Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1324)

Unified Diff: src/core/SkPath.cpp

Issue 1517883002: fix SkPath::contains() for points on edge, conics (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: add comment Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/core/SkCubicClipper.cpp ('k') | tests/PathTest.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/core/SkPath.cpp
diff --git a/src/core/SkPath.cpp b/src/core/SkPath.cpp
index 157235440c111631873b692b72684979a4a70a2b..d32fb4cba3b92f464d93546e44b2bcfb5c120808 100644
--- a/src/core/SkPath.cpp
+++ b/src/core/SkPath.cpp
@@ -6,6 +6,7 @@
*/
#include "SkBuffer.h"
+#include "SkCubicClipper.h"
#include "SkErrorInternals.h"
#include "SkGeometry.h"
#include "SkMath.h"
@@ -2588,6 +2589,12 @@ bool SkPathPriv::CheapComputeFirstDirection(const SkPath& path, FirstDirection*
///////////////////////////////////////////////////////////////////////////////
+static bool between(SkScalar a, SkScalar b, SkScalar c) {
+ SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)
+ || (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearlyZero(c)));
+ return (a - b) * (c - b) <= 0;
+}
+
static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C,
SkScalar D, SkScalar t) {
return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
@@ -2602,40 +2609,6 @@ static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c
return eval_cubic_coeff(A, B, C, D, t);
}
-/* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the
- t value such that cubic(t) = target
- */
-static void chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
- SkScalar target, SkScalar* t) {
- // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3);
- SkASSERT(c0 < target && target < c3);
-
- SkScalar D = c0 - target;
- SkScalar A = c3 + 3*(c1 - c2) - c0;
- SkScalar B = 3*(c2 - c1 - c1 + c0);
- SkScalar C = 3*(c1 - c0);
-
- const SkScalar TOLERANCE = SK_Scalar1 / 4096;
- SkScalar minT = 0;
- SkScalar maxT = SK_Scalar1;
- SkScalar mid;
- int i;
- for (i = 0; i < 16; i++) {
- mid = SkScalarAve(minT, maxT);
- SkScalar delta = eval_cubic_coeff(A, B, C, D, mid);
- if (delta < 0) {
- minT = mid;
- delta = -delta;
- } else {
- maxT = mid;
- }
- if (delta < TOLERANCE) {
- break;
- }
- }
- *t = mid;
-}
-
template <size_t N> static void find_minmax(const SkPoint pts[],
SkScalar* minPtr, SkScalar* maxPtr) {
SkScalar min, max;
@@ -2648,22 +2621,19 @@ template <size_t N> static void find_minmax(const SkPoint pts[],
*maxPtr = max;
}
-static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
- SkPoint storage[4];
-
- int dir = 1;
- if (pts[0].fY > pts[3].fY) {
- storage[0] = pts[3];
- storage[1] = pts[2];
- storage[2] = pts[1];
- storage[3] = pts[0];
- pts = storage;
- dir = -1;
+static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
+ if (!between(pts[0].fY, y, pts[3].fY)) {
+ return 0;
}
- if (y < pts[0].fY || y >= pts[3].fY) {
+ if (y == pts[3].fY) {
+ // if the cubic is a horizontal line, check if the point is on it
+ // but don't check the last point, because that point is shared with the next curve
+ if (pts[0].fY == pts[3].fY && between(pts[0].fX, x, pts[3].fX) && x != pts[3].fX) {
+ *onCurveCount += 1;
+ }
return 0;
}
-
+ int dir = pts[0].fY > pts[3].fY ? -1 : 1;
// quickreject or quickaccept
SkScalar min, max;
find_minmax<4>(pts, &min, &max);
@@ -2676,22 +2646,46 @@ static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
// compute the actual x(t) value
SkScalar t;
- chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t);
+ SkAssertResult(SkCubicClipper::ChopMonoAtY(pts, y, &t));
SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t);
+ if (SkScalarNearlyEqual(xt, x)) {
+ if (x != pts[3].fX || y != pts[3].fY) { // don't test end points; they're start points
+ *onCurveCount += 1;
+ }
+ }
return xt < x ? dir : 0;
}
-static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
+static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
SkPoint dst[10];
int n = SkChopCubicAtYExtrema(pts, dst);
int w = 0;
for (int i = 0; i <= n; ++i) {
- w += winding_mono_cubic(&dst[i * 3], x, y);
+ w += winding_mono_cubic(&dst[i * 3], x, y, onCurveCount);
}
return w;
}
-static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
+static double conic_eval_numerator(const SkScalar src[], SkScalar w, SkScalar t) {
+ SkASSERT(src);
+ SkASSERT(t >= 0 && t <= 1);
+ SkScalar src2w = src[2] * w;
+ SkScalar C = src[0];
+ SkScalar A = src[4] - 2 * src2w + C;
+ SkScalar B = 2 * (src2w - C);
+ return (A * t + B) * t + C;
+}
+
+
+static double conic_eval_denominator(SkScalar w, SkScalar t) {
+ SkScalar B = 2 * (w - 1);
+ SkScalar C = 1;
+ SkScalar A = -B;
+ return (A * t + B) * t + C;
+}
+
+static int winding_mono_conic(const SkConic& conic, SkScalar x, SkScalar y, int* onCurveCount) {
+ const SkPoint* pts = conic.fPts;
SkScalar y0 = pts[0].fY;
SkScalar y2 = pts[2].fY;
@@ -2700,10 +2694,91 @@ static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
SkTSwap(y0, y2);
dir = -1;
}
- if (y < y0 || y >= y2) {
+ if (y < y0 || y > y2) {
+ return 0;
+ }
+ if (y == y2) {
+ if (y0 == y2 && between(pts[0].fX, x, pts[2].fX) && x != pts[2].fX) { // check horizontal
+ *onCurveCount += 1;
+ }
return 0;
}
+ SkScalar roots[2];
+ SkScalar A = pts[2].fY;
+ SkScalar B = pts[1].fY * conic.fW - y * conic.fW + y;
+ SkScalar C = pts[0].fY;
+ A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept)
+ B -= C; // B = b*w - w * yCept + yCept - a
+ C -= y;
+ int n = SkFindUnitQuadRoots(A, 2 * B, C, roots);
+ SkASSERT(n <= 1);
+ SkScalar xt;
+ if (0 == n) {
+ SkScalar mid = SkScalarAve(y0, y2);
+ // Need [0] and [2] if dir == 1
+ // and [2] and [0] if dir == -1
+ xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX;
+ } else {
+ SkScalar t = roots[0];
+ xt = conic_eval_numerator(&pts[0].fX, conic.fW, t) / conic_eval_denominator(conic.fW, t);
+ }
+ if (SkScalarNearlyEqual(xt, x)) {
+ if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they're start points
+ *onCurveCount += 1;
+ }
+ }
+ return xt < x ? dir : 0;
+}
+
+static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) {
+ // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0;
+ if (y0 == y1) {
+ return true;
+ }
+ if (y0 < y1) {
+ return y1 <= y2;
+ } else {
+ return y1 >= y2;
+ }
+}
+
+static int winding_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar weight,
+ int* onCurveCount) {
+ SkConic conic(pts, weight);
+ SkConic *c = &conic;
+ SkConic chopped[2];
+ int n = 0;
+
+ if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) {
+ n = conic.chopAtYExtrema(chopped);
+ c = chopped;
+ }
+ int w = winding_mono_conic(*c, x, y, onCurveCount);
+ if (n > 0) {
+ w += winding_mono_conic(chopped[1], x, y, onCurveCount);
+ }
+ return w;
+}
+
+static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
+ SkScalar y0 = pts[0].fY;
+ SkScalar y2 = pts[2].fY;
+
+ int dir = 1;
+ if (y0 > y2) {
+ SkTSwap(y0, y2);
+ dir = -1;
+ }
+ if (y < y0 || y > y2) {
+ return 0;
+ }
+ if (y == y2) {
+ if (y0 == y2 && between(pts[0].fX, x, pts[2].fX) && x != pts[2].fX) { // check horizontal
+ *onCurveCount += 1;
+ }
+ return 0;
+ }
// bounds check on X (not required. is it faster?)
#if 0
if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) {
@@ -2730,22 +2805,15 @@ static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
SkScalar B = 2 * (pts[1].fX - C);
xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
}
- return xt < x ? dir : 0;
-}
-
-static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) {
- // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0;
- if (y0 == y1) {
- return true;
- }
- if (y0 < y1) {
- return y1 <= y2;
- } else {
- return y1 >= y2;
+ if (SkScalarNearlyEqual(xt, x)) {
+ if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they're start points
+ *onCurveCount += 1;
+ }
}
+ return xt < x ? dir : 0;
}
-static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
+static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
SkPoint dst[5];
int n = 0;
@@ -2753,14 +2821,14 @@ static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
n = SkChopQuadAtYExtrema(pts, dst);
pts = dst;
}
- int w = winding_mono_quad(pts, x, y);
+ int w = winding_mono_quad(pts, x, y, onCurveCount);
if (n > 0) {
- w += winding_mono_quad(&pts[2], x, y);
+ w += winding_mono_quad(&pts[2], x, y, onCurveCount);
}
return w;
}
-static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) {
+static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
SkScalar x0 = pts[0].fX;
SkScalar y0 = pts[0].fY;
SkScalar x1 = pts[1].fX;
@@ -2773,19 +2841,129 @@ static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) {
SkTSwap(y0, y1);
dir = -1;
}
- if (y < y0 || y >= y1) {
+ if (y < y0 || y > y1) {
return 0;
}
+ if (y == y1) {
+ if (y0 == y1 && between(x0, x, x1) && x != x1) { // check if on horizontal line
+ *onCurveCount += 1;
+ }
+ return 0;
+ }
+ SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) - SkScalarMul(dy, x - x0);
- SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) -
- SkScalarMul(dy, x - pts[0].fX);
-
- if (SkScalarSignAsInt(cross) == dir) {
+ if (!cross) {
+ if (x != x1 || y != pts[1].fY) { // don't test end points since they're also start points
+ *onCurveCount += 1; // zero cross means the point is on the line
+ }
+ dir = 0;
+ } else if (SkScalarSignAsInt(cross) == dir) {
dir = 0;
}
return dir;
}
+static void tangent_cubic(const SkPoint pts[], SkScalar x, SkScalar y,
+ SkTDArray<SkVector>* tangents) {
+ if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)
+ && !between(pts[2].fY, y, pts[3].fY)) {
+ return;
+ }
+ if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)
+ && !between(pts[2].fX, x, pts[3].fX)) {
+ return;
+ }
+ SkPoint dst[10];
+ int n = SkChopCubicAtYExtrema(pts, dst);
+ for (int i = 0; i <= n; ++i) {
+ SkPoint* c = &dst[i * 3];
+ SkScalar t;
+ SkAssertResult(SkCubicClipper::ChopMonoAtY(c, y, &t));
+ SkScalar xt = eval_cubic_pts(c[0].fX, c[1].fX, c[2].fX, c[3].fX, t);
+ if (!SkScalarNearlyEqual(x, xt)) {
+ continue;
+ }
+ SkVector tangent;
+ SkEvalCubicAt(c, t, nullptr, &tangent, nullptr);
+ tangents->push(tangent);
+ }
+}
+
+static void tangent_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar w,
+ SkTDArray<SkVector>* tangents) {
+ if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) {
+ return;
+ }
+ if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) {
+ return;
+ }
+ SkScalar roots[2];
+ SkScalar A = pts[2].fY;
+ SkScalar B = pts[1].fY * w - y * w + y;
+ SkScalar C = pts[0].fY;
+ A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept)
+ B -= C; // B = b*w - w * yCept + yCept - a
+ C -= y;
+ int n = SkFindUnitQuadRoots(A, 2 * B, C, roots);
+ for (int index = 0; index < n; ++index) {
+ SkScalar t = roots[index];
+ SkScalar xt = conic_eval_numerator(&pts[0].fX, w, t) / conic_eval_denominator(w, t);
+ if (!SkScalarNearlyEqual(x, xt)) {
+ continue;
+ }
+ SkConic conic(pts, w);
+ tangents->push(conic.evalTangentAt(t));
+ }
+}
+
+static void tangent_quad(const SkPoint pts[], SkScalar x, SkScalar y,
+ SkTDArray<SkVector>* tangents) {
+ if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) {
+ return;
+ }
+ if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) {
+ return;
+ }
+ SkScalar roots[2];
+ int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY,
+ 2 * (pts[1].fY - pts[0].fY),
+ pts[0].fY - y,
+ roots);
+ for (int index = 0; index < n; ++index) {
+ SkScalar t = roots[index];
+ SkScalar C = pts[0].fX;
+ SkScalar A = pts[2].fX - 2 * pts[1].fX + C;
+ SkScalar B = 2 * (pts[1].fX - C);
+ SkScalar xt = (A * t + B) * t + C;
+ if (!SkScalarNearlyEqual(x, xt)) {
+ continue;
+ }
+ tangents->push(SkEvalQuadTangentAt(pts, t));
+ }
+}
+
+static void tangent_line(const SkPoint pts[], SkScalar x, SkScalar y,
+ SkTDArray<SkVector>* tangents) {
+ SkScalar y0 = pts[0].fY;
+ SkScalar y1 = pts[1].fY;
+ if (!between(y0, y, y1)) {
+ return;
+ }
+ SkScalar x0 = pts[0].fX;
+ SkScalar x1 = pts[1].fX;
+ if (!between(x0, x, x1)) {
+ return;
+ }
+ SkScalar dx = x1 - x0;
+ SkScalar dy = y1 - y0;
+ if (!SkScalarNearlyEqual((x - x0) * dy, dx * (y - y0))) {
+ return;
+ }
+ SkVector v;
+ v.set(dx, dy);
+ tangents->push(v);
+}
+
static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) {
return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom;
}
@@ -2803,6 +2981,7 @@ bool SkPath::contains(SkScalar x, SkScalar y) const {
SkPath::Iter iter(*this, true);
bool done = false;
int w = 0;
+ int onCurveCount = 0;
do {
SkPoint pts[4];
switch (iter.next(pts, false)) {
@@ -2810,32 +2989,83 @@ bool SkPath::contains(SkScalar x, SkScalar y) const {
case SkPath::kClose_Verb:
break;
case SkPath::kLine_Verb:
- w += winding_line(pts, x, y);
+ w += winding_line(pts, x, y, &onCurveCount);
break;
case SkPath::kQuad_Verb:
- w += winding_quad(pts, x, y);
+ w += winding_quad(pts, x, y, &onCurveCount);
break;
case SkPath::kConic_Verb:
- SkASSERT(0);
+ w += winding_conic(pts, x, y, iter.conicWeight(), &onCurveCount);
break;
case SkPath::kCubic_Verb:
- w += winding_cubic(pts, x, y);
+ w += winding_cubic(pts, x, y, &onCurveCount);
break;
case SkPath::kDone_Verb:
done = true;
break;
}
} while (!done);
-
- switch (this->getFillType()) {
- case SkPath::kEvenOdd_FillType:
- case SkPath::kInverseEvenOdd_FillType:
- w &= 1;
- break;
- default:
- break;
+ bool evenOddFill = SkPath::kEvenOdd_FillType == this->getFillType()
+ || SkPath::kInverseEvenOdd_FillType == this->getFillType();
+ if (evenOddFill) {
+ w &= 1;
+ }
+ if (w) {
+ return !isInverse;
+ }
+ if (onCurveCount <= 1) {
+ return SkToBool(onCurveCount) ^ isInverse;
}
- return SkToBool(w);
+ if ((onCurveCount & 1) || evenOddFill) {
+ return SkToBool(onCurveCount & 1) ^ isInverse;
+ }
+ // If the point touches an even number of curves, and the fill is winding, check for
+ // coincidence. Count coincidence as places where the on curve points have identical tangents.
+ iter.setPath(*this, true);
+ SkTDArray<SkVector> tangents;
+ do {
+ SkPoint pts[4];
+ int oldCount = tangents.count();
+ switch (iter.next(pts, false)) {
+ case SkPath::kMove_Verb:
+ case SkPath::kClose_Verb:
+ break;
+ case SkPath::kLine_Verb:
+ tangent_line(pts, x, y, &tangents);
+ break;
+ case SkPath::kQuad_Verb:
+ tangent_quad(pts, x, y, &tangents);
+ break;
+ case SkPath::kConic_Verb:
+ tangent_conic(pts, x, y, iter.conicWeight(), &tangents);
+ break;
+ case SkPath::kCubic_Verb:
+ tangent_cubic(pts, x, y, &tangents);
+ break;
+ case SkPath::kDone_Verb:
+ done = true;
+ break;
+ }
+ if (tangents.count() > oldCount) {
+ int last = tangents.count() - 1;
+ const SkVector& tangent = tangents[last];
+ if (SkScalarNearlyZero(tangent.lengthSqd())) {
+ tangents.remove(last);
+ } else {
+ for (int index = 0; index < last; ++index) {
+ const SkVector& test = tangents[index];
+ if (SkScalarNearlyZero(test.cross(tangent))
+ && SkScalarSignAsInt(tangent.fX - test.fX) <= 0
+ && SkScalarSignAsInt(tangent.fY - test.fY) <= 0) {
+ tangents.remove(last);
+ tangents.removeShuffle(index);
+ break;
+ }
+ }
+ }
+ }
+ } while (!done);
+ return SkToBool(tangents.count()) ^ isInverse;
}
int SkPath::ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
« no previous file with comments | « src/core/SkCubicClipper.cpp ('k') | tests/PathTest.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698