Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(272)

Unified Diff: test/cctest/heap/test-compaction.cc

Issue 1518803005: Reland of "[cctest] Add tests for aborting compaction of pages" (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Sweep NEVER_ALLOCATE_ON_PAGE pages. Memory gets dropped in the free list again Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « test/cctest/heap/heap-tester.h ('k') | test/cctest/heap/utils-inl.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: test/cctest/heap/test-compaction.cc
diff --git a/test/cctest/heap/test-compaction.cc b/test/cctest/heap/test-compaction.cc
new file mode 100644
index 0000000000000000000000000000000000000000..064e5a82c0e919f867ce01666a1bb47067bbba71
--- /dev/null
+++ b/test/cctest/heap/test-compaction.cc
@@ -0,0 +1,340 @@
+// Copyright 2015 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "test/cctest/cctest.h"
+#include "test/cctest/heap/heap-tester.h"
+#include "test/cctest/heap/utils-inl.h"
+
+namespace v8 {
+namespace internal {
+
+static void CheckInvariantsOfAbortedPage(Page* page) {
+ // Check invariants:
+ // 1) Markbits are cleared
+ // 2) The page is not marked as evacuation candidate anymore
+ // 3) The page is not marked as aborted compaction anymore.
+ CHECK(page->markbits()->IsClean());
+ CHECK(!page->IsEvacuationCandidate());
+ CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED));
+}
+
+
+HEAP_TEST(CompactionFullAbortedPage) {
+ // Test the scenario where we reach OOM during compaction and the whole page
+ // is aborted.
+
+ // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
+ // we can reach the state of a half aborted page.
+ FLAG_concurrent_sweeping = false;
+ FLAG_manual_evacuation_candidates_selection = true;
+ CcTest::InitializeVM();
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ {
+ HandleScope scope1(isolate);
+ PageIterator it(heap->old_space());
+ while (it.has_next()) {
+ it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE);
+ }
+
+ {
+ HandleScope scope2(isolate);
+ CHECK(heap->old_space()->Expand());
+ auto compaction_page_handles =
+ CreatePadding(heap, Page::kAllocatableMemory, TENURED);
+ Page* to_be_aborted_page =
+ Page::FromAddress(compaction_page_handles.front()->address());
+ to_be_aborted_page->SetFlag(
+ MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
+
+ heap->set_force_oom(true);
+ heap->CollectAllGarbage();
+
+ // Check that all handles still point to the same page, i.e., compaction
+ // has been aborted on the page.
+ for (Handle<FixedArray> object : compaction_page_handles) {
+ CHECK_EQ(to_be_aborted_page, Page::FromAddress(object->address()));
+ }
+ CheckInvariantsOfAbortedPage(to_be_aborted_page);
+ }
+ }
+}
+
+
+HEAP_TEST(CompactionPartiallyAbortedPage) {
+ // Test the scenario where we reach OOM during compaction and parts of the
+ // page have already been migrated to a new one.
+
+ // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
+ // we can reach the state of a half aborted page.
+ FLAG_concurrent_sweeping = false;
+ FLAG_manual_evacuation_candidates_selection = true;
+
+ const int object_size = 128 * KB;
+
+ CcTest::InitializeVM();
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ {
+ HandleScope scope1(isolate);
+ PageIterator it(heap->old_space());
+ while (it.has_next()) {
+ it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE);
+ }
+
+ {
+ HandleScope scope2(isolate);
+ // Fill another page with objects of size {object_size} (last one is
+ // properly adjusted).
+ CHECK(heap->old_space()->Expand());
+ auto compaction_page_handles =
+ CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size);
+ Page* to_be_aborted_page =
+ Page::FromAddress(compaction_page_handles.front()->address());
+ to_be_aborted_page->SetFlag(
+ MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
+
+ {
+ // Add another page that is filled with {num_objects} objects of size
+ // {object_size}.
+ HandleScope scope3(isolate);
+ CHECK(heap->old_space()->Expand());
+ const int num_objects = 3;
+ std::vector<Handle<FixedArray>> page_to_fill_handles = CreatePadding(
+ heap, object_size * num_objects, TENURED, object_size);
+ Page* page_to_fill =
+ Page::FromAddress(page_to_fill_handles.front()->address());
+
+ heap->set_force_oom(true);
+ heap->CollectAllGarbage();
+
+ bool migration_aborted = false;
+ for (Handle<FixedArray> object : compaction_page_handles) {
+ // Once compaction has been aborted, all following objects still have
+ // to be on the initial page.
+ CHECK(!migration_aborted ||
+ (Page::FromAddress(object->address()) == to_be_aborted_page));
+ if (Page::FromAddress(object->address()) == to_be_aborted_page) {
+ // This object has not been migrated.
+ migration_aborted = true;
+ } else {
+ CHECK_EQ(Page::FromAddress(object->address()), page_to_fill);
+ }
+ }
+ // Check that we actually created a scenario with a partially aborted
+ // page.
+ CHECK(migration_aborted);
+ CheckInvariantsOfAbortedPage(to_be_aborted_page);
+ }
+ }
+ }
+}
+
+
+HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) {
+ // Test the scenario where we reach OOM during compaction and parts of the
+ // page have already been migrated to a new one. Objects on the aborted page
+ // are linked together. This test makes sure that intra-aborted page pointers
+ // get properly updated.
+
+ // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
+ // we can reach the state of a half aborted page.
+ FLAG_concurrent_sweeping = false;
+ FLAG_manual_evacuation_candidates_selection = true;
+
+ const int object_size = 128 * KB;
+
+ CcTest::InitializeVM();
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ {
+ HandleScope scope1(isolate);
+ Handle<FixedArray> root_array =
+ isolate->factory()->NewFixedArray(10, TENURED);
+
+ PageIterator it(heap->old_space());
+ while (it.has_next()) {
+ it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE);
+ }
+
+ Page* to_be_aborted_page = nullptr;
+ {
+ HandleScope temporary_scope(isolate);
+ // Fill a fresh page with objects of size {object_size} (last one is
+ // properly adjusted).
+ CHECK(heap->old_space()->Expand());
+ std::vector<Handle<FixedArray>> compaction_page_handles =
+ CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size);
+ to_be_aborted_page =
+ Page::FromAddress(compaction_page_handles.front()->address());
+ to_be_aborted_page->SetFlag(
+ MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
+ for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
+ compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
+ }
+ root_array->set(0, *compaction_page_handles.back());
+ }
+
+ {
+ // Add another page that is filled with {num_objects} objects of size
+ // {object_size}.
+ HandleScope scope3(isolate);
+ CHECK(heap->old_space()->Expand());
+ const int num_objects = 2;
+ int used_memory = object_size * num_objects;
+ std::vector<Handle<FixedArray>> page_to_fill_handles =
+ CreatePadding(heap, used_memory, TENURED, object_size);
+ Page* page_to_fill =
+ Page::FromAddress(page_to_fill_handles.front()->address());
+
+ heap->set_force_oom(true);
+ heap->CollectAllGarbage();
+
+ // The following check makes sure that we compacted "some" objects, while
+ // leaving others in place.
+ bool in_place = true;
+ Handle<FixedArray> current = root_array;
+ while (current->get(0) != heap->undefined_value()) {
+ current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
+ CHECK(current->IsFixedArray());
+ if (Page::FromAddress(current->address()) != to_be_aborted_page) {
+ in_place = false;
+ }
+ bool on_aborted_page =
+ Page::FromAddress(current->address()) == to_be_aborted_page;
+ bool on_fill_page =
+ Page::FromAddress(current->address()) == page_to_fill;
+ CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
+ }
+ // Check that we at least migrated one object, as otherwise the test would
+ // not trigger.
+ CHECK(!in_place);
+ CheckInvariantsOfAbortedPage(to_be_aborted_page);
+ }
+ }
+}
+
+
+HEAP_TEST(CompactionPartiallyAbortedPageWithStoreBufferEntries) {
+ // Test the scenario where we reach OOM during compaction and parts of the
+ // page have already been migrated to a new one. Objects on the aborted page
+ // are linked together and the very first object on the aborted page points
+ // into new space. The test verifies that the store buffer entries are
+ // properly cleared and rebuilt after aborting a page. Failing to do so can
+ // result in other objects being allocated in the free space where their
+ // payload looks like a valid new space pointer.
+
+ // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
+ // we can reach the state of a half aborted page.
+ FLAG_concurrent_sweeping = false;
+ FLAG_manual_evacuation_candidates_selection = true;
+
+ const int object_size = 128 * KB;
+
+ CcTest::InitializeVM();
+ Isolate* isolate = CcTest::i_isolate();
+ Heap* heap = isolate->heap();
+ {
+ HandleScope scope1(isolate);
+ Handle<FixedArray> root_array =
+ isolate->factory()->NewFixedArray(10, TENURED);
+ PageIterator it(heap->old_space());
+ while (it.has_next()) {
+ it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE);
+ }
+
+ Page* to_be_aborted_page = nullptr;
+ {
+ HandleScope temporary_scope(isolate);
+ // Fill another page with objects of size {object_size} (last one is
+ // properly adjusted).
+ CHECK(heap->old_space()->Expand());
+ auto compaction_page_handles =
+ CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size);
+ // Sanity check that we have enough space for linking up arrays.
+ CHECK_GE(compaction_page_handles.front()->length(), 2);
+ to_be_aborted_page =
+ Page::FromAddress(compaction_page_handles.front()->address());
+ to_be_aborted_page->SetFlag(
+ MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
+
+ for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
+ compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
+ }
+ root_array->set(0, *compaction_page_handles.back());
+ Handle<FixedArray> new_space_array =
+ isolate->factory()->NewFixedArray(1, NOT_TENURED);
+ CHECK(heap->InNewSpace(*new_space_array));
+ compaction_page_handles.front()->set(1, *new_space_array);
+ }
+
+ {
+ // Add another page that is filled with {num_objects} objects of size
+ // {object_size}.
+ HandleScope scope3(isolate);
+ CHECK(heap->old_space()->Expand());
+ const int num_objects = 2;
+ int used_memory = object_size * num_objects;
+ std::vector<Handle<FixedArray>> page_to_fill_handles =
+ CreatePadding(heap, used_memory, TENURED, object_size);
+ Page* page_to_fill =
+ Page::FromAddress(page_to_fill_handles.front()->address());
+
+ heap->set_force_oom(true);
+ heap->CollectAllGarbage();
+
+ // The following check makes sure that we compacted "some" objects, while
+ // leaving others in place.
+ bool in_place = true;
+ Handle<FixedArray> current = root_array;
+ while (current->get(0) != heap->undefined_value()) {
+ current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
+ CHECK(!heap->InNewSpace(*current));
+ CHECK(current->IsFixedArray());
+ if (Page::FromAddress(current->address()) != to_be_aborted_page) {
+ in_place = false;
+ }
+ bool on_aborted_page =
+ Page::FromAddress(current->address()) == to_be_aborted_page;
+ bool on_fill_page =
+ Page::FromAddress(current->address()) == page_to_fill;
+ CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
+ }
+ // Check that we at least migrated one object, as otherwise the test would
+ // not trigger.
+ CHECK(!in_place);
+ CheckInvariantsOfAbortedPage(to_be_aborted_page);
+
+ // Allocate a new object in new space.
+ Handle<FixedArray> holder =
+ isolate->factory()->NewFixedArray(10, NOT_TENURED);
+ // Create a broken address that looks like a tagged pointer to a new space
+ // object.
+ Address broken_address = holder->address() + 2 * kPointerSize + 1;
+ // Convert it to a vector to create a string from it.
+ Vector<const uint8_t> string_to_broken_addresss(
+ reinterpret_cast<const uint8_t*>(&broken_address), 8);
+
+ Handle<String> string;
+ do {
+ // We know that the interesting slot will be on the aborted page and
+ // hence we allocate until we get our string on the aborted page.
+ // We used slot 1 in the fixed size array which corresponds to the
+ // the first word in the string. Since the first object definitely
+ // migrated we can just allocate until we hit the aborted page.
+ string = isolate->factory()
+ ->NewStringFromOneByte(string_to_broken_addresss, TENURED)
+ .ToHandleChecked();
+ } while (Page::FromAddress(string->address()) != to_be_aborted_page);
+
+ // If store buffer entries are not properly filtered/reset for aborted
+ // pages we have now a broken address at an object slot in old space and
+ // the following scavenge will crash.
+ heap->CollectGarbage(NEW_SPACE);
+ }
+ }
+}
+
+} // namespace internal
+} // namespace v8
« no previous file with comments | « test/cctest/heap/heap-tester.h ('k') | test/cctest/heap/utils-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698