OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2006 The Android Open Source Project | 2 * Copyright 2006 The Android Open Source Project |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkBuffer.h" | 8 #include "SkBuffer.h" |
| 9 #include "SkCubicClipper.h" |
9 #include "SkErrorInternals.h" | 10 #include "SkErrorInternals.h" |
10 #include "SkGeometry.h" | 11 #include "SkGeometry.h" |
11 #include "SkMath.h" | 12 #include "SkMath.h" |
12 #include "SkPathPriv.h" | 13 #include "SkPathPriv.h" |
13 #include "SkPathRef.h" | 14 #include "SkPathRef.h" |
14 #include "SkRRect.h" | 15 #include "SkRRect.h" |
15 | 16 |
16 //////////////////////////////////////////////////////////////////////////// | 17 //////////////////////////////////////////////////////////////////////////// |
17 | 18 |
18 /** | 19 /** |
(...skipping 2562 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2581 crossToDir(ymaxCross, dir); | 2582 crossToDir(ymaxCross, dir); |
2582 path.fFirstDirection = *dir; | 2583 path.fFirstDirection = *dir; |
2583 return true; | 2584 return true; |
2584 } else { | 2585 } else { |
2585 return false; | 2586 return false; |
2586 } | 2587 } |
2587 } | 2588 } |
2588 | 2589 |
2589 /////////////////////////////////////////////////////////////////////////////// | 2590 /////////////////////////////////////////////////////////////////////////////// |
2590 | 2591 |
| 2592 static bool between(SkScalar a, SkScalar b, SkScalar c) { |
| 2593 SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <=
0) |
| 2594 || (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearly
Zero(c))); |
| 2595 return (a - b) * (c - b) <= 0; |
| 2596 } |
| 2597 |
2591 static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, | 2598 static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, |
2592 SkScalar D, SkScalar t) { | 2599 SkScalar D, SkScalar t) { |
2593 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); | 2600 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); |
2594 } | 2601 } |
2595 | 2602 |
2596 static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c
3, | 2603 static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c
3, |
2597 SkScalar t) { | 2604 SkScalar t) { |
2598 SkScalar A = c3 + 3*(c1 - c2) - c0; | 2605 SkScalar A = c3 + 3*(c1 - c2) - c0; |
2599 SkScalar B = 3*(c2 - c1 - c1 + c0); | 2606 SkScalar B = 3*(c2 - c1 - c1 + c0); |
2600 SkScalar C = 3*(c1 - c0); | 2607 SkScalar C = 3*(c1 - c0); |
2601 SkScalar D = c0; | 2608 SkScalar D = c0; |
2602 return eval_cubic_coeff(A, B, C, D, t); | 2609 return eval_cubic_coeff(A, B, C, D, t); |
2603 } | 2610 } |
2604 | 2611 |
2605 /* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the | |
2606 t value such that cubic(t) = target | |
2607 */ | |
2608 static void chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, | |
2609 SkScalar target, SkScalar* t) { | |
2610 // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); | |
2611 SkASSERT(c0 < target && target < c3); | |
2612 | |
2613 SkScalar D = c0 - target; | |
2614 SkScalar A = c3 + 3*(c1 - c2) - c0; | |
2615 SkScalar B = 3*(c2 - c1 - c1 + c0); | |
2616 SkScalar C = 3*(c1 - c0); | |
2617 | |
2618 const SkScalar TOLERANCE = SK_Scalar1 / 4096; | |
2619 SkScalar minT = 0; | |
2620 SkScalar maxT = SK_Scalar1; | |
2621 SkScalar mid; | |
2622 int i; | |
2623 for (i = 0; i < 16; i++) { | |
2624 mid = SkScalarAve(minT, maxT); | |
2625 SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); | |
2626 if (delta < 0) { | |
2627 minT = mid; | |
2628 delta = -delta; | |
2629 } else { | |
2630 maxT = mid; | |
2631 } | |
2632 if (delta < TOLERANCE) { | |
2633 break; | |
2634 } | |
2635 } | |
2636 *t = mid; | |
2637 } | |
2638 | |
2639 template <size_t N> static void find_minmax(const SkPoint pts[], | 2612 template <size_t N> static void find_minmax(const SkPoint pts[], |
2640 SkScalar* minPtr, SkScalar* maxPtr)
{ | 2613 SkScalar* minPtr, SkScalar* maxPtr)
{ |
2641 SkScalar min, max; | 2614 SkScalar min, max; |
2642 min = max = pts[0].fX; | 2615 min = max = pts[0].fX; |
2643 for (size_t i = 1; i < N; ++i) { | 2616 for (size_t i = 1; i < N; ++i) { |
2644 min = SkMinScalar(min, pts[i].fX); | 2617 min = SkMinScalar(min, pts[i].fX); |
2645 max = SkMaxScalar(max, pts[i].fX); | 2618 max = SkMaxScalar(max, pts[i].fX); |
2646 } | 2619 } |
2647 *minPtr = min; | 2620 *minPtr = min; |
2648 *maxPtr = max; | 2621 *maxPtr = max; |
2649 } | 2622 } |
2650 | 2623 |
2651 static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { | 2624 static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int*
onCurveCount) { |
2652 SkPoint storage[4]; | 2625 if (!between(pts[0].fY, y, pts[3].fY)) { |
2653 | |
2654 int dir = 1; | |
2655 if (pts[0].fY > pts[3].fY) { | |
2656 storage[0] = pts[3]; | |
2657 storage[1] = pts[2]; | |
2658 storage[2] = pts[1]; | |
2659 storage[3] = pts[0]; | |
2660 pts = storage; | |
2661 dir = -1; | |
2662 } | |
2663 if (y < pts[0].fY || y >= pts[3].fY) { | |
2664 return 0; | 2626 return 0; |
2665 } | 2627 } |
2666 | 2628 if (y == pts[3].fY) { |
| 2629 // if the cubic is a horizontal line, check if the point is on it |
| 2630 // but don't check the last point, because that point is shared with the
next curve |
| 2631 if (pts[0].fY == pts[3].fY && between(pts[0].fX, x, pts[3].fX) && x != p
ts[3].fX) { |
| 2632 *onCurveCount += 1; |
| 2633 } |
| 2634 return 0; |
| 2635 } |
| 2636 int dir = pts[0].fY > pts[3].fY ? -1 : 1; |
2667 // quickreject or quickaccept | 2637 // quickreject or quickaccept |
2668 SkScalar min, max; | 2638 SkScalar min, max; |
2669 find_minmax<4>(pts, &min, &max); | 2639 find_minmax<4>(pts, &min, &max); |
2670 if (x < min) { | 2640 if (x < min) { |
2671 return 0; | 2641 return 0; |
2672 } | 2642 } |
2673 if (x > max) { | 2643 if (x > max) { |
2674 return dir; | 2644 return dir; |
2675 } | 2645 } |
2676 | 2646 |
2677 // compute the actual x(t) value | 2647 // compute the actual x(t) value |
2678 SkScalar t; | 2648 SkScalar t; |
2679 chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t); | 2649 SkAssertResult(SkCubicClipper::ChopMonoAtY(pts, y, &t)); |
2680 SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t); | 2650 SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t); |
| 2651 if (SkScalarNearlyEqual(xt, x)) { |
| 2652 if (x != pts[3].fX || y != pts[3].fY) { // don't test end points; they'
re start points |
| 2653 *onCurveCount += 1; |
| 2654 } |
| 2655 } |
2681 return xt < x ? dir : 0; | 2656 return xt < x ? dir : 0; |
2682 } | 2657 } |
2683 | 2658 |
2684 static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { | 2659 static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCur
veCount) { |
2685 SkPoint dst[10]; | 2660 SkPoint dst[10]; |
2686 int n = SkChopCubicAtYExtrema(pts, dst); | 2661 int n = SkChopCubicAtYExtrema(pts, dst); |
2687 int w = 0; | 2662 int w = 0; |
2688 for (int i = 0; i <= n; ++i) { | 2663 for (int i = 0; i <= n; ++i) { |
2689 w += winding_mono_cubic(&dst[i * 3], x, y); | 2664 w += winding_mono_cubic(&dst[i * 3], x, y, onCurveCount); |
2690 } | 2665 } |
2691 return w; | 2666 return w; |
2692 } | 2667 } |
2693 | 2668 |
2694 static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) { | 2669 static double conic_eval_numerator(const SkScalar src[], SkScalar w, SkScalar t)
{ |
| 2670 SkASSERT(src); |
| 2671 SkASSERT(t >= 0 && t <= 1); |
| 2672 SkScalar src2w = src[2] * w; |
| 2673 SkScalar C = src[0]; |
| 2674 SkScalar A = src[4] - 2 * src2w + C; |
| 2675 SkScalar B = 2 * (src2w - C); |
| 2676 return (A * t + B) * t + C; |
| 2677 } |
| 2678 |
| 2679 |
| 2680 static double conic_eval_denominator(SkScalar w, SkScalar t) { |
| 2681 SkScalar B = 2 * (w - 1); |
| 2682 SkScalar C = 1; |
| 2683 SkScalar A = -B; |
| 2684 return (A * t + B) * t + C; |
| 2685 } |
| 2686 |
| 2687 static int winding_mono_conic(const SkConic& conic, SkScalar x, SkScalar y, int*
onCurveCount) { |
| 2688 const SkPoint* pts = conic.fPts; |
2695 SkScalar y0 = pts[0].fY; | 2689 SkScalar y0 = pts[0].fY; |
2696 SkScalar y2 = pts[2].fY; | 2690 SkScalar y2 = pts[2].fY; |
2697 | 2691 |
2698 int dir = 1; | 2692 int dir = 1; |
2699 if (y0 > y2) { | 2693 if (y0 > y2) { |
2700 SkTSwap(y0, y2); | 2694 SkTSwap(y0, y2); |
2701 dir = -1; | 2695 dir = -1; |
2702 } | 2696 } |
2703 if (y < y0 || y >= y2) { | 2697 if (y < y0 || y > y2) { |
| 2698 return 0; |
| 2699 } |
| 2700 if (y == y2) { |
| 2701 if (y0 == y2 && between(pts[0].fX, x, pts[2].fX) && x != pts[2].fX) { /
/ check horizontal |
| 2702 *onCurveCount += 1; |
| 2703 } |
2704 return 0; | 2704 return 0; |
2705 } | 2705 } |
2706 | 2706 |
| 2707 SkScalar roots[2]; |
| 2708 SkScalar A = pts[2].fY; |
| 2709 SkScalar B = pts[1].fY * conic.fW - y * conic.fW + y; |
| 2710 SkScalar C = pts[0].fY; |
| 2711 A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept) |
| 2712 B -= C; // B = b*w - w * yCept + yCept - a |
| 2713 C -= y; |
| 2714 int n = SkFindUnitQuadRoots(A, 2 * B, C, roots); |
| 2715 SkASSERT(n <= 1); |
| 2716 SkScalar xt; |
| 2717 if (0 == n) { |
| 2718 SkScalar mid = SkScalarAve(y0, y2); |
| 2719 // Need [0] and [2] if dir == 1 |
| 2720 // and [2] and [0] if dir == -1 |
| 2721 xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX; |
| 2722 } else { |
| 2723 SkScalar t = roots[0]; |
| 2724 xt = conic_eval_numerator(&pts[0].fX, conic.fW, t) / conic_eval_denomina
tor(conic.fW, t); |
| 2725 } |
| 2726 if (SkScalarNearlyEqual(xt, x)) { |
| 2727 if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they'
re start points |
| 2728 *onCurveCount += 1; |
| 2729 } |
| 2730 } |
| 2731 return xt < x ? dir : 0; |
| 2732 } |
| 2733 |
| 2734 static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) { |
| 2735 // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0; |
| 2736 if (y0 == y1) { |
| 2737 return true; |
| 2738 } |
| 2739 if (y0 < y1) { |
| 2740 return y1 <= y2; |
| 2741 } else { |
| 2742 return y1 >= y2; |
| 2743 } |
| 2744 } |
| 2745 |
| 2746 static int winding_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar w
eight, |
| 2747 int* onCurveCount) { |
| 2748 SkConic conic(pts, weight); |
| 2749 SkConic *c = &conic; |
| 2750 SkConic chopped[2]; |
| 2751 int n = 0; |
| 2752 |
| 2753 if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) { |
| 2754 n = conic.chopAtYExtrema(chopped); |
| 2755 c = chopped; |
| 2756 } |
| 2757 int w = winding_mono_conic(*c, x, y, onCurveCount); |
| 2758 if (n > 0) { |
| 2759 w += winding_mono_conic(chopped[1], x, y, onCurveCount); |
| 2760 } |
| 2761 return w; |
| 2762 } |
| 2763 |
| 2764 static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* o
nCurveCount) { |
| 2765 SkScalar y0 = pts[0].fY; |
| 2766 SkScalar y2 = pts[2].fY; |
| 2767 |
| 2768 int dir = 1; |
| 2769 if (y0 > y2) { |
| 2770 SkTSwap(y0, y2); |
| 2771 dir = -1; |
| 2772 } |
| 2773 if (y < y0 || y > y2) { |
| 2774 return 0; |
| 2775 } |
| 2776 if (y == y2) { |
| 2777 if (y0 == y2 && between(pts[0].fX, x, pts[2].fX) && x != pts[2].fX) { /
/ check horizontal |
| 2778 *onCurveCount += 1; |
| 2779 } |
| 2780 return 0; |
| 2781 } |
2707 // bounds check on X (not required. is it faster?) | 2782 // bounds check on X (not required. is it faster?) |
2708 #if 0 | 2783 #if 0 |
2709 if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) { | 2784 if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) { |
2710 return 0; | 2785 return 0; |
2711 } | 2786 } |
2712 #endif | 2787 #endif |
2713 | 2788 |
2714 SkScalar roots[2]; | 2789 SkScalar roots[2]; |
2715 int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, | 2790 int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, |
2716 2 * (pts[1].fY - pts[0].fY), | 2791 2 * (pts[1].fY - pts[0].fY), |
2717 pts[0].fY - y, | 2792 pts[0].fY - y, |
2718 roots); | 2793 roots); |
2719 SkASSERT(n <= 1); | 2794 SkASSERT(n <= 1); |
2720 SkScalar xt; | 2795 SkScalar xt; |
2721 if (0 == n) { | 2796 if (0 == n) { |
2722 SkScalar mid = SkScalarAve(y0, y2); | 2797 SkScalar mid = SkScalarAve(y0, y2); |
2723 // Need [0] and [2] if dir == 1 | 2798 // Need [0] and [2] if dir == 1 |
2724 // and [2] and [0] if dir == -1 | 2799 // and [2] and [0] if dir == -1 |
2725 xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX; | 2800 xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX; |
2726 } else { | 2801 } else { |
2727 SkScalar t = roots[0]; | 2802 SkScalar t = roots[0]; |
2728 SkScalar C = pts[0].fX; | 2803 SkScalar C = pts[0].fX; |
2729 SkScalar A = pts[2].fX - 2 * pts[1].fX + C; | 2804 SkScalar A = pts[2].fX - 2 * pts[1].fX + C; |
2730 SkScalar B = 2 * (pts[1].fX - C); | 2805 SkScalar B = 2 * (pts[1].fX - C); |
2731 xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | 2806 xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
2732 } | 2807 } |
| 2808 if (SkScalarNearlyEqual(xt, x)) { |
| 2809 if (x != pts[2].fX || y != pts[2].fY) { // don't test end points; they'
re start points |
| 2810 *onCurveCount += 1; |
| 2811 } |
| 2812 } |
2733 return xt < x ? dir : 0; | 2813 return xt < x ? dir : 0; |
2734 } | 2814 } |
2735 | 2815 |
2736 static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) { | 2816 static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurv
eCount) { |
2737 // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0; | |
2738 if (y0 == y1) { | |
2739 return true; | |
2740 } | |
2741 if (y0 < y1) { | |
2742 return y1 <= y2; | |
2743 } else { | |
2744 return y1 >= y2; | |
2745 } | |
2746 } | |
2747 | |
2748 static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) { | |
2749 SkPoint dst[5]; | 2817 SkPoint dst[5]; |
2750 int n = 0; | 2818 int n = 0; |
2751 | 2819 |
2752 if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) { | 2820 if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) { |
2753 n = SkChopQuadAtYExtrema(pts, dst); | 2821 n = SkChopQuadAtYExtrema(pts, dst); |
2754 pts = dst; | 2822 pts = dst; |
2755 } | 2823 } |
2756 int w = winding_mono_quad(pts, x, y); | 2824 int w = winding_mono_quad(pts, x, y, onCurveCount); |
2757 if (n > 0) { | 2825 if (n > 0) { |
2758 w += winding_mono_quad(&pts[2], x, y); | 2826 w += winding_mono_quad(&pts[2], x, y, onCurveCount); |
2759 } | 2827 } |
2760 return w; | 2828 return w; |
2761 } | 2829 } |
2762 | 2830 |
2763 static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) { | 2831 static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurv
eCount) { |
2764 SkScalar x0 = pts[0].fX; | 2832 SkScalar x0 = pts[0].fX; |
2765 SkScalar y0 = pts[0].fY; | 2833 SkScalar y0 = pts[0].fY; |
2766 SkScalar x1 = pts[1].fX; | 2834 SkScalar x1 = pts[1].fX; |
2767 SkScalar y1 = pts[1].fY; | 2835 SkScalar y1 = pts[1].fY; |
2768 | 2836 |
2769 SkScalar dy = y1 - y0; | 2837 SkScalar dy = y1 - y0; |
2770 | 2838 |
2771 int dir = 1; | 2839 int dir = 1; |
2772 if (y0 > y1) { | 2840 if (y0 > y1) { |
2773 SkTSwap(y0, y1); | 2841 SkTSwap(y0, y1); |
2774 dir = -1; | 2842 dir = -1; |
2775 } | 2843 } |
2776 if (y < y0 || y >= y1) { | 2844 if (y < y0 || y > y1) { |
2777 return 0; | 2845 return 0; |
2778 } | 2846 } |
| 2847 if (y == y1) { |
| 2848 if (y0 == y1 && between(x0, x, x1) && x != x1) { // check if on horizon
tal line |
| 2849 *onCurveCount += 1; |
| 2850 } |
| 2851 return 0; |
| 2852 } |
| 2853 SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) - SkScalarMul(dy, x - x
0); |
2779 | 2854 |
2780 SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) - | 2855 if (!cross) { |
2781 SkScalarMul(dy, x - pts[0].fX); | 2856 if (x != x1 || y != pts[1].fY) { // don't test end points since they're
also start points |
2782 | 2857 *onCurveCount += 1; // zero cross means the point is on the line |
2783 if (SkScalarSignAsInt(cross) == dir) { | 2858 } |
| 2859 dir = 0; |
| 2860 } else if (SkScalarSignAsInt(cross) == dir) { |
2784 dir = 0; | 2861 dir = 0; |
2785 } | 2862 } |
2786 return dir; | 2863 return dir; |
2787 } | 2864 } |
2788 | 2865 |
| 2866 static void tangent_cubic(const SkPoint pts[], SkScalar x, SkScalar y, |
| 2867 SkTDArray<SkVector>* tangents) { |
| 2868 if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY) |
| 2869 && !between(pts[2].fY, y, pts[3].fY)) { |
| 2870 return; |
| 2871 } |
| 2872 if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX) |
| 2873 && !between(pts[2].fX, x, pts[3].fX)) { |
| 2874 return; |
| 2875 } |
| 2876 SkPoint dst[10]; |
| 2877 int n = SkChopCubicAtYExtrema(pts, dst); |
| 2878 for (int i = 0; i <= n; ++i) { |
| 2879 SkPoint* c = &dst[i * 3]; |
| 2880 SkScalar t; |
| 2881 SkAssertResult(SkCubicClipper::ChopMonoAtY(c, y, &t)); |
| 2882 SkScalar xt = eval_cubic_pts(c[0].fX, c[1].fX, c[2].fX, c[3].fX, t); |
| 2883 if (!SkScalarNearlyEqual(x, xt)) { |
| 2884 continue; |
| 2885 } |
| 2886 SkVector tangent; |
| 2887 SkEvalCubicAt(c, t, nullptr, &tangent, nullptr); |
| 2888 tangents->push(tangent); |
| 2889 } |
| 2890 } |
| 2891 |
| 2892 static void tangent_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar
w, |
| 2893 SkTDArray<SkVector>* tangents) { |
| 2894 if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY))
{ |
| 2895 return; |
| 2896 } |
| 2897 if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX))
{ |
| 2898 return; |
| 2899 } |
| 2900 SkScalar roots[2]; |
| 2901 SkScalar A = pts[2].fY; |
| 2902 SkScalar B = pts[1].fY * w - y * w + y; |
| 2903 SkScalar C = pts[0].fY; |
| 2904 A += C - 2 * B; // A = a + c - 2*(b*w - yCept*w + yCept) |
| 2905 B -= C; // B = b*w - w * yCept + yCept - a |
| 2906 C -= y; |
| 2907 int n = SkFindUnitQuadRoots(A, 2 * B, C, roots); |
| 2908 for (int index = 0; index < n; ++index) { |
| 2909 SkScalar t = roots[index]; |
| 2910 SkScalar xt = conic_eval_numerator(&pts[0].fX, w, t) / conic_eval_denomi
nator(w, t); |
| 2911 if (!SkScalarNearlyEqual(x, xt)) { |
| 2912 continue; |
| 2913 } |
| 2914 SkConic conic(pts, w); |
| 2915 tangents->push(conic.evalTangentAt(t)); |
| 2916 } |
| 2917 } |
| 2918 |
| 2919 static void tangent_quad(const SkPoint pts[], SkScalar x, SkScalar y, |
| 2920 SkTDArray<SkVector>* tangents) { |
| 2921 if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY))
{ |
| 2922 return; |
| 2923 } |
| 2924 if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX))
{ |
| 2925 return; |
| 2926 } |
| 2927 SkScalar roots[2]; |
| 2928 int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, |
| 2929 2 * (pts[1].fY - pts[0].fY), |
| 2930 pts[0].fY - y, |
| 2931 roots); |
| 2932 for (int index = 0; index < n; ++index) { |
| 2933 SkScalar t = roots[index]; |
| 2934 SkScalar C = pts[0].fX; |
| 2935 SkScalar A = pts[2].fX - 2 * pts[1].fX + C; |
| 2936 SkScalar B = 2 * (pts[1].fX - C); |
| 2937 SkScalar xt = (A * t + B) * t + C; |
| 2938 if (!SkScalarNearlyEqual(x, xt)) { |
| 2939 continue; |
| 2940 } |
| 2941 tangents->push(SkEvalQuadTangentAt(pts, t)); |
| 2942 } |
| 2943 } |
| 2944 |
| 2945 static void tangent_line(const SkPoint pts[], SkScalar x, SkScalar y, |
| 2946 SkTDArray<SkVector>* tangents) { |
| 2947 SkScalar y0 = pts[0].fY; |
| 2948 SkScalar y1 = pts[1].fY; |
| 2949 if (!between(y0, y, y1)) { |
| 2950 return; |
| 2951 } |
| 2952 SkScalar x0 = pts[0].fX; |
| 2953 SkScalar x1 = pts[1].fX; |
| 2954 if (!between(x0, x, x1)) { |
| 2955 return; |
| 2956 } |
| 2957 SkScalar dx = x1 - x0; |
| 2958 SkScalar dy = y1 - y0; |
| 2959 if (!SkScalarNearlyEqual((x - x0) * dy, dx * (y - y0))) { |
| 2960 return; |
| 2961 } |
| 2962 SkVector v; |
| 2963 v.set(dx, dy); |
| 2964 tangents->push(v); |
| 2965 } |
| 2966 |
2789 static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) { | 2967 static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) { |
2790 return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom; | 2968 return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom; |
2791 } | 2969 } |
2792 | 2970 |
2793 bool SkPath::contains(SkScalar x, SkScalar y) const { | 2971 bool SkPath::contains(SkScalar x, SkScalar y) const { |
2794 bool isInverse = this->isInverseFillType(); | 2972 bool isInverse = this->isInverseFillType(); |
2795 if (this->isEmpty()) { | 2973 if (this->isEmpty()) { |
2796 return isInverse; | 2974 return isInverse; |
2797 } | 2975 } |
2798 | 2976 |
2799 if (!contains_inclusive(this->getBounds(), x, y)) { | 2977 if (!contains_inclusive(this->getBounds(), x, y)) { |
2800 return isInverse; | 2978 return isInverse; |
2801 } | 2979 } |
2802 | 2980 |
2803 SkPath::Iter iter(*this, true); | 2981 SkPath::Iter iter(*this, true); |
2804 bool done = false; | 2982 bool done = false; |
2805 int w = 0; | 2983 int w = 0; |
| 2984 int onCurveCount = 0; |
2806 do { | 2985 do { |
2807 SkPoint pts[4]; | 2986 SkPoint pts[4]; |
2808 switch (iter.next(pts, false)) { | 2987 switch (iter.next(pts, false)) { |
2809 case SkPath::kMove_Verb: | 2988 case SkPath::kMove_Verb: |
2810 case SkPath::kClose_Verb: | 2989 case SkPath::kClose_Verb: |
2811 break; | 2990 break; |
2812 case SkPath::kLine_Verb: | 2991 case SkPath::kLine_Verb: |
2813 w += winding_line(pts, x, y); | 2992 w += winding_line(pts, x, y, &onCurveCount); |
2814 break; | 2993 break; |
2815 case SkPath::kQuad_Verb: | 2994 case SkPath::kQuad_Verb: |
2816 w += winding_quad(pts, x, y); | 2995 w += winding_quad(pts, x, y, &onCurveCount); |
2817 break; | 2996 break; |
2818 case SkPath::kConic_Verb: | 2997 case SkPath::kConic_Verb: |
2819 SkASSERT(0); | 2998 w += winding_conic(pts, x, y, iter.conicWeight(), &onCurveCount)
; |
2820 break; | 2999 break; |
2821 case SkPath::kCubic_Verb: | 3000 case SkPath::kCubic_Verb: |
2822 w += winding_cubic(pts, x, y); | 3001 w += winding_cubic(pts, x, y, &onCurveCount); |
2823 break; | 3002 break; |
2824 case SkPath::kDone_Verb: | 3003 case SkPath::kDone_Verb: |
2825 done = true; | 3004 done = true; |
2826 break; | 3005 break; |
2827 } | 3006 } |
2828 } while (!done); | 3007 } while (!done); |
2829 | 3008 bool evenOddFill = SkPath::kEvenOdd_FillType == this->getFillType() |
2830 switch (this->getFillType()) { | 3009 || SkPath::kInverseEvenOdd_FillType == this->getFillType(); |
2831 case SkPath::kEvenOdd_FillType: | 3010 if (evenOddFill) { |
2832 case SkPath::kInverseEvenOdd_FillType: | 3011 w &= 1; |
2833 w &= 1; | |
2834 break; | |
2835 default: | |
2836 break; | |
2837 } | 3012 } |
2838 return SkToBool(w); | 3013 if (w) { |
| 3014 return !isInverse; |
| 3015 } |
| 3016 if (onCurveCount <= 1) { |
| 3017 return SkToBool(onCurveCount) ^ isInverse; |
| 3018 } |
| 3019 if ((onCurveCount & 1) || evenOddFill) { |
| 3020 return SkToBool(onCurveCount & 1) ^ isInverse; |
| 3021 } |
| 3022 // If the point touches an even number of curves, and the fill is winding, c
heck for |
| 3023 // coincidence. Count coincidence as places where the on curve points have i
dentical tangents. |
| 3024 iter.setPath(*this, true); |
| 3025 SkTDArray<SkVector> tangents; |
| 3026 do { |
| 3027 SkPoint pts[4]; |
| 3028 int oldCount = tangents.count(); |
| 3029 switch (iter.next(pts, false)) { |
| 3030 case SkPath::kMove_Verb: |
| 3031 case SkPath::kClose_Verb: |
| 3032 break; |
| 3033 case SkPath::kLine_Verb: |
| 3034 tangent_line(pts, x, y, &tangents); |
| 3035 break; |
| 3036 case SkPath::kQuad_Verb: |
| 3037 tangent_quad(pts, x, y, &tangents); |
| 3038 break; |
| 3039 case SkPath::kConic_Verb: |
| 3040 tangent_conic(pts, x, y, iter.conicWeight(), &tangents); |
| 3041 break; |
| 3042 case SkPath::kCubic_Verb: |
| 3043 tangent_cubic(pts, x, y, &tangents); |
| 3044 break; |
| 3045 case SkPath::kDone_Verb: |
| 3046 done = true; |
| 3047 break; |
| 3048 } |
| 3049 if (tangents.count() > oldCount) { |
| 3050 int last = tangents.count() - 1; |
| 3051 const SkVector& tangent = tangents[last]; |
| 3052 if (SkScalarNearlyZero(tangent.lengthSqd())) { |
| 3053 tangents.remove(last); |
| 3054 } else { |
| 3055 for (int index = 0; index < last; ++index) { |
| 3056 const SkVector& test = tangents[index]; |
| 3057 if (SkScalarNearlyZero(test.cross(tangent)) |
| 3058 && SkScalarSignAsInt(tangent.fX - test.fX) <= 0 |
| 3059 && SkScalarSignAsInt(tangent.fY - test.fY) <= 0) { |
| 3060 tangents.remove(last); |
| 3061 tangents.removeShuffle(index); |
| 3062 break; |
| 3063 } |
| 3064 } |
| 3065 } |
| 3066 } |
| 3067 } while (!done); |
| 3068 return SkToBool(tangents.count()) ^ isInverse; |
2839 } | 3069 } |
2840 | 3070 |
2841 int SkPath::ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPo
int& p2, | 3071 int SkPath::ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPo
int& p2, |
2842 SkScalar w, SkPoint pts[], int pow2) { | 3072 SkScalar w, SkPoint pts[], int pow2) { |
2843 const SkConic conic(p0, p1, p2, w); | 3073 const SkConic conic(p0, p1, p2, w); |
2844 return conic.chopIntoQuadsPOW2(pts, pow2); | 3074 return conic.chopIntoQuadsPOW2(pts, pow2); |
2845 } | 3075 } |
OLD | NEW |