Index: src/core/SkPath.cpp |
diff --git a/src/core/SkPath.cpp b/src/core/SkPath.cpp |
index 157235440c111631873b692b72684979a4a70a2b..d32fb4cba3b92f464d93546e44b2bcfb5c120808 100644 |
--- a/src/core/SkPath.cpp |
+++ b/src/core/SkPath.cpp |
@@ -6,6 +6,7 @@ |
*/ |
#include "SkBuffer.h" |
+#include "SkCubicClipper.h" |
#include "SkErrorInternals.h" |
#include "SkGeometry.h" |
#include "SkMath.h" |
@@ -2588,6 +2589,12 @@ bool SkPathPriv::CheapComputeFirstDirection(const SkPath& path, FirstDirection* |
/////////////////////////////////////////////////////////////////////////////// |
+static bool between(SkScalar a, SkScalar b, SkScalar c) { |
+ SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0) |
+ || (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearlyZero(c))); |
+ return (a - b) * (c - b) <= 0; |
+} |
+ |
static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, |
SkScalar D, SkScalar t) { |
return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); |
@@ -2602,40 +2609,6 @@ static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c |
return eval_cubic_coeff(A, B, C, D, t); |
} |
-/* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the |
- t value such that cubic(t) = target |
- */ |
-static void chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, |
- SkScalar target, SkScalar* t) { |
- // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); |
- SkASSERT(c0 < target && target < c3); |
- |
- SkScalar D = c0 - target; |
- SkScalar A = c3 + 3*(c1 - c2) - c0; |
- SkScalar B = 3*(c2 - c1 - c1 + c0); |
- SkScalar C = 3*(c1 - c0); |
- |
- const SkScalar TOLERANCE = SK_Scalar1 / 4096; |
- SkScalar minT = 0; |
- SkScalar maxT = SK_Scalar1; |
- SkScalar mid; |
- int i; |
- for (i = 0; i < 16; i++) { |
- mid = SkScalarAve(minT, maxT); |
- SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); |
- if (delta < 0) { |
- minT = mid; |
- delta = -delta; |
- } else { |
- maxT = mid; |
- } |
- if (delta < TOLERANCE) { |
- break; |
- } |
- } |
- *t = mid; |
-} |
- |
template <size_t N> static void find_minmax(const SkPoint pts[], |
SkScalar* minPtr, SkScalar* maxPtr) { |
SkScalar min, max; |
@@ -2648,22 +2621,19 @@ template <size_t N> static void find_minmax(const SkPoint pts[], |
*maxPtr = max; |
} |
-static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { |
- SkPoint storage[4]; |
- |
- int dir = 1; |
- if (pts[0].fY > pts[3].fY) { |
- storage[0] = pts[3]; |
- storage[1] = pts[2]; |
- storage[2] = pts[1]; |
- storage[3] = pts[0]; |
- pts = storage; |
- dir = -1; |
+static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
+ if (!between(pts[0].fY, y, pts[3].fY)) { |
+ return 0; |
} |
- if (y < pts[0].fY || y >= pts[3].fY) { |
+ if (y == pts[3].fY) { |
+ // if the cubic is a horizontal line, check if the point is on it |
+ // but don't check the last point, because that point is shared with the next curve |
+ if (pts[0].fY == pts[3].fY && between(pts[0].fX, x, pts[3].fX) && x != pts[3].fX) { |
+ *onCurveCount += 1; |
+ } |
return 0; |
} |
- |
+ int dir = pts[0].fY > pts[3].fY ? -1 : 1; |
// quickreject or quickaccept |
SkScalar min, max; |
find_minmax<4>(pts, &min, &max); |
@@ -2676,22 +2646,46 @@ static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { |
// compute the actual x(t) value |
SkScalar t; |
- chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t); |
+ SkAssertResult(SkCubicClipper::ChopMonoAtY(pts, y, &t)); |
SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t); |
+ if (SkScalarNearlyEqual(xt, x)) { |
+ if (x != pts[3].fX || y != pts[3].fY) { // don't test end points; they're start points |
+ *onCurveCount += 1; |
+ } |
+ } |
return xt < x ? dir : 0; |
} |
-static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { |
+static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
SkPoint dst[10]; |
int n = SkChopCubicAtYExtrema(pts, dst); |
int w = 0; |
for (int i = 0; i <= n; ++i) { |
- w += winding_mono_cubic(&dst[i * 3], x, y); |
+ w += winding_mono_cubic(&dst[i * 3], x, y, onCurveCount); |
} |
return w; |
} |
-static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
+static double conic_eval_numerator(const SkScalar src[], SkScalar w, SkScalar t) { |
+ SkASSERT(src); |
+ SkASSERT(t >= 0 && t <= 1); |
+ SkScalar src2w = src[2] * w; |
+ SkScalar C = src[0]; |
+ SkScalar A = src[4] - 2 * src2w + C; |
+ SkScalar B = 2 * (src2w - C); |
+ return (A * t + B) * t + C; |
+} |
+ |
+ |
+static double conic_eval_denominator(SkScalar w, SkScalar t) { |
+ SkScalar B = 2 * (w - 1); |
+ SkScalar C = 1; |
+ SkScalar A = -B; |
+ return (A * t + B) * t + C; |
+} |
+ |
+static int winding_mono_conic(const SkConic& conic, SkScalar x, SkScalar y, int* onCurveCount) { |
+ const SkPoint* pts = conic.fPts; |
SkScalar y0 = pts[0].fY; |
SkScalar y2 = pts[2].fY; |
@@ -2700,10 +2694,91 @@ static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
SkTSwap(y0, y2); |
dir = -1; |
} |
- if (y < y0 || y >= y2) { |
+ if (y < y0 || y > y2) { |
+ return 0; |
+ } |
+ if (y == y2) { |
+ if (y0 == y2 && between(pts[0].fX, x, pts[2].fX) && x != pts[2].fX) { // check horizontal |
+ *onCurveCount += 1; |
+ } |
return 0; |
} |
+ SkScalar roots[2]; |
+ SkScalar A = pts[2].fY; |
+ SkScalar B = pts[1].fY * conic.fW - y * conic.fW + y; |
+ SkScalar C = pts[0].fY; |
+ A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept) |
+ B -= C; // B = b*w - w * yCept + yCept - a |
+ C -= y; |
+ int n = SkFindUnitQuadRoots(A, 2 * B, C, roots); |
+ SkASSERT(n <= 1); |
+ SkScalar xt; |
+ if (0 == n) { |
+ SkScalar mid = SkScalarAve(y0, y2); |
+ // Need [0] and [2] if dir == 1 |
+ // and [2] and [0] if dir == -1 |
+ xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX; |
+ } else { |
+ SkScalar t = roots[0]; |
+ xt = conic_eval_numerator(&pts[0].fX, conic.fW, t) / conic_eval_denominator(conic.fW, t); |
+ } |
+ if (SkScalarNearlyEqual(xt, x)) { |
+ if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they're start points |
+ *onCurveCount += 1; |
+ } |
+ } |
+ return xt < x ? dir : 0; |
+} |
+ |
+static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) { |
+ // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0; |
+ if (y0 == y1) { |
+ return true; |
+ } |
+ if (y0 < y1) { |
+ return y1 <= y2; |
+ } else { |
+ return y1 >= y2; |
+ } |
+} |
+ |
+static int winding_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar weight, |
+ int* onCurveCount) { |
+ SkConic conic(pts, weight); |
+ SkConic *c = &conic; |
+ SkConic chopped[2]; |
+ int n = 0; |
+ |
+ if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) { |
+ n = conic.chopAtYExtrema(chopped); |
+ c = chopped; |
+ } |
+ int w = winding_mono_conic(*c, x, y, onCurveCount); |
+ if (n > 0) { |
+ w += winding_mono_conic(chopped[1], x, y, onCurveCount); |
+ } |
+ return w; |
+} |
+ |
+static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
+ SkScalar y0 = pts[0].fY; |
+ SkScalar y2 = pts[2].fY; |
+ |
+ int dir = 1; |
+ if (y0 > y2) { |
+ SkTSwap(y0, y2); |
+ dir = -1; |
+ } |
+ if (y < y0 || y > y2) { |
+ return 0; |
+ } |
+ if (y == y2) { |
+ if (y0 == y2 && between(pts[0].fX, x, pts[2].fX) && x != pts[2].fX) { // check horizontal |
+ *onCurveCount += 1; |
+ } |
+ return 0; |
+ } |
// bounds check on X (not required. is it faster?) |
#if 0 |
if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) { |
@@ -2730,22 +2805,15 @@ static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
SkScalar B = 2 * (pts[1].fX - C); |
xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
} |
- return xt < x ? dir : 0; |
-} |
- |
-static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) { |
- // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0; |
- if (y0 == y1) { |
- return true; |
- } |
- if (y0 < y1) { |
- return y1 <= y2; |
- } else { |
- return y1 >= y2; |
+ if (SkScalarNearlyEqual(xt, x)) { |
+ if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they're start points |
+ *onCurveCount += 1; |
+ } |
} |
+ return xt < x ? dir : 0; |
} |
-static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
+static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
SkPoint dst[5]; |
int n = 0; |
@@ -2753,14 +2821,14 @@ static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
n = SkChopQuadAtYExtrema(pts, dst); |
pts = dst; |
} |
- int w = winding_mono_quad(pts, x, y); |
+ int w = winding_mono_quad(pts, x, y, onCurveCount); |
if (n > 0) { |
- w += winding_mono_quad(&pts[2], x, y); |
+ w += winding_mono_quad(&pts[2], x, y, onCurveCount); |
} |
return w; |
} |
-static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) { |
+static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) { |
SkScalar x0 = pts[0].fX; |
SkScalar y0 = pts[0].fY; |
SkScalar x1 = pts[1].fX; |
@@ -2773,19 +2841,129 @@ static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) { |
SkTSwap(y0, y1); |
dir = -1; |
} |
- if (y < y0 || y >= y1) { |
+ if (y < y0 || y > y1) { |
return 0; |
} |
+ if (y == y1) { |
+ if (y0 == y1 && between(x0, x, x1) && x != x1) { // check if on horizontal line |
+ *onCurveCount += 1; |
+ } |
+ return 0; |
+ } |
+ SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) - SkScalarMul(dy, x - x0); |
- SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) - |
- SkScalarMul(dy, x - pts[0].fX); |
- |
- if (SkScalarSignAsInt(cross) == dir) { |
+ if (!cross) { |
+ if (x != x1 || y != pts[1].fY) { // don't test end points since they're also start points |
+ *onCurveCount += 1; // zero cross means the point is on the line |
+ } |
+ dir = 0; |
+ } else if (SkScalarSignAsInt(cross) == dir) { |
dir = 0; |
} |
return dir; |
} |
+static void tangent_cubic(const SkPoint pts[], SkScalar x, SkScalar y, |
+ SkTDArray<SkVector>* tangents) { |
+ if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY) |
+ && !between(pts[2].fY, y, pts[3].fY)) { |
+ return; |
+ } |
+ if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX) |
+ && !between(pts[2].fX, x, pts[3].fX)) { |
+ return; |
+ } |
+ SkPoint dst[10]; |
+ int n = SkChopCubicAtYExtrema(pts, dst); |
+ for (int i = 0; i <= n; ++i) { |
+ SkPoint* c = &dst[i * 3]; |
+ SkScalar t; |
+ SkAssertResult(SkCubicClipper::ChopMonoAtY(c, y, &t)); |
+ SkScalar xt = eval_cubic_pts(c[0].fX, c[1].fX, c[2].fX, c[3].fX, t); |
+ if (!SkScalarNearlyEqual(x, xt)) { |
+ continue; |
+ } |
+ SkVector tangent; |
+ SkEvalCubicAt(c, t, nullptr, &tangent, nullptr); |
+ tangents->push(tangent); |
+ } |
+} |
+ |
+static void tangent_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar w, |
+ SkTDArray<SkVector>* tangents) { |
+ if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) { |
+ return; |
+ } |
+ if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) { |
+ return; |
+ } |
+ SkScalar roots[2]; |
+ SkScalar A = pts[2].fY; |
+ SkScalar B = pts[1].fY * w - y * w + y; |
+ SkScalar C = pts[0].fY; |
+ A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept) |
+ B -= C; // B = b*w - w * yCept + yCept - a |
+ C -= y; |
+ int n = SkFindUnitQuadRoots(A, 2 * B, C, roots); |
+ for (int index = 0; index < n; ++index) { |
+ SkScalar t = roots[index]; |
+ SkScalar xt = conic_eval_numerator(&pts[0].fX, w, t) / conic_eval_denominator(w, t); |
+ if (!SkScalarNearlyEqual(x, xt)) { |
+ continue; |
+ } |
+ SkConic conic(pts, w); |
+ tangents->push(conic.evalTangentAt(t)); |
+ } |
+} |
+ |
+static void tangent_quad(const SkPoint pts[], SkScalar x, SkScalar y, |
+ SkTDArray<SkVector>* tangents) { |
+ if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) { |
+ return; |
+ } |
+ if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) { |
+ return; |
+ } |
+ SkScalar roots[2]; |
+ int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, |
+ 2 * (pts[1].fY - pts[0].fY), |
+ pts[0].fY - y, |
+ roots); |
+ for (int index = 0; index < n; ++index) { |
+ SkScalar t = roots[index]; |
+ SkScalar C = pts[0].fX; |
+ SkScalar A = pts[2].fX - 2 * pts[1].fX + C; |
+ SkScalar B = 2 * (pts[1].fX - C); |
+ SkScalar xt = (A * t + B) * t + C; |
+ if (!SkScalarNearlyEqual(x, xt)) { |
+ continue; |
+ } |
+ tangents->push(SkEvalQuadTangentAt(pts, t)); |
+ } |
+} |
+ |
+static void tangent_line(const SkPoint pts[], SkScalar x, SkScalar y, |
+ SkTDArray<SkVector>* tangents) { |
+ SkScalar y0 = pts[0].fY; |
+ SkScalar y1 = pts[1].fY; |
+ if (!between(y0, y, y1)) { |
+ return; |
+ } |
+ SkScalar x0 = pts[0].fX; |
+ SkScalar x1 = pts[1].fX; |
+ if (!between(x0, x, x1)) { |
+ return; |
+ } |
+ SkScalar dx = x1 - x0; |
+ SkScalar dy = y1 - y0; |
+ if (!SkScalarNearlyEqual((x - x0) * dy, dx * (y - y0))) { |
+ return; |
+ } |
+ SkVector v; |
+ v.set(dx, dy); |
+ tangents->push(v); |
+} |
+ |
static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) { |
return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom; |
} |
@@ -2803,6 +2981,7 @@ bool SkPath::contains(SkScalar x, SkScalar y) const { |
SkPath::Iter iter(*this, true); |
bool done = false; |
int w = 0; |
+ int onCurveCount = 0; |
do { |
SkPoint pts[4]; |
switch (iter.next(pts, false)) { |
@@ -2810,32 +2989,83 @@ bool SkPath::contains(SkScalar x, SkScalar y) const { |
case SkPath::kClose_Verb: |
break; |
case SkPath::kLine_Verb: |
- w += winding_line(pts, x, y); |
+ w += winding_line(pts, x, y, &onCurveCount); |
break; |
case SkPath::kQuad_Verb: |
- w += winding_quad(pts, x, y); |
+ w += winding_quad(pts, x, y, &onCurveCount); |
break; |
case SkPath::kConic_Verb: |
- SkASSERT(0); |
+ w += winding_conic(pts, x, y, iter.conicWeight(), &onCurveCount); |
break; |
case SkPath::kCubic_Verb: |
- w += winding_cubic(pts, x, y); |
+ w += winding_cubic(pts, x, y, &onCurveCount); |
break; |
case SkPath::kDone_Verb: |
done = true; |
break; |
} |
} while (!done); |
- |
- switch (this->getFillType()) { |
- case SkPath::kEvenOdd_FillType: |
- case SkPath::kInverseEvenOdd_FillType: |
- w &= 1; |
- break; |
- default: |
- break; |
+ bool evenOddFill = SkPath::kEvenOdd_FillType == this->getFillType() |
+ || SkPath::kInverseEvenOdd_FillType == this->getFillType(); |
+ if (evenOddFill) { |
+ w &= 1; |
+ } |
+ if (w) { |
+ return !isInverse; |
+ } |
+ if (onCurveCount <= 1) { |
+ return SkToBool(onCurveCount) ^ isInverse; |
} |
- return SkToBool(w); |
+ if ((onCurveCount & 1) || evenOddFill) { |
+ return SkToBool(onCurveCount & 1) ^ isInverse; |
+ } |
+ // If the point touches an even number of curves, and the fill is winding, check for |
+ // coincidence. Count coincidence as places where the on curve points have identical tangents. |
+ iter.setPath(*this, true); |
+ SkTDArray<SkVector> tangents; |
+ do { |
+ SkPoint pts[4]; |
+ int oldCount = tangents.count(); |
+ switch (iter.next(pts, false)) { |
+ case SkPath::kMove_Verb: |
+ case SkPath::kClose_Verb: |
+ break; |
+ case SkPath::kLine_Verb: |
+ tangent_line(pts, x, y, &tangents); |
+ break; |
+ case SkPath::kQuad_Verb: |
+ tangent_quad(pts, x, y, &tangents); |
+ break; |
+ case SkPath::kConic_Verb: |
+ tangent_conic(pts, x, y, iter.conicWeight(), &tangents); |
+ break; |
+ case SkPath::kCubic_Verb: |
+ tangent_cubic(pts, x, y, &tangents); |
+ break; |
+ case SkPath::kDone_Verb: |
+ done = true; |
+ break; |
+ } |
+ if (tangents.count() > oldCount) { |
+ int last = tangents.count() - 1; |
+ const SkVector& tangent = tangents[last]; |
+ if (SkScalarNearlyZero(tangent.lengthSqd())) { |
+ tangents.remove(last); |
+ } else { |
+ for (int index = 0; index < last; ++index) { |
+ const SkVector& test = tangents[index]; |
+ if (SkScalarNearlyZero(test.cross(tangent)) |
+ && SkScalarSignAsInt(tangent.fX - test.fX) <= 0 |
+ && SkScalarSignAsInt(tangent.fY - test.fY) <= 0) { |
+ tangents.remove(last); |
+ tangents.removeShuffle(index); |
+ break; |
+ } |
+ } |
+ } |
+ } |
+ } while (!done); |
+ return SkToBool(tangents.count()) ^ isInverse; |
} |
int SkPath::ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |