OLD | NEW |
(Empty) | |
| 1 // Copyright 2015 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "test/cctest/cctest.h" |
| 6 #include "test/cctest/heap/heap-tester.h" |
| 7 #include "test/cctest/heap/utils-inl.h" |
| 8 |
| 9 namespace v8 { |
| 10 namespace internal { |
| 11 |
| 12 static void CheckInvariantsOfAbortedPage(Page* page) { |
| 13 // Check invariants: |
| 14 // 1) Markbits are cleared |
| 15 // 2) The page is not marked as evacuation candidate anymore |
| 16 // 3) The page is not marked as aborted compaction anymore. |
| 17 CHECK(page->markbits()->IsClean()); |
| 18 CHECK(!page->IsEvacuationCandidate()); |
| 19 CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED)); |
| 20 } |
| 21 |
| 22 |
| 23 HEAP_TEST(CompactionFullAbortedPage) { |
| 24 // Test the scenario where we reach OOM during compaction and the whole page |
| 25 // is aborted. |
| 26 |
| 27 // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| 28 // we can reach the state of a half aborted page. |
| 29 FLAG_concurrent_sweeping = false; |
| 30 FLAG_manual_evacuation_candidates_selection = true; |
| 31 CcTest::InitializeVM(); |
| 32 Isolate* isolate = CcTest::i_isolate(); |
| 33 Heap* heap = isolate->heap(); |
| 34 { |
| 35 HandleScope scope1(isolate); |
| 36 PageIterator it(heap->old_space()); |
| 37 while (it.has_next()) { |
| 38 it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE); |
| 39 } |
| 40 |
| 41 { |
| 42 HandleScope scope2(isolate); |
| 43 CHECK(heap->old_space()->Expand()); |
| 44 auto compaction_page_handles = |
| 45 CreatePadding(heap, Page::kAllocatableMemory, TENURED); |
| 46 Page* to_be_aborted_page = |
| 47 Page::FromAddress(compaction_page_handles.front()->address()); |
| 48 to_be_aborted_page->SetFlag( |
| 49 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| 50 |
| 51 heap->set_force_oom(true); |
| 52 heap->CollectAllGarbage(); |
| 53 |
| 54 // Check that all handles still point to the same page, i.e., compaction |
| 55 // has been aborted on the page. |
| 56 for (Handle<FixedArray> object : compaction_page_handles) { |
| 57 CHECK_EQ(to_be_aborted_page, Page::FromAddress(object->address())); |
| 58 } |
| 59 CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| 60 } |
| 61 } |
| 62 } |
| 63 |
| 64 |
| 65 HEAP_TEST(CompactionPartiallyAbortedPage) { |
| 66 // Test the scenario where we reach OOM during compaction and parts of the |
| 67 // page have already been migrated to a new one. |
| 68 |
| 69 // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| 70 // we can reach the state of a half aborted page. |
| 71 FLAG_concurrent_sweeping = false; |
| 72 FLAG_manual_evacuation_candidates_selection = true; |
| 73 |
| 74 const int object_size = 128 * KB; |
| 75 |
| 76 CcTest::InitializeVM(); |
| 77 Isolate* isolate = CcTest::i_isolate(); |
| 78 Heap* heap = isolate->heap(); |
| 79 { |
| 80 HandleScope scope1(isolate); |
| 81 PageIterator it(heap->old_space()); |
| 82 while (it.has_next()) { |
| 83 it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE); |
| 84 } |
| 85 |
| 86 { |
| 87 HandleScope scope2(isolate); |
| 88 // Fill another page with objects of size {object_size} (last one is |
| 89 // properly adjusted). |
| 90 CHECK(heap->old_space()->Expand()); |
| 91 auto compaction_page_handles = |
| 92 CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size); |
| 93 Page* to_be_aborted_page = |
| 94 Page::FromAddress(compaction_page_handles.front()->address()); |
| 95 to_be_aborted_page->SetFlag( |
| 96 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| 97 |
| 98 { |
| 99 // Add another page that is filled with {num_objects} objects of size |
| 100 // {object_size}. |
| 101 HandleScope scope3(isolate); |
| 102 CHECK(heap->old_space()->Expand()); |
| 103 const int num_objects = 3; |
| 104 std::vector<Handle<FixedArray>> page_to_fill_handles = CreatePadding( |
| 105 heap, object_size * num_objects, TENURED, object_size); |
| 106 Page* page_to_fill = |
| 107 Page::FromAddress(page_to_fill_handles.front()->address()); |
| 108 |
| 109 heap->set_force_oom(true); |
| 110 heap->CollectAllGarbage(); |
| 111 |
| 112 bool migration_aborted = false; |
| 113 for (Handle<FixedArray> object : compaction_page_handles) { |
| 114 // Once compaction has been aborted, all following objects still have |
| 115 // to be on the initial page. |
| 116 CHECK(!migration_aborted || |
| 117 (Page::FromAddress(object->address()) == to_be_aborted_page)); |
| 118 if (Page::FromAddress(object->address()) == to_be_aborted_page) { |
| 119 // This object has not been migrated. |
| 120 migration_aborted = true; |
| 121 } else { |
| 122 CHECK_EQ(Page::FromAddress(object->address()), page_to_fill); |
| 123 } |
| 124 } |
| 125 // Check that we actually created a scenario with a partially aborted |
| 126 // page. |
| 127 CHECK(migration_aborted); |
| 128 CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| 129 } |
| 130 } |
| 131 } |
| 132 } |
| 133 |
| 134 |
| 135 HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) { |
| 136 // Test the scenario where we reach OOM during compaction and parts of the |
| 137 // page have already been migrated to a new one. Objects on the aborted page |
| 138 // are linked together. This test makes sure that intra-aborted page pointers |
| 139 // get properly updated. |
| 140 |
| 141 // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| 142 // we can reach the state of a half aborted page. |
| 143 FLAG_concurrent_sweeping = false; |
| 144 FLAG_manual_evacuation_candidates_selection = true; |
| 145 |
| 146 const int object_size = 128 * KB; |
| 147 |
| 148 CcTest::InitializeVM(); |
| 149 Isolate* isolate = CcTest::i_isolate(); |
| 150 Heap* heap = isolate->heap(); |
| 151 { |
| 152 HandleScope scope1(isolate); |
| 153 Handle<FixedArray> root_array = |
| 154 isolate->factory()->NewFixedArray(10, TENURED); |
| 155 |
| 156 PageIterator it(heap->old_space()); |
| 157 while (it.has_next()) { |
| 158 it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE); |
| 159 } |
| 160 |
| 161 Page* to_be_aborted_page = nullptr; |
| 162 { |
| 163 HandleScope temporary_scope(isolate); |
| 164 // Fill a fresh page with objects of size {object_size} (last one is |
| 165 // properly adjusted). |
| 166 CHECK(heap->old_space()->Expand()); |
| 167 std::vector<Handle<FixedArray>> compaction_page_handles = |
| 168 CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size); |
| 169 to_be_aborted_page = |
| 170 Page::FromAddress(compaction_page_handles.front()->address()); |
| 171 to_be_aborted_page->SetFlag( |
| 172 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| 173 for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) { |
| 174 compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]); |
| 175 } |
| 176 root_array->set(0, *compaction_page_handles.back()); |
| 177 } |
| 178 |
| 179 { |
| 180 // Add another page that is filled with {num_objects} objects of size |
| 181 // {object_size}. |
| 182 HandleScope scope3(isolate); |
| 183 CHECK(heap->old_space()->Expand()); |
| 184 const int num_objects = 2; |
| 185 int used_memory = object_size * num_objects; |
| 186 std::vector<Handle<FixedArray>> page_to_fill_handles = |
| 187 CreatePadding(heap, used_memory, TENURED, object_size); |
| 188 Page* page_to_fill = |
| 189 Page::FromAddress(page_to_fill_handles.front()->address()); |
| 190 |
| 191 heap->set_force_oom(true); |
| 192 heap->CollectAllGarbage(); |
| 193 |
| 194 // The following check makes sure that we compacted "some" objects, while |
| 195 // leaving others in place. |
| 196 bool in_place = true; |
| 197 Handle<FixedArray> current = root_array; |
| 198 while (current->get(0) != heap->undefined_value()) { |
| 199 current = Handle<FixedArray>(FixedArray::cast(current->get(0))); |
| 200 CHECK(current->IsFixedArray()); |
| 201 if (Page::FromAddress(current->address()) != to_be_aborted_page) { |
| 202 in_place = false; |
| 203 } |
| 204 bool on_aborted_page = |
| 205 Page::FromAddress(current->address()) == to_be_aborted_page; |
| 206 bool on_fill_page = |
| 207 Page::FromAddress(current->address()) == page_to_fill; |
| 208 CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page)); |
| 209 } |
| 210 // Check that we at least migrated one object, as otherwise the test would |
| 211 // not trigger. |
| 212 CHECK(!in_place); |
| 213 CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| 214 } |
| 215 } |
| 216 } |
| 217 |
| 218 |
| 219 HEAP_TEST(CompactionPartiallyAbortedPageWithStoreBufferEntries) { |
| 220 // Test the scenario where we reach OOM during compaction and parts of the |
| 221 // page have already been migrated to a new one. Objects on the aborted page |
| 222 // are linked together and the very first object on the aborted page points |
| 223 // into new space. The test verifies that the store buffer entries are |
| 224 // properly cleared and rebuilt after aborting a page. Failing to do so can |
| 225 // result in other objects being allocated in the free space where their |
| 226 // payload looks like a valid new space pointer. |
| 227 |
| 228 // Disable concurrent sweeping to ensure memory is in an expected state, i.e., |
| 229 // we can reach the state of a half aborted page. |
| 230 FLAG_concurrent_sweeping = false; |
| 231 FLAG_manual_evacuation_candidates_selection = true; |
| 232 |
| 233 const int object_size = 128 * KB; |
| 234 |
| 235 CcTest::InitializeVM(); |
| 236 Isolate* isolate = CcTest::i_isolate(); |
| 237 Heap* heap = isolate->heap(); |
| 238 { |
| 239 HandleScope scope1(isolate); |
| 240 Handle<FixedArray> root_array = |
| 241 isolate->factory()->NewFixedArray(10, TENURED); |
| 242 PageIterator it(heap->old_space()); |
| 243 while (it.has_next()) { |
| 244 it.next()->SetFlag(Page::NEVER_ALLOCATE_ON_PAGE); |
| 245 } |
| 246 |
| 247 Page* to_be_aborted_page = nullptr; |
| 248 { |
| 249 HandleScope temporary_scope(isolate); |
| 250 // Fill another page with objects of size {object_size} (last one is |
| 251 // properly adjusted). |
| 252 CHECK(heap->old_space()->Expand()); |
| 253 auto compaction_page_handles = |
| 254 CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size); |
| 255 // Sanity check that we have enough space for linking up arrays. |
| 256 CHECK_GE(compaction_page_handles.front()->length(), 2); |
| 257 to_be_aborted_page = |
| 258 Page::FromAddress(compaction_page_handles.front()->address()); |
| 259 to_be_aborted_page->SetFlag( |
| 260 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); |
| 261 |
| 262 for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) { |
| 263 compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]); |
| 264 } |
| 265 root_array->set(0, *compaction_page_handles.back()); |
| 266 Handle<FixedArray> new_space_array = |
| 267 isolate->factory()->NewFixedArray(1, NOT_TENURED); |
| 268 CHECK(heap->InNewSpace(*new_space_array)); |
| 269 compaction_page_handles.front()->set(1, *new_space_array); |
| 270 } |
| 271 |
| 272 { |
| 273 // Add another page that is filled with {num_objects} objects of size |
| 274 // {object_size}. |
| 275 HandleScope scope3(isolate); |
| 276 CHECK(heap->old_space()->Expand()); |
| 277 const int num_objects = 2; |
| 278 int used_memory = object_size * num_objects; |
| 279 std::vector<Handle<FixedArray>> page_to_fill_handles = |
| 280 CreatePadding(heap, used_memory, TENURED, object_size); |
| 281 Page* page_to_fill = |
| 282 Page::FromAddress(page_to_fill_handles.front()->address()); |
| 283 |
| 284 heap->set_force_oom(true); |
| 285 heap->CollectAllGarbage(); |
| 286 |
| 287 // The following check makes sure that we compacted "some" objects, while |
| 288 // leaving others in place. |
| 289 bool in_place = true; |
| 290 Handle<FixedArray> current = root_array; |
| 291 while (current->get(0) != heap->undefined_value()) { |
| 292 current = Handle<FixedArray>(FixedArray::cast(current->get(0))); |
| 293 CHECK(!heap->InNewSpace(*current)); |
| 294 CHECK(current->IsFixedArray()); |
| 295 if (Page::FromAddress(current->address()) != to_be_aborted_page) { |
| 296 in_place = false; |
| 297 } |
| 298 bool on_aborted_page = |
| 299 Page::FromAddress(current->address()) == to_be_aborted_page; |
| 300 bool on_fill_page = |
| 301 Page::FromAddress(current->address()) == page_to_fill; |
| 302 CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page)); |
| 303 } |
| 304 // Check that we at least migrated one object, as otherwise the test would |
| 305 // not trigger. |
| 306 CHECK(!in_place); |
| 307 CheckInvariantsOfAbortedPage(to_be_aborted_page); |
| 308 |
| 309 // Allocate a new object in new space. |
| 310 Handle<FixedArray> holder = |
| 311 isolate->factory()->NewFixedArray(10, NOT_TENURED); |
| 312 // Create a broken address that looks like a tagged pointer to a new space |
| 313 // object. |
| 314 Address broken_address = holder->address() + 2 * kPointerSize + 1; |
| 315 // Convert it to a vector to create a string from it. |
| 316 Vector<const uint8_t> string_to_broken_addresss( |
| 317 reinterpret_cast<const uint8_t*>(&broken_address), 8); |
| 318 |
| 319 Handle<String> string; |
| 320 do { |
| 321 // We know that the interesting slot will be on the aborted page and |
| 322 // hence we allocate until we get our string on the aborted page. |
| 323 // We used slot 1 in the fixed size array which corresponds to the |
| 324 // the first word in the string. Since the first object definitely |
| 325 // migrated we can just allocate until we hit the aborted page. |
| 326 string = isolate->factory() |
| 327 ->NewStringFromOneByte(string_to_broken_addresss, TENURED) |
| 328 .ToHandleChecked(); |
| 329 } while (Page::FromAddress(string->address()) != to_be_aborted_page); |
| 330 |
| 331 // If store buffer entries are not properly filtered/reset for aborted |
| 332 // pages we have now a broken address at an object slot in old space and |
| 333 // the following scavenge will crash. |
| 334 heap->CollectGarbage(NEW_SPACE); |
| 335 } |
| 336 } |
| 337 } |
| 338 |
| 339 } // namespace internal |
| 340 } // namespace v8 |
OLD | NEW |