OLD | NEW |
| (Empty) |
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <algorithm> | |
6 | |
7 #include "base/logging.h" | |
8 #include "skia/ext/convolver.h" | |
9 #include "skia/ext/convolver_SSE2.h" | |
10 #include "skia/ext/convolver_mips_dspr2.h" | |
11 #include "third_party/skia/include/core/SkSize.h" | |
12 #include "third_party/skia/include/core/SkTypes.h" | |
13 | |
14 namespace skia { | |
15 | |
16 namespace { | |
17 | |
18 // Converts the argument to an 8-bit unsigned value by clamping to the range | |
19 // 0-255. | |
20 inline unsigned char ClampTo8(int a) { | |
21 if (static_cast<unsigned>(a) < 256) | |
22 return a; // Avoid the extra check in the common case. | |
23 if (a < 0) | |
24 return 0; | |
25 return 255; | |
26 } | |
27 | |
28 // Takes the value produced by accumulating element-wise product of image with | |
29 // a kernel and brings it back into range. | |
30 // All of the filter scaling factors are in fixed point with kShiftBits bits of | |
31 // fractional part. | |
32 inline unsigned char BringBackTo8(int a, bool take_absolute) { | |
33 a >>= ConvolutionFilter1D::kShiftBits; | |
34 if (take_absolute) | |
35 a = std::abs(a); | |
36 return ClampTo8(a); | |
37 } | |
38 | |
39 // Stores a list of rows in a circular buffer. The usage is you write into it | |
40 // by calling AdvanceRow. It will keep track of which row in the buffer it | |
41 // should use next, and the total number of rows added. | |
42 class CircularRowBuffer { | |
43 public: | |
44 // The number of pixels in each row is given in |source_row_pixel_width|. | |
45 // The maximum number of rows needed in the buffer is |max_y_filter_size| | |
46 // (we only need to store enough rows for the biggest filter). | |
47 // | |
48 // We use the |first_input_row| to compute the coordinates of all of the | |
49 // following rows returned by Advance(). | |
50 CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, | |
51 int first_input_row) | |
52 : row_byte_width_(dest_row_pixel_width * 4), | |
53 num_rows_(max_y_filter_size), | |
54 next_row_(0), | |
55 next_row_coordinate_(first_input_row) { | |
56 buffer_.resize(row_byte_width_ * max_y_filter_size); | |
57 row_addresses_.resize(num_rows_); | |
58 } | |
59 | |
60 // Moves to the next row in the buffer, returning a pointer to the beginning | |
61 // of it. | |
62 unsigned char* AdvanceRow() { | |
63 unsigned char* row = &buffer_[next_row_ * row_byte_width_]; | |
64 next_row_coordinate_++; | |
65 | |
66 // Set the pointer to the next row to use, wrapping around if necessary. | |
67 next_row_++; | |
68 if (next_row_ == num_rows_) | |
69 next_row_ = 0; | |
70 return row; | |
71 } | |
72 | |
73 // Returns a pointer to an "unrolled" array of rows. These rows will start | |
74 // at the y coordinate placed into |*first_row_index| and will continue in | |
75 // order for the maximum number of rows in this circular buffer. | |
76 // | |
77 // The |first_row_index_| may be negative. This means the circular buffer | |
78 // starts before the top of the image (it hasn't been filled yet). | |
79 unsigned char* const* GetRowAddresses(int* first_row_index) { | |
80 // Example for a 4-element circular buffer holding coords 6-9. | |
81 // Row 0 Coord 8 | |
82 // Row 1 Coord 9 | |
83 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. | |
84 // Row 3 Coord 7 | |
85 // | |
86 // The "next" row is also the first (lowest) coordinate. This computation | |
87 // may yield a negative value, but that's OK, the math will work out | |
88 // since the user of this buffer will compute the offset relative | |
89 // to the first_row_index and the negative rows will never be used. | |
90 *first_row_index = next_row_coordinate_ - num_rows_; | |
91 | |
92 int cur_row = next_row_; | |
93 for (int i = 0; i < num_rows_; i++) { | |
94 row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; | |
95 | |
96 // Advance to the next row, wrapping if necessary. | |
97 cur_row++; | |
98 if (cur_row == num_rows_) | |
99 cur_row = 0; | |
100 } | |
101 return &row_addresses_[0]; | |
102 } | |
103 | |
104 private: | |
105 // The buffer storing the rows. They are packed, each one row_byte_width_. | |
106 std::vector<unsigned char> buffer_; | |
107 | |
108 // Number of bytes per row in the |buffer_|. | |
109 int row_byte_width_; | |
110 | |
111 // The number of rows available in the buffer. | |
112 int num_rows_; | |
113 | |
114 // The next row index we should write into. This wraps around as the | |
115 // circular buffer is used. | |
116 int next_row_; | |
117 | |
118 // The y coordinate of the |next_row_|. This is incremented each time a | |
119 // new row is appended and does not wrap. | |
120 int next_row_coordinate_; | |
121 | |
122 // Buffer used by GetRowAddresses(). | |
123 std::vector<unsigned char*> row_addresses_; | |
124 }; | |
125 | |
126 // Convolves horizontally along a single row. The row data is given in | |
127 // |src_data| and continues for the num_values() of the filter. | |
128 template<bool has_alpha> | |
129 void ConvolveHorizontally(const unsigned char* src_data, | |
130 const ConvolutionFilter1D& filter, | |
131 unsigned char* out_row) { | |
132 // Loop over each pixel on this row in the output image. | |
133 int num_values = filter.num_values(); | |
134 for (int out_x = 0; out_x < num_values; out_x++) { | |
135 // Get the filter that determines the current output pixel. | |
136 int filter_offset, filter_length; | |
137 const ConvolutionFilter1D::Fixed* filter_values = | |
138 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
139 | |
140 // Compute the first pixel in this row that the filter affects. It will | |
141 // touch |filter_length| pixels (4 bytes each) after this. | |
142 const unsigned char* row_to_filter = &src_data[filter_offset * 4]; | |
143 | |
144 // Apply the filter to the row to get the destination pixel in |accum|. | |
145 int accum[4] = {0}; | |
146 for (int filter_x = 0; filter_x < filter_length; filter_x++) { | |
147 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; | |
148 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; | |
149 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; | |
150 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; | |
151 if (has_alpha) | |
152 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; | |
153 } | |
154 | |
155 // Bring this value back in range. All of the filter scaling factors | |
156 // are in fixed point with kShiftBits bits of fractional part. | |
157 accum[0] >>= ConvolutionFilter1D::kShiftBits; | |
158 accum[1] >>= ConvolutionFilter1D::kShiftBits; | |
159 accum[2] >>= ConvolutionFilter1D::kShiftBits; | |
160 if (has_alpha) | |
161 accum[3] >>= ConvolutionFilter1D::kShiftBits; | |
162 | |
163 // Store the new pixel. | |
164 out_row[out_x * 4 + 0] = ClampTo8(accum[0]); | |
165 out_row[out_x * 4 + 1] = ClampTo8(accum[1]); | |
166 out_row[out_x * 4 + 2] = ClampTo8(accum[2]); | |
167 if (has_alpha) | |
168 out_row[out_x * 4 + 3] = ClampTo8(accum[3]); | |
169 } | |
170 } | |
171 | |
172 // Does vertical convolution to produce one output row. The filter values and | |
173 // length are given in the first two parameters. These are applied to each | |
174 // of the rows pointed to in the |source_data_rows| array, with each row | |
175 // being |pixel_width| wide. | |
176 // | |
177 // The output must have room for |pixel_width * 4| bytes. | |
178 template<bool has_alpha> | |
179 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, | |
180 int filter_length, | |
181 unsigned char* const* source_data_rows, | |
182 int pixel_width, | |
183 unsigned char* out_row) { | |
184 // We go through each column in the output and do a vertical convolution, | |
185 // generating one output pixel each time. | |
186 for (int out_x = 0; out_x < pixel_width; out_x++) { | |
187 // Compute the number of bytes over in each row that the current column | |
188 // we're convolving starts at. The pixel will cover the next 4 bytes. | |
189 int byte_offset = out_x * 4; | |
190 | |
191 // Apply the filter to one column of pixels. | |
192 int accum[4] = {0}; | |
193 for (int filter_y = 0; filter_y < filter_length; filter_y++) { | |
194 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; | |
195 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; | |
196 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; | |
197 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; | |
198 if (has_alpha) | |
199 accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; | |
200 } | |
201 | |
202 // Bring this value back in range. All of the filter scaling factors | |
203 // are in fixed point with kShiftBits bits of precision. | |
204 accum[0] >>= ConvolutionFilter1D::kShiftBits; | |
205 accum[1] >>= ConvolutionFilter1D::kShiftBits; | |
206 accum[2] >>= ConvolutionFilter1D::kShiftBits; | |
207 if (has_alpha) | |
208 accum[3] >>= ConvolutionFilter1D::kShiftBits; | |
209 | |
210 // Store the new pixel. | |
211 out_row[byte_offset + 0] = ClampTo8(accum[0]); | |
212 out_row[byte_offset + 1] = ClampTo8(accum[1]); | |
213 out_row[byte_offset + 2] = ClampTo8(accum[2]); | |
214 if (has_alpha) { | |
215 unsigned char alpha = ClampTo8(accum[3]); | |
216 | |
217 // Make sure the alpha channel doesn't come out smaller than any of the | |
218 // color channels. We use premultipled alpha channels, so this should | |
219 // never happen, but rounding errors will cause this from time to time. | |
220 // These "impossible" colors will cause overflows (and hence random pixel | |
221 // values) when the resulting bitmap is drawn to the screen. | |
222 // | |
223 // We only need to do this when generating the final output row (here). | |
224 int max_color_channel = std::max(out_row[byte_offset + 0], | |
225 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); | |
226 if (alpha < max_color_channel) | |
227 out_row[byte_offset + 3] = max_color_channel; | |
228 else | |
229 out_row[byte_offset + 3] = alpha; | |
230 } else { | |
231 // No alpha channel, the image is opaque. | |
232 out_row[byte_offset + 3] = 0xff; | |
233 } | |
234 } | |
235 } | |
236 | |
237 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, | |
238 int filter_length, | |
239 unsigned char* const* source_data_rows, | |
240 int pixel_width, | |
241 unsigned char* out_row, | |
242 bool source_has_alpha) { | |
243 if (source_has_alpha) { | |
244 ConvolveVertically<true>(filter_values, filter_length, | |
245 source_data_rows, | |
246 pixel_width, | |
247 out_row); | |
248 } else { | |
249 ConvolveVertically<false>(filter_values, filter_length, | |
250 source_data_rows, | |
251 pixel_width, | |
252 out_row); | |
253 } | |
254 } | |
255 | |
256 } // namespace | |
257 | |
258 // ConvolutionFilter1D --------------------------------------------------------- | |
259 | |
260 ConvolutionFilter1D::ConvolutionFilter1D() | |
261 : max_filter_(0) { | |
262 } | |
263 | |
264 ConvolutionFilter1D::~ConvolutionFilter1D() { | |
265 } | |
266 | |
267 void ConvolutionFilter1D::AddFilter(int filter_offset, | |
268 const float* filter_values, | |
269 int filter_length) { | |
270 SkASSERT(filter_length > 0); | |
271 | |
272 std::vector<Fixed> fixed_values; | |
273 fixed_values.reserve(filter_length); | |
274 | |
275 for (int i = 0; i < filter_length; ++i) | |
276 fixed_values.push_back(FloatToFixed(filter_values[i])); | |
277 | |
278 AddFilter(filter_offset, &fixed_values[0], filter_length); | |
279 } | |
280 | |
281 void ConvolutionFilter1D::AddFilter(int filter_offset, | |
282 const Fixed* filter_values, | |
283 int filter_length) { | |
284 // It is common for leading/trailing filter values to be zeros. In such | |
285 // cases it is beneficial to only store the central factors. | |
286 // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on | |
287 // a 1080p image this optimization gives a ~10% speed improvement. | |
288 int filter_size = filter_length; | |
289 int first_non_zero = 0; | |
290 while (first_non_zero < filter_length && filter_values[first_non_zero] == 0) | |
291 first_non_zero++; | |
292 | |
293 if (first_non_zero < filter_length) { | |
294 // Here we have at least one non-zero factor. | |
295 int last_non_zero = filter_length - 1; | |
296 while (last_non_zero >= 0 && filter_values[last_non_zero] == 0) | |
297 last_non_zero--; | |
298 | |
299 filter_offset += first_non_zero; | |
300 filter_length = last_non_zero + 1 - first_non_zero; | |
301 SkASSERT(filter_length > 0); | |
302 | |
303 for (int i = first_non_zero; i <= last_non_zero; i++) | |
304 filter_values_.push_back(filter_values[i]); | |
305 } else { | |
306 // Here all the factors were zeroes. | |
307 filter_length = 0; | |
308 } | |
309 | |
310 FilterInstance instance; | |
311 | |
312 // We pushed filter_length elements onto filter_values_ | |
313 instance.data_location = (static_cast<int>(filter_values_.size()) - | |
314 filter_length); | |
315 instance.offset = filter_offset; | |
316 instance.trimmed_length = filter_length; | |
317 instance.length = filter_size; | |
318 filters_.push_back(instance); | |
319 | |
320 max_filter_ = std::max(max_filter_, filter_length); | |
321 } | |
322 | |
323 const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter( | |
324 int* specified_filter_length, | |
325 int* filter_offset, | |
326 int* filter_length) const { | |
327 const FilterInstance& filter = filters_[0]; | |
328 *filter_offset = filter.offset; | |
329 *filter_length = filter.trimmed_length; | |
330 *specified_filter_length = filter.length; | |
331 if (filter.trimmed_length == 0) | |
332 return NULL; | |
333 | |
334 return &filter_values_[filter.data_location]; | |
335 } | |
336 | |
337 typedef void (*ConvolveVertically_pointer)( | |
338 const ConvolutionFilter1D::Fixed* filter_values, | |
339 int filter_length, | |
340 unsigned char* const* source_data_rows, | |
341 int pixel_width, | |
342 unsigned char* out_row, | |
343 bool has_alpha); | |
344 typedef void (*Convolve4RowsHorizontally_pointer)( | |
345 const unsigned char* src_data[4], | |
346 const ConvolutionFilter1D& filter, | |
347 unsigned char* out_row[4]); | |
348 typedef void (*ConvolveHorizontally_pointer)( | |
349 const unsigned char* src_data, | |
350 const ConvolutionFilter1D& filter, | |
351 unsigned char* out_row, | |
352 bool has_alpha); | |
353 | |
354 struct ConvolveProcs { | |
355 // This is how many extra pixels may be read by the | |
356 // conolve*horizontally functions. | |
357 int extra_horizontal_reads; | |
358 ConvolveVertically_pointer convolve_vertically; | |
359 Convolve4RowsHorizontally_pointer convolve_4rows_horizontally; | |
360 ConvolveHorizontally_pointer convolve_horizontally; | |
361 }; | |
362 | |
363 void SetupSIMD(ConvolveProcs *procs) { | |
364 #ifdef SIMD_SSE2 | |
365 procs->extra_horizontal_reads = 3; | |
366 procs->convolve_vertically = &ConvolveVertically_SSE2; | |
367 procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2; | |
368 procs->convolve_horizontally = &ConvolveHorizontally_SSE2; | |
369 #elif defined SIMD_MIPS_DSPR2 | |
370 procs->extra_horizontal_reads = 3; | |
371 procs->convolve_vertically = &ConvolveVertically_mips_dspr2; | |
372 procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2; | |
373 #endif | |
374 } | |
375 | |
376 void BGRAConvolve2D(const unsigned char* source_data, | |
377 int source_byte_row_stride, | |
378 bool source_has_alpha, | |
379 const ConvolutionFilter1D& filter_x, | |
380 const ConvolutionFilter1D& filter_y, | |
381 int output_byte_row_stride, | |
382 unsigned char* output, | |
383 bool use_simd_if_possible) { | |
384 ConvolveProcs simd; | |
385 simd.extra_horizontal_reads = 0; | |
386 simd.convolve_vertically = NULL; | |
387 simd.convolve_4rows_horizontally = NULL; | |
388 simd.convolve_horizontally = NULL; | |
389 if (use_simd_if_possible) { | |
390 SetupSIMD(&simd); | |
391 } | |
392 | |
393 int max_y_filter_size = filter_y.max_filter(); | |
394 | |
395 // The next row in the input that we will generate a horizontally | |
396 // convolved row for. If the filter doesn't start at the beginning of the | |
397 // image (this is the case when we are only resizing a subset), then we | |
398 // don't want to generate any output rows before that. Compute the starting | |
399 // row for convolution as the first pixel for the first vertical filter. | |
400 int filter_offset, filter_length; | |
401 const ConvolutionFilter1D::Fixed* filter_values = | |
402 filter_y.FilterForValue(0, &filter_offset, &filter_length); | |
403 int next_x_row = filter_offset; | |
404 | |
405 // We loop over each row in the input doing a horizontal convolution. This | |
406 // will result in a horizontally convolved image. We write the results into | |
407 // a circular buffer of convolved rows and do vertical convolution as rows | |
408 // are available. This prevents us from having to store the entire | |
409 // intermediate image and helps cache coherency. | |
410 // We will need four extra rows to allow horizontal convolution could be done | |
411 // simultaneously. We also padding each row in row buffer to be aligned-up to | |
412 // 16 bytes. | |
413 // TODO(jiesun): We do not use aligned load from row buffer in vertical | |
414 // convolution pass yet. Somehow Windows does not like it. | |
415 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; | |
416 int row_buffer_height = max_y_filter_size + | |
417 (simd.convolve_4rows_horizontally ? 4 : 0); | |
418 CircularRowBuffer row_buffer(row_buffer_width, | |
419 row_buffer_height, | |
420 filter_offset); | |
421 | |
422 // Loop over every possible output row, processing just enough horizontal | |
423 // convolutions to run each subsequent vertical convolution. | |
424 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); | |
425 int num_output_rows = filter_y.num_values(); | |
426 | |
427 // We need to check which is the last line to convolve before we advance 4 | |
428 // lines in one iteration. | |
429 int last_filter_offset, last_filter_length; | |
430 | |
431 // SSE2 can access up to 3 extra pixels past the end of the | |
432 // buffer. At the bottom of the image, we have to be careful | |
433 // not to access data past the end of the buffer. Normally | |
434 // we fall back to the C++ implementation for the last row. | |
435 // If the last row is less than 3 pixels wide, we may have to fall | |
436 // back to the C++ version for more rows. Compute how many | |
437 // rows we need to avoid the SSE implementation for here. | |
438 filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, | |
439 &last_filter_length); | |
440 int avoid_simd_rows = 1 + simd.extra_horizontal_reads / | |
441 (last_filter_offset + last_filter_length); | |
442 | |
443 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, | |
444 &last_filter_length); | |
445 | |
446 for (int out_y = 0; out_y < num_output_rows; out_y++) { | |
447 filter_values = filter_y.FilterForValue(out_y, | |
448 &filter_offset, &filter_length); | |
449 | |
450 // Generate output rows until we have enough to run the current filter. | |
451 while (next_x_row < filter_offset + filter_length) { | |
452 if (simd.convolve_4rows_horizontally && | |
453 next_x_row + 3 < last_filter_offset + last_filter_length - | |
454 avoid_simd_rows) { | |
455 const unsigned char* src[4]; | |
456 unsigned char* out_row[4]; | |
457 for (int i = 0; i < 4; ++i) { | |
458 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; | |
459 out_row[i] = row_buffer.AdvanceRow(); | |
460 } | |
461 simd.convolve_4rows_horizontally(src, filter_x, out_row); | |
462 next_x_row += 4; | |
463 } else { | |
464 // Check if we need to avoid SSE2 for this row. | |
465 if (simd.convolve_horizontally && | |
466 next_x_row < last_filter_offset + last_filter_length - | |
467 avoid_simd_rows) { | |
468 simd.convolve_horizontally( | |
469 &source_data[next_x_row * source_byte_row_stride], | |
470 filter_x, row_buffer.AdvanceRow(), source_has_alpha); | |
471 } else { | |
472 if (source_has_alpha) { | |
473 ConvolveHorizontally<true>( | |
474 &source_data[next_x_row * source_byte_row_stride], | |
475 filter_x, row_buffer.AdvanceRow()); | |
476 } else { | |
477 ConvolveHorizontally<false>( | |
478 &source_data[next_x_row * source_byte_row_stride], | |
479 filter_x, row_buffer.AdvanceRow()); | |
480 } | |
481 } | |
482 next_x_row++; | |
483 } | |
484 } | |
485 | |
486 // Compute where in the output image this row of final data will go. | |
487 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; | |
488 | |
489 // Get the list of rows that the circular buffer has, in order. | |
490 int first_row_in_circular_buffer; | |
491 unsigned char* const* rows_to_convolve = | |
492 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); | |
493 | |
494 // Now compute the start of the subset of those rows that the filter | |
495 // needs. | |
496 unsigned char* const* first_row_for_filter = | |
497 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | |
498 | |
499 if (simd.convolve_vertically) { | |
500 simd.convolve_vertically(filter_values, filter_length, | |
501 first_row_for_filter, | |
502 filter_x.num_values(), cur_output_row, | |
503 source_has_alpha); | |
504 } else { | |
505 ConvolveVertically(filter_values, filter_length, | |
506 first_row_for_filter, | |
507 filter_x.num_values(), cur_output_row, | |
508 source_has_alpha); | |
509 } | |
510 } | |
511 } | |
512 | |
513 void SingleChannelConvolveX1D(const unsigned char* source_data, | |
514 int source_byte_row_stride, | |
515 int input_channel_index, | |
516 int input_channel_count, | |
517 const ConvolutionFilter1D& filter, | |
518 const SkISize& image_size, | |
519 unsigned char* output, | |
520 int output_byte_row_stride, | |
521 int output_channel_index, | |
522 int output_channel_count, | |
523 bool absolute_values) { | |
524 int filter_offset, filter_length, filter_size; | |
525 // Very much unlike BGRAConvolve2D, here we expect to have the same filter | |
526 // for all pixels. | |
527 const ConvolutionFilter1D::Fixed* filter_values = | |
528 filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); | |
529 | |
530 if (filter_values == NULL || image_size.width() < filter_size) { | |
531 NOTREACHED(); | |
532 return; | |
533 } | |
534 | |
535 int centrepoint = filter_length / 2; | |
536 if (filter_size - filter_offset != 2 * filter_offset) { | |
537 // This means the original filter was not symmetrical AND | |
538 // got clipped from one side more than from the other. | |
539 centrepoint = filter_size / 2 - filter_offset; | |
540 } | |
541 | |
542 const unsigned char* source_data_row = source_data; | |
543 unsigned char* output_row = output; | |
544 | |
545 for (int r = 0; r < image_size.height(); ++r) { | |
546 unsigned char* target_byte = output_row + output_channel_index; | |
547 // Process the lead part, padding image to the left with the first pixel. | |
548 int c = 0; | |
549 for (; c < centrepoint; ++c, target_byte += output_channel_count) { | |
550 int accval = 0; | |
551 int i = 0; | |
552 int pixel_byte_index = input_channel_index; | |
553 for (; i < centrepoint - c; ++i) // Padding part. | |
554 accval += filter_values[i] * source_data_row[pixel_byte_index]; | |
555 | |
556 for (; i < filter_length; ++i, pixel_byte_index += input_channel_count) | |
557 accval += filter_values[i] * source_data_row[pixel_byte_index]; | |
558 | |
559 *target_byte = BringBackTo8(accval, absolute_values); | |
560 } | |
561 | |
562 // Now for the main event. | |
563 for (; c < image_size.width() - centrepoint; | |
564 ++c, target_byte += output_channel_count) { | |
565 int accval = 0; | |
566 int pixel_byte_index = (c - centrepoint) * input_channel_count + | |
567 input_channel_index; | |
568 | |
569 for (int i = 0; i < filter_length; | |
570 ++i, pixel_byte_index += input_channel_count) { | |
571 accval += filter_values[i] * source_data_row[pixel_byte_index]; | |
572 } | |
573 | |
574 *target_byte = BringBackTo8(accval, absolute_values); | |
575 } | |
576 | |
577 for (; c < image_size.width(); ++c, target_byte += output_channel_count) { | |
578 int accval = 0; | |
579 int overlap_taps = image_size.width() - c + centrepoint; | |
580 int pixel_byte_index = (c - centrepoint) * input_channel_count + | |
581 input_channel_index; | |
582 int i = 0; | |
583 for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count) | |
584 accval += filter_values[i] * source_data_row[pixel_byte_index]; | |
585 | |
586 for (; i < filter_length; ++i) | |
587 accval += filter_values[i] * source_data_row[pixel_byte_index]; | |
588 | |
589 *target_byte = BringBackTo8(accval, absolute_values); | |
590 } | |
591 | |
592 source_data_row += source_byte_row_stride; | |
593 output_row += output_byte_row_stride; | |
594 } | |
595 } | |
596 | |
597 void SingleChannelConvolveY1D(const unsigned char* source_data, | |
598 int source_byte_row_stride, | |
599 int input_channel_index, | |
600 int input_channel_count, | |
601 const ConvolutionFilter1D& filter, | |
602 const SkISize& image_size, | |
603 unsigned char* output, | |
604 int output_byte_row_stride, | |
605 int output_channel_index, | |
606 int output_channel_count, | |
607 bool absolute_values) { | |
608 int filter_offset, filter_length, filter_size; | |
609 // Very much unlike BGRAConvolve2D, here we expect to have the same filter | |
610 // for all pixels. | |
611 const ConvolutionFilter1D::Fixed* filter_values = | |
612 filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); | |
613 | |
614 if (filter_values == NULL || image_size.height() < filter_size) { | |
615 NOTREACHED(); | |
616 return; | |
617 } | |
618 | |
619 int centrepoint = filter_length / 2; | |
620 if (filter_size - filter_offset != 2 * filter_offset) { | |
621 // This means the original filter was not symmetrical AND | |
622 // got clipped from one side more than from the other. | |
623 centrepoint = filter_size / 2 - filter_offset; | |
624 } | |
625 | |
626 for (int c = 0; c < image_size.width(); ++c) { | |
627 unsigned char* target_byte = output + c * output_channel_count + | |
628 output_channel_index; | |
629 int r = 0; | |
630 | |
631 for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) { | |
632 int accval = 0; | |
633 int i = 0; | |
634 int pixel_byte_index = c * input_channel_count + input_channel_index; | |
635 | |
636 for (; i < centrepoint - r; ++i) // Padding part. | |
637 accval += filter_values[i] * source_data[pixel_byte_index]; | |
638 | |
639 for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride) | |
640 accval += filter_values[i] * source_data[pixel_byte_index]; | |
641 | |
642 *target_byte = BringBackTo8(accval, absolute_values); | |
643 } | |
644 | |
645 for (; r < image_size.height() - centrepoint; | |
646 ++r, target_byte += output_byte_row_stride) { | |
647 int accval = 0; | |
648 int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + | |
649 c * input_channel_count + input_channel_index; | |
650 for (int i = 0; i < filter_length; | |
651 ++i, pixel_byte_index += source_byte_row_stride) { | |
652 accval += filter_values[i] * source_data[pixel_byte_index]; | |
653 } | |
654 | |
655 *target_byte = BringBackTo8(accval, absolute_values); | |
656 } | |
657 | |
658 for (; r < image_size.height(); | |
659 ++r, target_byte += output_byte_row_stride) { | |
660 int accval = 0; | |
661 int overlap_taps = image_size.height() - r + centrepoint; | |
662 int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + | |
663 c * input_channel_count + input_channel_index; | |
664 int i = 0; | |
665 for (; i < overlap_taps - 1; | |
666 ++i, pixel_byte_index += source_byte_row_stride) { | |
667 accval += filter_values[i] * source_data[pixel_byte_index]; | |
668 } | |
669 | |
670 for (; i < filter_length; ++i) | |
671 accval += filter_values[i] * source_data[pixel_byte_index]; | |
672 | |
673 *target_byte = BringBackTo8(accval, absolute_values); | |
674 } | |
675 } | |
676 } | |
677 | |
678 void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter, | |
679 float kernel_sigma, | |
680 bool derivative) { | |
681 DCHECK(filter != NULL); | |
682 DCHECK_GT(kernel_sigma, 0.0); | |
683 const int tail_length = static_cast<int>(4.0f * kernel_sigma + 0.5f); | |
684 const int kernel_size = tail_length * 2 + 1; | |
685 const float sigmasq = kernel_sigma * kernel_sigma; | |
686 std::vector<float> kernel_weights(kernel_size, 0.0); | |
687 float kernel_sum = 1.0f; | |
688 | |
689 kernel_weights[tail_length] = 1.0f; | |
690 | |
691 for (int ii = 1; ii <= tail_length; ++ii) { | |
692 float v = std::exp(-0.5f * ii * ii / sigmasq); | |
693 kernel_weights[tail_length + ii] = v; | |
694 kernel_weights[tail_length - ii] = v; | |
695 kernel_sum += 2.0f * v; | |
696 } | |
697 | |
698 for (int i = 0; i < kernel_size; ++i) | |
699 kernel_weights[i] /= kernel_sum; | |
700 | |
701 if (derivative) { | |
702 kernel_weights[tail_length] = 0.0; | |
703 for (int ii = 1; ii <= tail_length; ++ii) { | |
704 float v = sigmasq * kernel_weights[tail_length + ii] / ii; | |
705 kernel_weights[tail_length + ii] = v; | |
706 kernel_weights[tail_length - ii] = -v; | |
707 } | |
708 } | |
709 | |
710 filter->AddFilter(0, &kernel_weights[0], kernel_weights.size()); | |
711 } | |
712 | |
713 } // namespace skia | |
OLD | NEW |