| Index: test/cctest/heap/test-compaction.cc
 | 
| diff --git a/test/cctest/heap/test-compaction.cc b/test/cctest/heap/test-compaction.cc
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..16c981073ea753124e42f3b6a3de57798d77f27c
 | 
| --- /dev/null
 | 
| +++ b/test/cctest/heap/test-compaction.cc
 | 
| @@ -0,0 +1,329 @@
 | 
| +// Copyright 2015 the V8 project authors. All rights reserved.
 | 
| +// Use of this source code is governed by a BSD-style license that can be
 | 
| +// found in the LICENSE file.
 | 
| +
 | 
| +#include "test/cctest/cctest.h"
 | 
| +#include "test/cctest/heap/heap-tester.h"
 | 
| +#include "test/cctest/heap/utils-inl.h"
 | 
| +
 | 
| +namespace v8 {
 | 
| +namespace internal {
 | 
| +
 | 
| +static std::vector<Handle<FixedArray>> FillUpFirstOldSpacePage(Heap* heap) {
 | 
| +  // This functions assumes that old space top is still on the first page
 | 
| +  heap->old_space()->EmptyAllocationInfo();
 | 
| +  int free_on_first_page = static_cast<int>(heap->old_space()->Available());
 | 
| +  return CreatePadding(heap, free_on_first_page, TENURED);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +static void CheckInvariantsOfAbortedPage(Page* page) {
 | 
| +  // Check invariants:
 | 
| +  // 1) Markbits are cleared
 | 
| +  // 2) The page is not marked as evacuation candidate anymore
 | 
| +  // 3) The page is not marked as aborted compaction anymore.
 | 
| +  CHECK(page->markbits()->IsClean());
 | 
| +  CHECK(!page->IsEvacuationCandidate());
 | 
| +  CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED));
 | 
| +}
 | 
| +
 | 
| +
 | 
| +HEAP_TEST(CompactionFullAbortedPage) {
 | 
| +  // Test the scenario where we reach OOM during compaction and the whole page
 | 
| +  // is aborted.
 | 
| +
 | 
| +  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
 | 
| +  // we can reach the state of a half aborted page.
 | 
| +  FLAG_concurrent_sweeping = false;
 | 
| +  FLAG_manual_evacuation_candidates_selection = true;
 | 
| +  CcTest::InitializeVM();
 | 
| +  Isolate* isolate = CcTest::i_isolate();
 | 
| +  Heap* heap = isolate->heap();
 | 
| +  {
 | 
| +    HandleScope scope1(isolate);
 | 
| +    // Fill up the first page since it cannot be evacuated.
 | 
| +    auto first_page_handles = FillUpFirstOldSpacePage(heap);
 | 
| +
 | 
| +    {
 | 
| +      HandleScope scope2(isolate);
 | 
| +      heap->old_space()->EmptyAllocationInfo();
 | 
| +      auto second_page_handles =
 | 
| +          CreatePadding(heap, Page::kAllocatableMemory, TENURED);
 | 
| +      Page* to_be_aborted_page =
 | 
| +          Page::FromAddress(second_page_handles.front()->address());
 | 
| +      to_be_aborted_page->SetFlag(
 | 
| +          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
 | 
| +      heap->set_force_oom(true);
 | 
| +      heap->CollectAllGarbage();
 | 
| +
 | 
| +      // Check that all handles still point to the same page, i.e., compaction
 | 
| +      // has been aborted on the page.
 | 
| +      for (Handle<FixedArray> object : second_page_handles) {
 | 
| +        CHECK_EQ(to_be_aborted_page, Page::FromAddress(object->address()));
 | 
| +      }
 | 
| +      CheckInvariantsOfAbortedPage(to_be_aborted_page);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +HEAP_TEST(CompactionPartiallyAbortedPage) {
 | 
| +  // Test the scenario where we reach OOM during compaction and parts of the
 | 
| +  // page have already been migrated to a new one.
 | 
| +
 | 
| +  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
 | 
| +  // we can reach the state of a half aborted page.
 | 
| +  FLAG_concurrent_sweeping = false;
 | 
| +  FLAG_manual_evacuation_candidates_selection = true;
 | 
| +
 | 
| +  const int object_size = 128 * KB;
 | 
| +
 | 
| +  CcTest::InitializeVM();
 | 
| +  Isolate* isolate = CcTest::i_isolate();
 | 
| +  Heap* heap = isolate->heap();
 | 
| +  {
 | 
| +    HandleScope scope1(isolate);
 | 
| +    // Fill up the first page since it cannot be evacuated.
 | 
| +    auto first_page_handles = FillUpFirstOldSpacePage(heap);
 | 
| +
 | 
| +    {
 | 
| +      HandleScope scope2(isolate);
 | 
| +      // Fill the second page with objects of size {object_size} (last one is
 | 
| +      // properly adjusted).
 | 
| +      heap->old_space()->EmptyAllocationInfo();
 | 
| +      auto second_page_handles =
 | 
| +          CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size);
 | 
| +      // Mark the second page for evacuation.
 | 
| +      Page* to_be_aborted_page =
 | 
| +          Page::FromAddress(second_page_handles.front()->address());
 | 
| +      to_be_aborted_page->SetFlag(
 | 
| +          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
 | 
| +
 | 
| +      {
 | 
| +        // Add a third page that is filled with {num_objects} objects of size
 | 
| +        // {object_size}.
 | 
| +        HandleScope scope3(isolate);
 | 
| +        heap->old_space()->EmptyAllocationInfo();
 | 
| +        const int num_objects = 3;
 | 
| +        std::vector<Handle<FixedArray>> third_page_handles = CreatePadding(
 | 
| +            heap, object_size * num_objects, TENURED, object_size);
 | 
| +        Page* third_page =
 | 
| +            Page::FromAddress(third_page_handles.front()->address());
 | 
| +        heap->set_force_oom(true);
 | 
| +        heap->CollectAllGarbage();
 | 
| +
 | 
| +        bool migration_aborted = false;
 | 
| +        for (Handle<FixedArray> object : second_page_handles) {
 | 
| +          // Once compaction has been aborted, all following objects still have
 | 
| +          // to be on the initial page.
 | 
| +          CHECK(!migration_aborted ||
 | 
| +                (Page::FromAddress(object->address()) == to_be_aborted_page));
 | 
| +          if (Page::FromAddress(object->address()) == to_be_aborted_page) {
 | 
| +            // This object has not been migrated.
 | 
| +            migration_aborted = true;
 | 
| +          } else {
 | 
| +            CHECK_EQ(Page::FromAddress(object->address()), third_page);
 | 
| +          }
 | 
| +        }
 | 
| +        // Check that we actually created a scenario with a partially aborted
 | 
| +        // page.
 | 
| +        CHECK(migration_aborted);
 | 
| +        CheckInvariantsOfAbortedPage(to_be_aborted_page);
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) {
 | 
| +  // Test the scenario where we reach OOM during compaction and parts of the
 | 
| +  // page have already been migrated to a new one. Objects on the aborted page
 | 
| +  // are linked together. This test makes sure that intra-aborted page pointers
 | 
| +  // get properly updated.
 | 
| +
 | 
| +  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
 | 
| +  // we can reach the state of a half aborted page.
 | 
| +  FLAG_concurrent_sweeping = false;
 | 
| +  FLAG_manual_evacuation_candidates_selection = true;
 | 
| +
 | 
| +  const int object_size = 128 * KB;
 | 
| +
 | 
| +  CcTest::InitializeVM();
 | 
| +  Isolate* isolate = CcTest::i_isolate();
 | 
| +  Heap* heap = isolate->heap();
 | 
| +  {
 | 
| +    HandleScope scope1(isolate);
 | 
| +    // Fill up the first page since it cannot be evacuated.
 | 
| +    auto first_page_handles = FillUpFirstOldSpacePage(heap);
 | 
| +
 | 
| +    Page* to_be_aborted_page = nullptr;
 | 
| +    {
 | 
| +      HandleScope temporary_scope(isolate);
 | 
| +      // Fill the second page with objects of size {object_size} (last one is
 | 
| +      // properly adjusted).
 | 
| +      heap->old_space()->EmptyAllocationInfo();
 | 
| +      const int free_on_second_page = Page::kAllocatableMemory;
 | 
| +      std::vector<Handle<FixedArray>> second_page_handles =
 | 
| +          CreatePadding(heap, free_on_second_page, TENURED, object_size);
 | 
| +      // Mark the second page for evacuation.
 | 
| +      to_be_aborted_page =
 | 
| +          Page::FromAddress(second_page_handles.front()->address());
 | 
| +      to_be_aborted_page->SetFlag(
 | 
| +          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
 | 
| +
 | 
| +      for (size_t i = second_page_handles.size() - 1; i > 0; i--) {
 | 
| +        second_page_handles[i]->set(0, *second_page_handles[i - 1]);
 | 
| +      }
 | 
| +      first_page_handles.front()->set(0, *second_page_handles.back());
 | 
| +    }
 | 
| +
 | 
| +    {
 | 
| +      // Add a third page that is filled with {num_objects} objects of size
 | 
| +      // {object_size}.
 | 
| +      HandleScope scope3(isolate);
 | 
| +      heap->old_space()->EmptyAllocationInfo();
 | 
| +      const int num_objects = 2;
 | 
| +      int used_memory = object_size * num_objects;
 | 
| +      std::vector<Handle<FixedArray>> third_page_handles =
 | 
| +          CreatePadding(heap, used_memory, TENURED, object_size);
 | 
| +      heap->set_force_oom(true);
 | 
| +      heap->CollectAllGarbage();
 | 
| +
 | 
| +      // The following check makes sure that we compacted "some" objects, while
 | 
| +      // leaving others in place.
 | 
| +      bool in_place = true;
 | 
| +      Handle<FixedArray> current = first_page_handles.front();
 | 
| +      while (current->get(0) != heap->undefined_value()) {
 | 
| +        current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
 | 
| +        CHECK(current->IsFixedArray());
 | 
| +        if (Page::FromAddress(current->address()) != to_be_aborted_page) {
 | 
| +          in_place = false;
 | 
| +        }
 | 
| +        bool on_aborted_page =
 | 
| +            Page::FromAddress(current->address()) == to_be_aborted_page;
 | 
| +        CHECK((in_place && on_aborted_page) || (!in_place && !on_aborted_page));
 | 
| +      }
 | 
| +      // Check that we at least migrated one object, as otherwise the test would
 | 
| +      // not trigger.
 | 
| +      CHECK(!in_place);
 | 
| +
 | 
| +      CheckInvariantsOfAbortedPage(to_be_aborted_page);
 | 
| +      heap->CollectAllGarbage();
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +HEAP_TEST(CompactionPartiallyAbortedPageWithStoreBufferEntries) {
 | 
| +  // Test the scenario where we reach OOM during compaction and parts of the
 | 
| +  // page have already been migrated to a new one. Objects on the aborted page
 | 
| +  // are linked together and the very first object on the aborted page points
 | 
| +  // into new space. The test verifies that the store buffer entries are
 | 
| +  // properly cleared and rebuilt after aborting a page. Failing to do so can
 | 
| +  // result in other objects being allocated in the free space where their
 | 
| +  // payload looks like a valid new space pointer.
 | 
| +
 | 
| +  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
 | 
| +  // we can reach the state of a half aborted page.
 | 
| +  FLAG_concurrent_sweeping = false;
 | 
| +  FLAG_manual_evacuation_candidates_selection = true;
 | 
| +
 | 
| +  const int object_size = 128 * KB;
 | 
| +
 | 
| +  CcTest::InitializeVM();
 | 
| +  Isolate* isolate = CcTest::i_isolate();
 | 
| +  Heap* heap = isolate->heap();
 | 
| +  {
 | 
| +    HandleScope scope1(isolate);
 | 
| +    // Fill up the first page since it cannot be evacuated.
 | 
| +    auto first_page_handles = FillUpFirstOldSpacePage(heap);
 | 
| +
 | 
| +    Page* to_be_aborted_page = nullptr;
 | 
| +    {
 | 
| +      HandleScope temporary_scope(isolate);
 | 
| +      // Fill the second page with objects of size {object_size} (last one is
 | 
| +      // properly adjusted).
 | 
| +      heap->old_space()->EmptyAllocationInfo();
 | 
| +      auto second_page_handles =
 | 
| +          CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size);
 | 
| +      // Mark the second page for evacuation.
 | 
| +      to_be_aborted_page =
 | 
| +          Page::FromAddress(second_page_handles.front()->address());
 | 
| +      to_be_aborted_page->SetFlag(
 | 
| +          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
 | 
| +
 | 
| +      for (size_t i = second_page_handles.size() - 1; i > 0; i--) {
 | 
| +        second_page_handles[i]->set(0, *second_page_handles[i - 1]);
 | 
| +      }
 | 
| +      first_page_handles.front()->set(0, *second_page_handles.back());
 | 
| +      Handle<FixedArray> new_space_array =
 | 
| +          isolate->factory()->NewFixedArray(1, NOT_TENURED);
 | 
| +      CHECK(heap->InNewSpace(*new_space_array));
 | 
| +      second_page_handles.front()->set(1, *new_space_array);
 | 
| +    }
 | 
| +
 | 
| +    {
 | 
| +      // Add a third page that is filled with {num_objects} objects of size
 | 
| +      // {object_size}.
 | 
| +      HandleScope scope3(isolate);
 | 
| +      heap->old_space()->EmptyAllocationInfo();
 | 
| +      const int num_objects = 2;
 | 
| +      int used_memory = object_size * num_objects;
 | 
| +      std::vector<Handle<FixedArray>> third_page_handles =
 | 
| +          CreatePadding(heap, used_memory, TENURED, object_size);
 | 
| +      heap->set_force_oom(true);
 | 
| +      heap->CollectAllGarbage();
 | 
| +
 | 
| +      // The following check makes sure that we compacted "some" objects, while
 | 
| +      // leaving others in place.
 | 
| +      bool in_place = true;
 | 
| +      Handle<FixedArray> current = first_page_handles.front();
 | 
| +      while (current->get(0) != heap->undefined_value()) {
 | 
| +        current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
 | 
| +        CHECK(!heap->InNewSpace(*current));
 | 
| +        CHECK(current->IsFixedArray());
 | 
| +        if (Page::FromAddress(current->address()) != to_be_aborted_page) {
 | 
| +          in_place = false;
 | 
| +        }
 | 
| +        bool on_aborted_page =
 | 
| +            Page::FromAddress(current->address()) == to_be_aborted_page;
 | 
| +        CHECK((in_place && on_aborted_page) || (!in_place && !on_aborted_page));
 | 
| +      }
 | 
| +      // Check that we at least migrated one object, as otherwise the test would
 | 
| +      // not trigger.
 | 
| +      CHECK(!in_place);
 | 
| +
 | 
| +      CheckInvariantsOfAbortedPage(to_be_aborted_page);
 | 
| +
 | 
| +      // Allocate a new object in new space.
 | 
| +      Handle<FixedArray> holder =
 | 
| +          isolate->factory()->NewFixedArray(10, NOT_TENURED);
 | 
| +      // Create a broken address that looks like a tagged pointer to a new space
 | 
| +      // object.
 | 
| +      Address broken_address = holder->address() + 2 * kPointerSize + 1;
 | 
| +      // Convert it to a vector to create a string from it.
 | 
| +      Vector<const uint8_t> string_to_broken_addresss(
 | 
| +          reinterpret_cast<const uint8_t*>(&broken_address), 8);
 | 
| +
 | 
| +      Handle<String> string;
 | 
| +      do {
 | 
| +        // We know that the interesting slot will be on the aborted page and
 | 
| +        // hence we allocate until we get our string on the aborted page.
 | 
| +        // We used slot 1 in the fixed size array which corresponds to the
 | 
| +        // the first word in the string. Since the first object definitely
 | 
| +        // migrated we can just allocate until we hit the aborted page.
 | 
| +        string = isolate->factory()
 | 
| +                     ->NewStringFromOneByte(string_to_broken_addresss, TENURED)
 | 
| +                     .ToHandleChecked();
 | 
| +      } while (Page::FromAddress(string->address()) != to_be_aborted_page);
 | 
| +
 | 
| +      // If store buffer entries are not properly filtered/reset for aborted
 | 
| +      // pages we have now a broken address at an object slot in old space and
 | 
| +      // the following scavenge will crash.
 | 
| +      heap->CollectGarbage(NEW_SPACE);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +}  // namespace internal
 | 
| +}  // namespace v8
 | 
| 
 |