | |
495 std::vector<float> fp_smoothing_kernel(filter_length); | |
496 std::transform(smoothing_kernel, | |
497 smoothing_kernel + filter_length, | |
498 fp_smoothing_kernel.begin(), | |
499 ConvolutionFilter1D::FixedToFloat); | |
500 // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[. | |
501 EXPECT_NEAR(std::accumulate( | |
502 fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f), | |
503 1.0f, 0.01f); | |
504 EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(), | |
505 fp_smoothing_kernel.end()), 0.0f); | |
506 EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(), | |
507 fp_smoothing_kernel.end()), 1.0f); | |
508 | |
509 const ConvolutionFilter1D::Fixed* gradient_kernel = | |
510 gradient_filter.GetSingleFilter( | |
511 &specified_filter_length, &filter_offset, &filter_length); | |
512 EXPECT_TRUE(gradient_kernel); | |
513 std::vector<float> fp_gradient_kernel(filter_length); | |
514 std::transform(gradient_kernel, | |
515 gradient_kernel + filter_length, | |
516 fp_gradient_kernel.begin(), | |
517 ConvolutionFilter1D::FixedToFloat); | |
518 // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[. | |
519 EXPECT_NEAR(std::accumulate( | |
520 fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f), | |
521 0.0f, 0.01f); | |
522 EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(), | |
523 fp_gradient_kernel.end()), -1.5f); | |
524 EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(), | |
525 fp_gradient_kernel.end()), 0.0f); | |
526 EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(), | |
527 fp_gradient_kernel.end()), 1.5f); | |
528 EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(), | |
529 fp_gradient_kernel.end()), 0.0f); | |
530 } | |
531 | |
532 } // namespace skia | |
OLD | NEW |