Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: test/cctest/heap/test-compaction.cc

Issue 1511933002: [cctest] Add tests for aborting compaction of pages (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Addressed comment Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "test/cctest/cctest.h"
6 #include "test/cctest/heap/heap-tester.h"
7 #include "test/cctest/heap/utils-inl.h"
8
9 namespace v8 {
10 namespace internal {
11
12 static std::vector<Handle<FixedArray>> FillUpFirstOldSpacePage(Heap* heap) {
13 // This functions assumes that old space top is still on the first page
14 heap->old_space()->EmptyAllocationInfo();
15 int free_on_first_page = static_cast<int>(heap->old_space()->Available());
16 return CreatePadding(heap, free_on_first_page, TENURED);
17 }
18
19
20 static void CheckInvariantsOfAbortedPage(Page* page) {
21 // Check invariants:
22 // 1) Markbits are cleared
23 // 2) The page is not marked as evacuation candidate anymore
24 // 3) The page is not marked as aborted compaction anymore.
25 CHECK(page->markbits()->IsClean());
26 CHECK(!page->IsEvacuationCandidate());
27 CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED));
28 }
29
30
31 HEAP_TEST(CompactionFullAbortedPage) {
32 // Test the scenario where we reach OOM during compaction and the whole page
33 // is aborted.
34
35 // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
36 // we can reach the state of a half aborted page.
37 FLAG_concurrent_sweeping = false;
38 FLAG_manual_evacuation_candidates_selection = true;
39 CcTest::InitializeVM();
40 Isolate* isolate = CcTest::i_isolate();
41 Heap* heap = isolate->heap();
42 {
43 HandleScope scope1(isolate);
44 // Fill up the first page since it cannot be evacuated.
45 auto first_page_handles = FillUpFirstOldSpacePage(heap);
46
47 {
48 HandleScope scope2(isolate);
49 heap->old_space()->EmptyAllocationInfo();
50 auto second_page_handles =
51 CreatePadding(heap, Page::kAllocatableMemory, TENURED);
52 Page* to_be_aborted_page =
53 Page::FromAddress(second_page_handles.front()->address());
54 to_be_aborted_page->SetFlag(
55 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
56 heap->set_force_oom(true);
57 heap->CollectAllGarbage();
58
59 // Check that all handles still point to the same page, i.e., compaction
60 // has been aborted on the page.
61 for (Handle<FixedArray> object : second_page_handles) {
62 CHECK_EQ(to_be_aborted_page, Page::FromAddress(object->address()));
63 }
64 CheckInvariantsOfAbortedPage(to_be_aborted_page);
65 }
66 }
67 }
68
69
70 HEAP_TEST(CompactionPartiallyAbortedPage) {
71 // Test the scenario where we reach OOM during compaction and parts of the
72 // page have already been migrated to a new one.
73
74 // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
75 // we can reach the state of a half aborted page.
76 FLAG_concurrent_sweeping = false;
77 FLAG_manual_evacuation_candidates_selection = true;
78
79 const int object_size = 128 * KB;
80
81 CcTest::InitializeVM();
82 Isolate* isolate = CcTest::i_isolate();
83 Heap* heap = isolate->heap();
84 {
85 HandleScope scope1(isolate);
86 // Fill up the first page since it cannot be evacuated.
87 auto first_page_handles = FillUpFirstOldSpacePage(heap);
88
89 {
90 HandleScope scope2(isolate);
91 // Fill the second page with objects of size {object_size} (last one is
92 // properly adjusted).
93 heap->old_space()->EmptyAllocationInfo();
94 auto second_page_handles =
95 CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size);
96 // Mark the second page for evacuation.
97 Page* to_be_aborted_page =
98 Page::FromAddress(second_page_handles.front()->address());
99 to_be_aborted_page->SetFlag(
100 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
101
102 {
103 // Add a third page that is filled with {num_objects} objects of size
104 // {object_size}.
105 HandleScope scope3(isolate);
106 heap->old_space()->EmptyAllocationInfo();
107 const int num_objects = 3;
108 std::vector<Handle<FixedArray>> third_page_handles = CreatePadding(
109 heap, object_size * num_objects, TENURED, object_size);
110 Page* third_page =
111 Page::FromAddress(third_page_handles.front()->address());
112 heap->set_force_oom(true);
113 heap->CollectAllGarbage();
114
115 bool migration_aborted = false;
116 for (Handle<FixedArray> object : second_page_handles) {
117 // Once compaction has been aborted, all following objects still have
118 // to be on the initial page.
119 CHECK(!migration_aborted ||
120 (Page::FromAddress(object->address()) == to_be_aborted_page));
121 if (Page::FromAddress(object->address()) == to_be_aborted_page) {
122 // This object has not been migrated.
123 migration_aborted = true;
124 } else {
125 CHECK_EQ(Page::FromAddress(object->address()), third_page);
126 }
127 }
128 // Check that we actually created a scenario with a partially aborted
129 // page.
130 CHECK(migration_aborted);
131 CheckInvariantsOfAbortedPage(to_be_aborted_page);
132 }
133 }
134 }
135 }
136
137
138 HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) {
139 // Test the scenario where we reach OOM during compaction and parts of the
140 // page have already been migrated to a new one. Objects on the aborted page
141 // are linked together. This test makes sure that intra-aborted page pointers
142 // get properly updated.
143
144 // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
145 // we can reach the state of a half aborted page.
146 FLAG_concurrent_sweeping = false;
147 FLAG_manual_evacuation_candidates_selection = true;
148
149 const int object_size = 128 * KB;
150
151 CcTest::InitializeVM();
152 Isolate* isolate = CcTest::i_isolate();
153 Heap* heap = isolate->heap();
154 {
155 HandleScope scope1(isolate);
156 // Fill up the first page since it cannot be evacuated.
157 auto first_page_handles = FillUpFirstOldSpacePage(heap);
158
159 Page* to_be_aborted_page = nullptr;
160 {
161 HandleScope temporary_scope(isolate);
162 // Fill the second page with objects of size {object_size} (last one is
163 // properly adjusted).
164 heap->old_space()->EmptyAllocationInfo();
165 const int free_on_second_page = Page::kAllocatableMemory;
166 std::vector<Handle<FixedArray>> second_page_handles =
167 CreatePadding(heap, free_on_second_page, TENURED, object_size);
168 // Mark the second page for evacuation.
169 to_be_aborted_page =
170 Page::FromAddress(second_page_handles.front()->address());
171 to_be_aborted_page->SetFlag(
172 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
173
174 for (size_t i = second_page_handles.size() - 1; i > 0; i--) {
175 second_page_handles[i]->set(0, *second_page_handles[i - 1]);
176 }
177 first_page_handles.front()->set(0, *second_page_handles.back());
178 }
179
180 {
181 // Add a third page that is filled with {num_objects} objects of size
182 // {object_size}.
183 HandleScope scope3(isolate);
184 heap->old_space()->EmptyAllocationInfo();
185 const int num_objects = 2;
186 int used_memory = object_size * num_objects;
187 std::vector<Handle<FixedArray>> third_page_handles =
188 CreatePadding(heap, used_memory, TENURED, object_size);
189 heap->set_force_oom(true);
190 heap->CollectAllGarbage();
191
192 // The following check makes sure that we compacted "some" objects, while
193 // leaving others in place.
194 bool in_place = true;
195 Handle<FixedArray> current = first_page_handles.front();
196 while (current->get(0) != heap->undefined_value()) {
197 current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
198 CHECK(current->IsFixedArray());
199 if (Page::FromAddress(current->address()) != to_be_aborted_page) {
200 in_place = false;
201 }
202 bool on_aborted_page =
203 Page::FromAddress(current->address()) == to_be_aborted_page;
204 CHECK((in_place && on_aborted_page) || (!in_place && !on_aborted_page));
205 }
206 // Check that we at least migrated one object, as otherwise the test would
207 // not trigger.
208 CHECK(!in_place);
209
210 CheckInvariantsOfAbortedPage(to_be_aborted_page);
211 heap->CollectAllGarbage();
212 }
213 }
214 }
215
216
217 HEAP_TEST(CompactionPartiallyAbortedPageWithStoreBufferEntries) {
218 // Test the scenario where we reach OOM during compaction and parts of the
219 // page have already been migrated to a new one. Objects on the aborted page
220 // are linked together and the very first object on the aborted page points
221 // into new space. The test verifies that the store buffer entries are
222 // properly cleared and rebuilt after aborting a page. Failing to do so can
223 // result in other objects being allocated in the free space where their
224 // payload looks like a valid new space pointer.
225
226 // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
227 // we can reach the state of a half aborted page.
228 FLAG_concurrent_sweeping = false;
229 FLAG_manual_evacuation_candidates_selection = true;
230
231 const int object_size = 128 * KB;
232
233 CcTest::InitializeVM();
234 Isolate* isolate = CcTest::i_isolate();
235 Heap* heap = isolate->heap();
236 {
237 HandleScope scope1(isolate);
238 // Fill up the first page since it cannot be evacuated.
239 auto first_page_handles = FillUpFirstOldSpacePage(heap);
240
241 Page* to_be_aborted_page = nullptr;
242 {
243 HandleScope temporary_scope(isolate);
244 // Fill the second page with objects of size {object_size} (last one is
245 // properly adjusted).
246 heap->old_space()->EmptyAllocationInfo();
247 auto second_page_handles =
248 CreatePadding(heap, Page::kAllocatableMemory, TENURED, object_size);
249 // Mark the second page for evacuation.
250 to_be_aborted_page =
251 Page::FromAddress(second_page_handles.front()->address());
252 to_be_aborted_page->SetFlag(
253 MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
254
255 for (size_t i = second_page_handles.size() - 1; i > 0; i--) {
256 second_page_handles[i]->set(0, *second_page_handles[i - 1]);
257 }
258 first_page_handles.front()->set(0, *second_page_handles.back());
259 Handle<FixedArray> new_space_array =
260 isolate->factory()->NewFixedArray(1, NOT_TENURED);
261 CHECK(heap->InNewSpace(*new_space_array));
262 second_page_handles.front()->set(1, *new_space_array);
263 }
264
265 {
266 // Add a third page that is filled with {num_objects} objects of size
267 // {object_size}.
268 HandleScope scope3(isolate);
269 heap->old_space()->EmptyAllocationInfo();
270 const int num_objects = 2;
271 int used_memory = object_size * num_objects;
272 std::vector<Handle<FixedArray>> third_page_handles =
273 CreatePadding(heap, used_memory, TENURED, object_size);
274 heap->set_force_oom(true);
275 heap->CollectAllGarbage();
276
277 // The following check makes sure that we compacted "some" objects, while
278 // leaving others in place.
279 bool in_place = true;
280 Handle<FixedArray> current = first_page_handles.front();
281 while (current->get(0) != heap->undefined_value()) {
282 current = Handle<FixedArray>(FixedArray::cast(current->get(0)));
283 CHECK(!heap->InNewSpace(*current));
284 CHECK(current->IsFixedArray());
285 if (Page::FromAddress(current->address()) != to_be_aborted_page) {
286 in_place = false;
287 }
288 bool on_aborted_page =
289 Page::FromAddress(current->address()) == to_be_aborted_page;
290 CHECK((in_place && on_aborted_page) || (!in_place && !on_aborted_page));
291 }
292 // Check that we at least migrated one object, as otherwise the test would
293 // not trigger.
294 CHECK(!in_place);
295
296 CheckInvariantsOfAbortedPage(to_be_aborted_page);
297
298 // Allocate a new object in new space.
299 Handle<FixedArray> holder =
300 isolate->factory()->NewFixedArray(10, NOT_TENURED);
301 // Create a broken address that looks like a tagged pointer to a new space
302 // object.
303 Address broken_address = holder->address() + 2 * kPointerSize + 1;
304 // Convert it to a vector to create a string from it.
305 Vector<const uint8_t> string_to_broken_addresss(
306 reinterpret_cast<const uint8_t*>(&broken_address), 8);
307
308 Handle<String> string;
309 do {
310 // We know that the interesting slot will be on the aborted page and
311 // hence we allocate until we get our string on the aborted page.
312 // We used slot 1 in the fixed size array which corresponds to the
313 // the first word in the string. Since the first object definitely
314 // migrated we can just allocate until we hit the aborted page.
315 string = isolate->factory()
316 ->NewStringFromOneByte(string_to_broken_addresss, TENURED)
317 .ToHandleChecked();
318 } while (Page::FromAddress(string->address()) != to_be_aborted_page);
319
320 // If store buffer entries are not properly filtered/reset for aborted
321 // pages we have now a broken address at an object slot in old space and
322 // the following scavenge will crash.
323 heap->CollectGarbage(NEW_SPACE);
324 }
325 }
326 }
327
328 } // namespace internal
329 } // namespace v8
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698