| Index: skia/ext/convolver.cc
|
| diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc
|
| deleted file mode 100644
|
| index 092fefaa9b6692914163a45743e0bc73bd40f0f0..0000000000000000000000000000000000000000
|
| --- a/skia/ext/convolver.cc
|
| +++ /dev/null
|
| @@ -1,713 +0,0 @@
|
| -// Copyright (c) 2011 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include "base/logging.h"
|
| -#include "skia/ext/convolver.h"
|
| -#include "skia/ext/convolver_SSE2.h"
|
| -#include "skia/ext/convolver_mips_dspr2.h"
|
| -#include "third_party/skia/include/core/SkSize.h"
|
| -#include "third_party/skia/include/core/SkTypes.h"
|
| -
|
| -namespace skia {
|
| -
|
| -namespace {
|
| -
|
| -// Converts the argument to an 8-bit unsigned value by clamping to the range
|
| -// 0-255.
|
| -inline unsigned char ClampTo8(int a) {
|
| - if (static_cast<unsigned>(a) < 256)
|
| - return a; // Avoid the extra check in the common case.
|
| - if (a < 0)
|
| - return 0;
|
| - return 255;
|
| -}
|
| -
|
| -// Takes the value produced by accumulating element-wise product of image with
|
| -// a kernel and brings it back into range.
|
| -// All of the filter scaling factors are in fixed point with kShiftBits bits of
|
| -// fractional part.
|
| -inline unsigned char BringBackTo8(int a, bool take_absolute) {
|
| - a >>= ConvolutionFilter1D::kShiftBits;
|
| - if (take_absolute)
|
| - a = std::abs(a);
|
| - return ClampTo8(a);
|
| -}
|
| -
|
| -// Stores a list of rows in a circular buffer. The usage is you write into it
|
| -// by calling AdvanceRow. It will keep track of which row in the buffer it
|
| -// should use next, and the total number of rows added.
|
| -class CircularRowBuffer {
|
| - public:
|
| - // The number of pixels in each row is given in |source_row_pixel_width|.
|
| - // The maximum number of rows needed in the buffer is |max_y_filter_size|
|
| - // (we only need to store enough rows for the biggest filter).
|
| - //
|
| - // We use the |first_input_row| to compute the coordinates of all of the
|
| - // following rows returned by Advance().
|
| - CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
|
| - int first_input_row)
|
| - : row_byte_width_(dest_row_pixel_width * 4),
|
| - num_rows_(max_y_filter_size),
|
| - next_row_(0),
|
| - next_row_coordinate_(first_input_row) {
|
| - buffer_.resize(row_byte_width_ * max_y_filter_size);
|
| - row_addresses_.resize(num_rows_);
|
| - }
|
| -
|
| - // Moves to the next row in the buffer, returning a pointer to the beginning
|
| - // of it.
|
| - unsigned char* AdvanceRow() {
|
| - unsigned char* row = &buffer_[next_row_ * row_byte_width_];
|
| - next_row_coordinate_++;
|
| -
|
| - // Set the pointer to the next row to use, wrapping around if necessary.
|
| - next_row_++;
|
| - if (next_row_ == num_rows_)
|
| - next_row_ = 0;
|
| - return row;
|
| - }
|
| -
|
| - // Returns a pointer to an "unrolled" array of rows. These rows will start
|
| - // at the y coordinate placed into |*first_row_index| and will continue in
|
| - // order for the maximum number of rows in this circular buffer.
|
| - //
|
| - // The |first_row_index_| may be negative. This means the circular buffer
|
| - // starts before the top of the image (it hasn't been filled yet).
|
| - unsigned char* const* GetRowAddresses(int* first_row_index) {
|
| - // Example for a 4-element circular buffer holding coords 6-9.
|
| - // Row 0 Coord 8
|
| - // Row 1 Coord 9
|
| - // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10.
|
| - // Row 3 Coord 7
|
| - //
|
| - // The "next" row is also the first (lowest) coordinate. This computation
|
| - // may yield a negative value, but that's OK, the math will work out
|
| - // since the user of this buffer will compute the offset relative
|
| - // to the first_row_index and the negative rows will never be used.
|
| - *first_row_index = next_row_coordinate_ - num_rows_;
|
| -
|
| - int cur_row = next_row_;
|
| - for (int i = 0; i < num_rows_; i++) {
|
| - row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
|
| -
|
| - // Advance to the next row, wrapping if necessary.
|
| - cur_row++;
|
| - if (cur_row == num_rows_)
|
| - cur_row = 0;
|
| - }
|
| - return &row_addresses_[0];
|
| - }
|
| -
|
| - private:
|
| - // The buffer storing the rows. They are packed, each one row_byte_width_.
|
| - std::vector<unsigned char> buffer_;
|
| -
|
| - // Number of bytes per row in the |buffer_|.
|
| - int row_byte_width_;
|
| -
|
| - // The number of rows available in the buffer.
|
| - int num_rows_;
|
| -
|
| - // The next row index we should write into. This wraps around as the
|
| - // circular buffer is used.
|
| - int next_row_;
|
| -
|
| - // The y coordinate of the |next_row_|. This is incremented each time a
|
| - // new row is appended and does not wrap.
|
| - int next_row_coordinate_;
|
| -
|
| - // Buffer used by GetRowAddresses().
|
| - std::vector<unsigned char*> row_addresses_;
|
| -};
|
| -
|
| -// Convolves horizontally along a single row. The row data is given in
|
| -// |src_data| and continues for the num_values() of the filter.
|
| -template<bool has_alpha>
|
| -void ConvolveHorizontally(const unsigned char* src_data,
|
| - const ConvolutionFilter1D& filter,
|
| - unsigned char* out_row) {
|
| - // Loop over each pixel on this row in the output image.
|
| - int num_values = filter.num_values();
|
| - for (int out_x = 0; out_x < num_values; out_x++) {
|
| - // Get the filter that determines the current output pixel.
|
| - int filter_offset, filter_length;
|
| - const ConvolutionFilter1D::Fixed* filter_values =
|
| - filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| -
|
| - // Compute the first pixel in this row that the filter affects. It will
|
| - // touch |filter_length| pixels (4 bytes each) after this.
|
| - const unsigned char* row_to_filter = &src_data[filter_offset * 4];
|
| -
|
| - // Apply the filter to the row to get the destination pixel in |accum|.
|
| - int accum[4] = {0};
|
| - for (int filter_x = 0; filter_x < filter_length; filter_x++) {
|
| - ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x];
|
| - accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
|
| - accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
|
| - accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
|
| - if (has_alpha)
|
| - accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
|
| - }
|
| -
|
| - // Bring this value back in range. All of the filter scaling factors
|
| - // are in fixed point with kShiftBits bits of fractional part.
|
| - accum[0] >>= ConvolutionFilter1D::kShiftBits;
|
| - accum[1] >>= ConvolutionFilter1D::kShiftBits;
|
| - accum[2] >>= ConvolutionFilter1D::kShiftBits;
|
| - if (has_alpha)
|
| - accum[3] >>= ConvolutionFilter1D::kShiftBits;
|
| -
|
| - // Store the new pixel.
|
| - out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
|
| - out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
|
| - out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
|
| - if (has_alpha)
|
| - out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
|
| - }
|
| -}
|
| -
|
| -// Does vertical convolution to produce one output row. The filter values and
|
| -// length are given in the first two parameters. These are applied to each
|
| -// of the rows pointed to in the |source_data_rows| array, with each row
|
| -// being |pixel_width| wide.
|
| -//
|
| -// The output must have room for |pixel_width * 4| bytes.
|
| -template<bool has_alpha>
|
| -void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
|
| - int filter_length,
|
| - unsigned char* const* source_data_rows,
|
| - int pixel_width,
|
| - unsigned char* out_row) {
|
| - // We go through each column in the output and do a vertical convolution,
|
| - // generating one output pixel each time.
|
| - for (int out_x = 0; out_x < pixel_width; out_x++) {
|
| - // Compute the number of bytes over in each row that the current column
|
| - // we're convolving starts at. The pixel will cover the next 4 bytes.
|
| - int byte_offset = out_x * 4;
|
| -
|
| - // Apply the filter to one column of pixels.
|
| - int accum[4] = {0};
|
| - for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
| - ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y];
|
| - accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
|
| - accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
|
| - accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
|
| - if (has_alpha)
|
| - accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
|
| - }
|
| -
|
| - // Bring this value back in range. All of the filter scaling factors
|
| - // are in fixed point with kShiftBits bits of precision.
|
| - accum[0] >>= ConvolutionFilter1D::kShiftBits;
|
| - accum[1] >>= ConvolutionFilter1D::kShiftBits;
|
| - accum[2] >>= ConvolutionFilter1D::kShiftBits;
|
| - if (has_alpha)
|
| - accum[3] >>= ConvolutionFilter1D::kShiftBits;
|
| -
|
| - // Store the new pixel.
|
| - out_row[byte_offset + 0] = ClampTo8(accum[0]);
|
| - out_row[byte_offset + 1] = ClampTo8(accum[1]);
|
| - out_row[byte_offset + 2] = ClampTo8(accum[2]);
|
| - if (has_alpha) {
|
| - unsigned char alpha = ClampTo8(accum[3]);
|
| -
|
| - // Make sure the alpha channel doesn't come out smaller than any of the
|
| - // color channels. We use premultipled alpha channels, so this should
|
| - // never happen, but rounding errors will cause this from time to time.
|
| - // These "impossible" colors will cause overflows (and hence random pixel
|
| - // values) when the resulting bitmap is drawn to the screen.
|
| - //
|
| - // We only need to do this when generating the final output row (here).
|
| - int max_color_channel = std::max(out_row[byte_offset + 0],
|
| - std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
|
| - if (alpha < max_color_channel)
|
| - out_row[byte_offset + 3] = max_color_channel;
|
| - else
|
| - out_row[byte_offset + 3] = alpha;
|
| - } else {
|
| - // No alpha channel, the image is opaque.
|
| - out_row[byte_offset + 3] = 0xff;
|
| - }
|
| - }
|
| -}
|
| -
|
| -void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
|
| - int filter_length,
|
| - unsigned char* const* source_data_rows,
|
| - int pixel_width,
|
| - unsigned char* out_row,
|
| - bool source_has_alpha) {
|
| - if (source_has_alpha) {
|
| - ConvolveVertically<true>(filter_values, filter_length,
|
| - source_data_rows,
|
| - pixel_width,
|
| - out_row);
|
| - } else {
|
| - ConvolveVertically<false>(filter_values, filter_length,
|
| - source_data_rows,
|
| - pixel_width,
|
| - out_row);
|
| - }
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -// ConvolutionFilter1D ---------------------------------------------------------
|
| -
|
| -ConvolutionFilter1D::ConvolutionFilter1D()
|
| - : max_filter_(0) {
|
| -}
|
| -
|
| -ConvolutionFilter1D::~ConvolutionFilter1D() {
|
| -}
|
| -
|
| -void ConvolutionFilter1D::AddFilter(int filter_offset,
|
| - const float* filter_values,
|
| - int filter_length) {
|
| - SkASSERT(filter_length > 0);
|
| -
|
| - std::vector<Fixed> fixed_values;
|
| - fixed_values.reserve(filter_length);
|
| -
|
| - for (int i = 0; i < filter_length; ++i)
|
| - fixed_values.push_back(FloatToFixed(filter_values[i]));
|
| -
|
| - AddFilter(filter_offset, &fixed_values[0], filter_length);
|
| -}
|
| -
|
| -void ConvolutionFilter1D::AddFilter(int filter_offset,
|
| - const Fixed* filter_values,
|
| - int filter_length) {
|
| - // It is common for leading/trailing filter values to be zeros. In such
|
| - // cases it is beneficial to only store the central factors.
|
| - // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
|
| - // a 1080p image this optimization gives a ~10% speed improvement.
|
| - int filter_size = filter_length;
|
| - int first_non_zero = 0;
|
| - while (first_non_zero < filter_length && filter_values[first_non_zero] == 0)
|
| - first_non_zero++;
|
| -
|
| - if (first_non_zero < filter_length) {
|
| - // Here we have at least one non-zero factor.
|
| - int last_non_zero = filter_length - 1;
|
| - while (last_non_zero >= 0 && filter_values[last_non_zero] == 0)
|
| - last_non_zero--;
|
| -
|
| - filter_offset += first_non_zero;
|
| - filter_length = last_non_zero + 1 - first_non_zero;
|
| - SkASSERT(filter_length > 0);
|
| -
|
| - for (int i = first_non_zero; i <= last_non_zero; i++)
|
| - filter_values_.push_back(filter_values[i]);
|
| - } else {
|
| - // Here all the factors were zeroes.
|
| - filter_length = 0;
|
| - }
|
| -
|
| - FilterInstance instance;
|
| -
|
| - // We pushed filter_length elements onto filter_values_
|
| - instance.data_location = (static_cast<int>(filter_values_.size()) -
|
| - filter_length);
|
| - instance.offset = filter_offset;
|
| - instance.trimmed_length = filter_length;
|
| - instance.length = filter_size;
|
| - filters_.push_back(instance);
|
| -
|
| - max_filter_ = std::max(max_filter_, filter_length);
|
| -}
|
| -
|
| -const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter(
|
| - int* specified_filter_length,
|
| - int* filter_offset,
|
| - int* filter_length) const {
|
| - const FilterInstance& filter = filters_[0];
|
| - *filter_offset = filter.offset;
|
| - *filter_length = filter.trimmed_length;
|
| - *specified_filter_length = filter.length;
|
| - if (filter.trimmed_length == 0)
|
| - return NULL;
|
| -
|
| - return &filter_values_[filter.data_location];
|
| -}
|
| -
|
| -typedef void (*ConvolveVertically_pointer)(
|
| - const ConvolutionFilter1D::Fixed* filter_values,
|
| - int filter_length,
|
| - unsigned char* const* source_data_rows,
|
| - int pixel_width,
|
| - unsigned char* out_row,
|
| - bool has_alpha);
|
| -typedef void (*Convolve4RowsHorizontally_pointer)(
|
| - const unsigned char* src_data[4],
|
| - const ConvolutionFilter1D& filter,
|
| - unsigned char* out_row[4]);
|
| -typedef void (*ConvolveHorizontally_pointer)(
|
| - const unsigned char* src_data,
|
| - const ConvolutionFilter1D& filter,
|
| - unsigned char* out_row,
|
| - bool has_alpha);
|
| -
|
| -struct ConvolveProcs {
|
| - // This is how many extra pixels may be read by the
|
| - // conolve*horizontally functions.
|
| - int extra_horizontal_reads;
|
| - ConvolveVertically_pointer convolve_vertically;
|
| - Convolve4RowsHorizontally_pointer convolve_4rows_horizontally;
|
| - ConvolveHorizontally_pointer convolve_horizontally;
|
| -};
|
| -
|
| -void SetupSIMD(ConvolveProcs *procs) {
|
| -#ifdef SIMD_SSE2
|
| - procs->extra_horizontal_reads = 3;
|
| - procs->convolve_vertically = &ConvolveVertically_SSE2;
|
| - procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
|
| - procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
|
| -#elif defined SIMD_MIPS_DSPR2
|
| - procs->extra_horizontal_reads = 3;
|
| - procs->convolve_vertically = &ConvolveVertically_mips_dspr2;
|
| - procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2;
|
| -#endif
|
| -}
|
| -
|
| -void BGRAConvolve2D(const unsigned char* source_data,
|
| - int source_byte_row_stride,
|
| - bool source_has_alpha,
|
| - const ConvolutionFilter1D& filter_x,
|
| - const ConvolutionFilter1D& filter_y,
|
| - int output_byte_row_stride,
|
| - unsigned char* output,
|
| - bool use_simd_if_possible) {
|
| - ConvolveProcs simd;
|
| - simd.extra_horizontal_reads = 0;
|
| - simd.convolve_vertically = NULL;
|
| - simd.convolve_4rows_horizontally = NULL;
|
| - simd.convolve_horizontally = NULL;
|
| - if (use_simd_if_possible) {
|
| - SetupSIMD(&simd);
|
| - }
|
| -
|
| - int max_y_filter_size = filter_y.max_filter();
|
| -
|
| - // The next row in the input that we will generate a horizontally
|
| - // convolved row for. If the filter doesn't start at the beginning of the
|
| - // image (this is the case when we are only resizing a subset), then we
|
| - // don't want to generate any output rows before that. Compute the starting
|
| - // row for convolution as the first pixel for the first vertical filter.
|
| - int filter_offset, filter_length;
|
| - const ConvolutionFilter1D::Fixed* filter_values =
|
| - filter_y.FilterForValue(0, &filter_offset, &filter_length);
|
| - int next_x_row = filter_offset;
|
| -
|
| - // We loop over each row in the input doing a horizontal convolution. This
|
| - // will result in a horizontally convolved image. We write the results into
|
| - // a circular buffer of convolved rows and do vertical convolution as rows
|
| - // are available. This prevents us from having to store the entire
|
| - // intermediate image and helps cache coherency.
|
| - // We will need four extra rows to allow horizontal convolution could be done
|
| - // simultaneously. We also padding each row in row buffer to be aligned-up to
|
| - // 16 bytes.
|
| - // TODO(jiesun): We do not use aligned load from row buffer in vertical
|
| - // convolution pass yet. Somehow Windows does not like it.
|
| - int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
|
| - int row_buffer_height = max_y_filter_size +
|
| - (simd.convolve_4rows_horizontally ? 4 : 0);
|
| - CircularRowBuffer row_buffer(row_buffer_width,
|
| - row_buffer_height,
|
| - filter_offset);
|
| -
|
| - // Loop over every possible output row, processing just enough horizontal
|
| - // convolutions to run each subsequent vertical convolution.
|
| - SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
|
| - int num_output_rows = filter_y.num_values();
|
| -
|
| - // We need to check which is the last line to convolve before we advance 4
|
| - // lines in one iteration.
|
| - int last_filter_offset, last_filter_length;
|
| -
|
| - // SSE2 can access up to 3 extra pixels past the end of the
|
| - // buffer. At the bottom of the image, we have to be careful
|
| - // not to access data past the end of the buffer. Normally
|
| - // we fall back to the C++ implementation for the last row.
|
| - // If the last row is less than 3 pixels wide, we may have to fall
|
| - // back to the C++ version for more rows. Compute how many
|
| - // rows we need to avoid the SSE implementation for here.
|
| - filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset,
|
| - &last_filter_length);
|
| - int avoid_simd_rows = 1 + simd.extra_horizontal_reads /
|
| - (last_filter_offset + last_filter_length);
|
| -
|
| - filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
|
| - &last_filter_length);
|
| -
|
| - for (int out_y = 0; out_y < num_output_rows; out_y++) {
|
| - filter_values = filter_y.FilterForValue(out_y,
|
| - &filter_offset, &filter_length);
|
| -
|
| - // Generate output rows until we have enough to run the current filter.
|
| - while (next_x_row < filter_offset + filter_length) {
|
| - if (simd.convolve_4rows_horizontally &&
|
| - next_x_row + 3 < last_filter_offset + last_filter_length -
|
| - avoid_simd_rows) {
|
| - const unsigned char* src[4];
|
| - unsigned char* out_row[4];
|
| - for (int i = 0; i < 4; ++i) {
|
| - src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
|
| - out_row[i] = row_buffer.AdvanceRow();
|
| - }
|
| - simd.convolve_4rows_horizontally(src, filter_x, out_row);
|
| - next_x_row += 4;
|
| - } else {
|
| - // Check if we need to avoid SSE2 for this row.
|
| - if (simd.convolve_horizontally &&
|
| - next_x_row < last_filter_offset + last_filter_length -
|
| - avoid_simd_rows) {
|
| - simd.convolve_horizontally(
|
| - &source_data[next_x_row * source_byte_row_stride],
|
| - filter_x, row_buffer.AdvanceRow(), source_has_alpha);
|
| - } else {
|
| - if (source_has_alpha) {
|
| - ConvolveHorizontally<true>(
|
| - &source_data[next_x_row * source_byte_row_stride],
|
| - filter_x, row_buffer.AdvanceRow());
|
| - } else {
|
| - ConvolveHorizontally<false>(
|
| - &source_data[next_x_row * source_byte_row_stride],
|
| - filter_x, row_buffer.AdvanceRow());
|
| - }
|
| - }
|
| - next_x_row++;
|
| - }
|
| - }
|
| -
|
| - // Compute where in the output image this row of final data will go.
|
| - unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
|
| -
|
| - // Get the list of rows that the circular buffer has, in order.
|
| - int first_row_in_circular_buffer;
|
| - unsigned char* const* rows_to_convolve =
|
| - row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
|
| -
|
| - // Now compute the start of the subset of those rows that the filter
|
| - // needs.
|
| - unsigned char* const* first_row_for_filter =
|
| - &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
|
| -
|
| - if (simd.convolve_vertically) {
|
| - simd.convolve_vertically(filter_values, filter_length,
|
| - first_row_for_filter,
|
| - filter_x.num_values(), cur_output_row,
|
| - source_has_alpha);
|
| - } else {
|
| - ConvolveVertically(filter_values, filter_length,
|
| - first_row_for_filter,
|
| - filter_x.num_values(), cur_output_row,
|
| - source_has_alpha);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void SingleChannelConvolveX1D(const unsigned char* source_data,
|
| - int source_byte_row_stride,
|
| - int input_channel_index,
|
| - int input_channel_count,
|
| - const ConvolutionFilter1D& filter,
|
| - const SkISize& image_size,
|
| - unsigned char* output,
|
| - int output_byte_row_stride,
|
| - int output_channel_index,
|
| - int output_channel_count,
|
| - bool absolute_values) {
|
| - int filter_offset, filter_length, filter_size;
|
| - // Very much unlike BGRAConvolve2D, here we expect to have the same filter
|
| - // for all pixels.
|
| - const ConvolutionFilter1D::Fixed* filter_values =
|
| - filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
|
| -
|
| - if (filter_values == NULL || image_size.width() < filter_size) {
|
| - NOTREACHED();
|
| - return;
|
| - }
|
| -
|
| - int centrepoint = filter_length / 2;
|
| - if (filter_size - filter_offset != 2 * filter_offset) {
|
| - // This means the original filter was not symmetrical AND
|
| - // got clipped from one side more than from the other.
|
| - centrepoint = filter_size / 2 - filter_offset;
|
| - }
|
| -
|
| - const unsigned char* source_data_row = source_data;
|
| - unsigned char* output_row = output;
|
| -
|
| - for (int r = 0; r < image_size.height(); ++r) {
|
| - unsigned char* target_byte = output_row + output_channel_index;
|
| - // Process the lead part, padding image to the left with the first pixel.
|
| - int c = 0;
|
| - for (; c < centrepoint; ++c, target_byte += output_channel_count) {
|
| - int accval = 0;
|
| - int i = 0;
|
| - int pixel_byte_index = input_channel_index;
|
| - for (; i < centrepoint - c; ++i) // Padding part.
|
| - accval += filter_values[i] * source_data_row[pixel_byte_index];
|
| -
|
| - for (; i < filter_length; ++i, pixel_byte_index += input_channel_count)
|
| - accval += filter_values[i] * source_data_row[pixel_byte_index];
|
| -
|
| - *target_byte = BringBackTo8(accval, absolute_values);
|
| - }
|
| -
|
| - // Now for the main event.
|
| - for (; c < image_size.width() - centrepoint;
|
| - ++c, target_byte += output_channel_count) {
|
| - int accval = 0;
|
| - int pixel_byte_index = (c - centrepoint) * input_channel_count +
|
| - input_channel_index;
|
| -
|
| - for (int i = 0; i < filter_length;
|
| - ++i, pixel_byte_index += input_channel_count) {
|
| - accval += filter_values[i] * source_data_row[pixel_byte_index];
|
| - }
|
| -
|
| - *target_byte = BringBackTo8(accval, absolute_values);
|
| - }
|
| -
|
| - for (; c < image_size.width(); ++c, target_byte += output_channel_count) {
|
| - int accval = 0;
|
| - int overlap_taps = image_size.width() - c + centrepoint;
|
| - int pixel_byte_index = (c - centrepoint) * input_channel_count +
|
| - input_channel_index;
|
| - int i = 0;
|
| - for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count)
|
| - accval += filter_values[i] * source_data_row[pixel_byte_index];
|
| -
|
| - for (; i < filter_length; ++i)
|
| - accval += filter_values[i] * source_data_row[pixel_byte_index];
|
| -
|
| - *target_byte = BringBackTo8(accval, absolute_values);
|
| - }
|
| -
|
| - source_data_row += source_byte_row_stride;
|
| - output_row += output_byte_row_stride;
|
| - }
|
| -}
|
| -
|
| -void SingleChannelConvolveY1D(const unsigned char* source_data,
|
| - int source_byte_row_stride,
|
| - int input_channel_index,
|
| - int input_channel_count,
|
| - const ConvolutionFilter1D& filter,
|
| - const SkISize& image_size,
|
| - unsigned char* output,
|
| - int output_byte_row_stride,
|
| - int output_channel_index,
|
| - int output_channel_count,
|
| - bool absolute_values) {
|
| - int filter_offset, filter_length, filter_size;
|
| - // Very much unlike BGRAConvolve2D, here we expect to have the same filter
|
| - // for all pixels.
|
| - const ConvolutionFilter1D::Fixed* filter_values =
|
| - filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
|
| -
|
| - if (filter_values == NULL || image_size.height() < filter_size) {
|
| - NOTREACHED();
|
| - return;
|
| - }
|
| -
|
| - int centrepoint = filter_length / 2;
|
| - if (filter_size - filter_offset != 2 * filter_offset) {
|
| - // This means the original filter was not symmetrical AND
|
| - // got clipped from one side more than from the other.
|
| - centrepoint = filter_size / 2 - filter_offset;
|
| - }
|
| -
|
| - for (int c = 0; c < image_size.width(); ++c) {
|
| - unsigned char* target_byte = output + c * output_channel_count +
|
| - output_channel_index;
|
| - int r = 0;
|
| -
|
| - for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) {
|
| - int accval = 0;
|
| - int i = 0;
|
| - int pixel_byte_index = c * input_channel_count + input_channel_index;
|
| -
|
| - for (; i < centrepoint - r; ++i) // Padding part.
|
| - accval += filter_values[i] * source_data[pixel_byte_index];
|
| -
|
| - for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride)
|
| - accval += filter_values[i] * source_data[pixel_byte_index];
|
| -
|
| - *target_byte = BringBackTo8(accval, absolute_values);
|
| - }
|
| -
|
| - for (; r < image_size.height() - centrepoint;
|
| - ++r, target_byte += output_byte_row_stride) {
|
| - int accval = 0;
|
| - int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
|
| - c * input_channel_count + input_channel_index;
|
| - for (int i = 0; i < filter_length;
|
| - ++i, pixel_byte_index += source_byte_row_stride) {
|
| - accval += filter_values[i] * source_data[pixel_byte_index];
|
| - }
|
| -
|
| - *target_byte = BringBackTo8(accval, absolute_values);
|
| - }
|
| -
|
| - for (; r < image_size.height();
|
| - ++r, target_byte += output_byte_row_stride) {
|
| - int accval = 0;
|
| - int overlap_taps = image_size.height() - r + centrepoint;
|
| - int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
|
| - c * input_channel_count + input_channel_index;
|
| - int i = 0;
|
| - for (; i < overlap_taps - 1;
|
| - ++i, pixel_byte_index += source_byte_row_stride) {
|
| - accval += filter_values[i] * source_data[pixel_byte_index];
|
| - }
|
| -
|
| - for (; i < filter_length; ++i)
|
| - accval += filter_values[i] * source_data[pixel_byte_index];
|
| -
|
| - *target_byte = BringBackTo8(accval, absolute_values);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter,
|
| - float kernel_sigma,
|
| - bool derivative) {
|
| - DCHECK(filter != NULL);
|
| - DCHECK_GT(kernel_sigma, 0.0);
|
| - const int tail_length = static_cast<int>(4.0f * kernel_sigma + 0.5f);
|
| - const int kernel_size = tail_length * 2 + 1;
|
| - const float sigmasq = kernel_sigma * kernel_sigma;
|
| - std::vector<float> kernel_weights(kernel_size, 0.0);
|
| - float kernel_sum = 1.0f;
|
| -
|
| - kernel_weights[tail_length] = 1.0f;
|
| -
|
| - for (int ii = 1; ii <= tail_length; ++ii) {
|
| - float v = std::exp(-0.5f * ii * ii / sigmasq);
|
| - kernel_weights[tail_length + ii] = v;
|
| - kernel_weights[tail_length - ii] = v;
|
| - kernel_sum += 2.0f * v;
|
| - }
|
| -
|
| - for (int i = 0; i < kernel_size; ++i)
|
| - kernel_weights[i] /= kernel_sum;
|
| -
|
| - if (derivative) {
|
| - kernel_weights[tail_length] = 0.0;
|
| - for (int ii = 1; ii <= tail_length; ++ii) {
|
| - float v = sigmasq * kernel_weights[tail_length + ii] / ii;
|
| - kernel_weights[tail_length + ii] = v;
|
| - kernel_weights[tail_length - ii] = -v;
|
| - }
|
| - }
|
| -
|
| - filter->AddFilter(0, &kernel_weights[0], kernel_weights.size());
|
| -}
|
| -
|
| -} // namespace skia
|
|
|