| Index: src/a64/code-stubs-a64.cc | 
| diff --git a/src/a64/code-stubs-a64.cc b/src/a64/code-stubs-a64.cc | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..269b97f41c17fe8d4107bceb1fbaf832977aabeb | 
| --- /dev/null | 
| +++ b/src/a64/code-stubs-a64.cc | 
| @@ -0,0 +1,5721 @@ | 
| +// Copyright 2013 the V8 project authors. All rights reserved. | 
| +// Redistribution and use in source and binary forms, with or without | 
| +// modification, are permitted provided that the following conditions are | 
| +// met: | 
| +// | 
| +//     * Redistributions of source code must retain the above copyright | 
| +//       notice, this list of conditions and the following disclaimer. | 
| +//     * Redistributions in binary form must reproduce the above | 
| +//       copyright notice, this list of conditions and the following | 
| +//       disclaimer in the documentation and/or other materials provided | 
| +//       with the distribution. | 
| +//     * Neither the name of Google Inc. nor the names of its | 
| +//       contributors may be used to endorse or promote products derived | 
| +//       from this software without specific prior written permission. | 
| +// | 
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| + | 
| +#include "v8.h" | 
| + | 
| +#if V8_TARGET_ARCH_A64 | 
| + | 
| +#include "bootstrapper.h" | 
| +#include "code-stubs.h" | 
| +#include "regexp-macro-assembler.h" | 
| +#include "stub-cache.h" | 
| + | 
| +namespace v8 { | 
| +namespace internal { | 
| + | 
| + | 
| +void FastNewClosureStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x2: function info | 
| +  static Register registers[] = { x2 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry; | 
| +} | 
| + | 
| + | 
| +void FastNewContextStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x1: function | 
| +  static Register registers[] = { x1 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = NULL; | 
| +} | 
| + | 
| + | 
| +void ToNumberStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x0: value | 
| +  static Register registers[] = { x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = NULL; | 
| +} | 
| + | 
| + | 
| +void NumberToStringStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x0: value | 
| +  static Register registers[] = { x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kNumberToString)->entry; | 
| +} | 
| + | 
| + | 
| +void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x3: array literals array | 
| +  // x2: array literal index | 
| +  // x1: constant elements | 
| +  static Register registers[] = { x3, x2, x1 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry; | 
| +} | 
| + | 
| + | 
| +void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x3: object literals array | 
| +  // x2: object literal index | 
| +  // x1: constant properties | 
| +  // x0: object literal flags | 
| +  static Register registers[] = { x3, x2, x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry; | 
| +} | 
| + | 
| + | 
| +void CreateAllocationSiteStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x2: feedback vector | 
| +  // x3: call feedback slot | 
| +  static Register registers[] = { x2, x3 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = NULL; | 
| +} | 
| + | 
| + | 
| +void KeyedLoadFastElementStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x1: receiver | 
| +  // x0: key | 
| +  static Register registers[] = { x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); | 
| +} | 
| + | 
| + | 
| +void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x1: receiver | 
| +  // x0: key | 
| +  static Register registers[] = { x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); | 
| +} | 
| + | 
| + | 
| +void RegExpConstructResultStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x2: length | 
| +  // x1: index (of last match) | 
| +  // x0: string | 
| +  static Register registers[] = { x2, x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry; | 
| +} | 
| + | 
| + | 
| +void LoadFieldStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x0: receiver | 
| +  static Register registers[] = { x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = NULL; | 
| +} | 
| + | 
| + | 
| +void KeyedLoadFieldStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x1: receiver | 
| +  static Register registers[] = { x1 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = NULL; | 
| +} | 
| + | 
| + | 
| +void KeyedStoreFastElementStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x2: receiver | 
| +  // x1: key | 
| +  // x0: value | 
| +  static Register registers[] = { x2, x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure); | 
| +} | 
| + | 
| + | 
| +void TransitionElementsKindStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x0: value (js_array) | 
| +  // x1: to_map | 
| +  static Register registers[] = { x0, x1 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  Address entry = | 
| +      Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; | 
| +  descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry); | 
| +} | 
| + | 
| + | 
| +void CompareNilICStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x0: value to compare | 
| +  static Register registers[] = { x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      FUNCTION_ADDR(CompareNilIC_Miss); | 
| +  descriptor->SetMissHandler( | 
| +      ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate)); | 
| +} | 
| + | 
| + | 
| +static void InitializeArrayConstructorDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor, | 
| +    int constant_stack_parameter_count) { | 
| +  // x1: function | 
| +  // x2: allocation site with elements kind | 
| +  // x0: number of arguments to the constructor function | 
| +  static Register registers_variable_args[] = { x1, x2, x0 }; | 
| +  static Register registers_no_args[] = { x1, x2 }; | 
| + | 
| +  if (constant_stack_parameter_count == 0) { | 
| +    descriptor->register_param_count_ = | 
| +        sizeof(registers_no_args) / sizeof(registers_no_args[0]); | 
| +    descriptor->register_params_ = registers_no_args; | 
| +  } else { | 
| +    // stack param count needs (constructor pointer, and single argument) | 
| +    descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; | 
| +    descriptor->stack_parameter_count_ = x0; | 
| +    descriptor->register_param_count_ = | 
| +        sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); | 
| +    descriptor->register_params_ = registers_variable_args; | 
| +  } | 
| + | 
| +  descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; | 
| +  descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kArrayConstructor)->entry; | 
| +} | 
| + | 
| + | 
| +void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  InitializeArrayConstructorDescriptor(isolate, descriptor, 0); | 
| +} | 
| + | 
| + | 
| +void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  InitializeArrayConstructorDescriptor(isolate, descriptor, 1); | 
| +} | 
| + | 
| + | 
| +void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  InitializeArrayConstructorDescriptor(isolate, descriptor, -1); | 
| +} | 
| + | 
| + | 
| +static void InitializeInternalArrayConstructorDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor, | 
| +    int constant_stack_parameter_count) { | 
| +  // x1: constructor function | 
| +  // x0: number of arguments to the constructor function | 
| +  static Register registers_variable_args[] = { x1, x0 }; | 
| +  static Register registers_no_args[] = { x1 }; | 
| + | 
| +  if (constant_stack_parameter_count == 0) { | 
| +    descriptor->register_param_count_ = | 
| +        sizeof(registers_no_args) / sizeof(registers_no_args[0]); | 
| +    descriptor->register_params_ = registers_no_args; | 
| +  } else { | 
| +    // stack param count needs (constructor pointer, and single argument) | 
| +    descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; | 
| +    descriptor->stack_parameter_count_ = x0; | 
| +    descriptor->register_param_count_ = | 
| +        sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); | 
| +    descriptor->register_params_ = registers_variable_args; | 
| +  } | 
| + | 
| +  descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; | 
| +  descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry; | 
| +} | 
| + | 
| + | 
| +void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0); | 
| +} | 
| + | 
| + | 
| +void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1); | 
| +} | 
| + | 
| + | 
| +void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1); | 
| +} | 
| + | 
| + | 
| +void ToBooleanStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x0: value | 
| +  static Register registers[] = { x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss); | 
| +  descriptor->SetMissHandler( | 
| +      ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate)); | 
| +} | 
| + | 
| + | 
| +void StoreGlobalStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x1: receiver | 
| +  // x2: key (unused) | 
| +  // x0: value | 
| +  static Register registers[] = { x1, x2, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      FUNCTION_ADDR(StoreIC_MissFromStubFailure); | 
| +} | 
| + | 
| + | 
| +void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x0: value | 
| +  // x3: target map | 
| +  // x1: key | 
| +  // x2: receiver | 
| +  static Register registers[] = { x0, x3, x1, x2 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss); | 
| +} | 
| + | 
| + | 
| +void BinaryOpICStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x1: left operand | 
| +  // x0: right operand | 
| +  static Register registers[] = { x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss); | 
| +  descriptor->SetMissHandler( | 
| +      ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate)); | 
| +} | 
| + | 
| + | 
| +void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x2: allocation site | 
| +  // x1: left operand | 
| +  // x0: right operand | 
| +  static Register registers[] = { x2, x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite); | 
| +} | 
| + | 
| + | 
| +void StringAddStub::InitializeInterfaceDescriptor( | 
| +    Isolate* isolate, | 
| +    CodeStubInterfaceDescriptor* descriptor) { | 
| +  // x1: left operand | 
| +  // x0: right operand | 
| +  static Register registers[] = { x1, x0 }; | 
| +  descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); | 
| +  descriptor->register_params_ = registers; | 
| +  descriptor->deoptimization_handler_ = | 
| +      Runtime::FunctionForId(Runtime::kStringAdd)->entry; | 
| +} | 
| + | 
| + | 
| +void CallDescriptors::InitializeForIsolate(Isolate* isolate) { | 
| +  static PlatformCallInterfaceDescriptor default_descriptor = | 
| +      PlatformCallInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS); | 
| + | 
| +  static PlatformCallInterfaceDescriptor noInlineDescriptor = | 
| +      PlatformCallInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS); | 
| + | 
| +  { | 
| +    CallInterfaceDescriptor* descriptor = | 
| +        isolate->call_descriptor(Isolate::ArgumentAdaptorCall); | 
| +    static Register registers[] = { x1,  // JSFunction | 
| +                                    cp,  // context | 
| +                                    x0,  // actual number of arguments | 
| +                                    x2,  // expected number of arguments | 
| +    }; | 
| +    static Representation representations[] = { | 
| +        Representation::Tagged(),     // JSFunction | 
| +        Representation::Tagged(),     // context | 
| +        Representation::Integer32(),  // actual number of arguments | 
| +        Representation::Integer32(),  // expected number of arguments | 
| +    }; | 
| +    descriptor->register_param_count_ = 4; | 
| +    descriptor->register_params_ = registers; | 
| +    descriptor->param_representations_ = representations; | 
| +    descriptor->platform_specific_descriptor_ = &default_descriptor; | 
| +  } | 
| +  { | 
| +    CallInterfaceDescriptor* descriptor = | 
| +        isolate->call_descriptor(Isolate::KeyedCall); | 
| +    static Register registers[] = { cp,  // context | 
| +                                    x2,  // key | 
| +    }; | 
| +    static Representation representations[] = { | 
| +        Representation::Tagged(),     // context | 
| +        Representation::Tagged(),     // key | 
| +    }; | 
| +    descriptor->register_param_count_ = 2; | 
| +    descriptor->register_params_ = registers; | 
| +    descriptor->param_representations_ = representations; | 
| +    descriptor->platform_specific_descriptor_ = &noInlineDescriptor; | 
| +  } | 
| +  { | 
| +    CallInterfaceDescriptor* descriptor = | 
| +        isolate->call_descriptor(Isolate::NamedCall); | 
| +    static Register registers[] = { cp,  // context | 
| +                                    x2,  // name | 
| +    }; | 
| +    static Representation representations[] = { | 
| +        Representation::Tagged(),     // context | 
| +        Representation::Tagged(),     // name | 
| +    }; | 
| +    descriptor->register_param_count_ = 2; | 
| +    descriptor->register_params_ = registers; | 
| +    descriptor->param_representations_ = representations; | 
| +    descriptor->platform_specific_descriptor_ = &noInlineDescriptor; | 
| +  } | 
| +  { | 
| +    CallInterfaceDescriptor* descriptor = | 
| +        isolate->call_descriptor(Isolate::CallHandler); | 
| +    static Register registers[] = { cp,  // context | 
| +                                    x0,  // receiver | 
| +    }; | 
| +    static Representation representations[] = { | 
| +        Representation::Tagged(),  // context | 
| +        Representation::Tagged(),  // receiver | 
| +    }; | 
| +    descriptor->register_param_count_ = 2; | 
| +    descriptor->register_params_ = registers; | 
| +    descriptor->param_representations_ = representations; | 
| +    descriptor->platform_specific_descriptor_ = &default_descriptor; | 
| +  } | 
| +  { | 
| +    CallInterfaceDescriptor* descriptor = | 
| +        isolate->call_descriptor(Isolate::ApiFunctionCall); | 
| +    static Register registers[] = { x0,  // callee | 
| +                                    x4,  // call_data | 
| +                                    x2,  // holder | 
| +                                    x1,  // api_function_address | 
| +                                    cp,  // context | 
| +    }; | 
| +    static Representation representations[] = { | 
| +        Representation::Tagged(),    // callee | 
| +        Representation::Tagged(),    // call_data | 
| +        Representation::Tagged(),    // holder | 
| +        Representation::External(),  // api_function_address | 
| +        Representation::Tagged(),    // context | 
| +    }; | 
| +    descriptor->register_param_count_ = 5; | 
| +    descriptor->register_params_ = registers; | 
| +    descriptor->param_representations_ = representations; | 
| +    descriptor->platform_specific_descriptor_ = &default_descriptor; | 
| +  } | 
| +} | 
| + | 
| + | 
| +#define __ ACCESS_MASM(masm) | 
| + | 
| + | 
| +void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { | 
| +  // Update the static counter each time a new code stub is generated. | 
| +  Isolate* isolate = masm->isolate(); | 
| +  isolate->counters()->code_stubs()->Increment(); | 
| + | 
| +  CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate); | 
| +  int param_count = descriptor->register_param_count_; | 
| +  { | 
| +    // Call the runtime system in a fresh internal frame. | 
| +    FrameScope scope(masm, StackFrame::INTERNAL); | 
| +    ASSERT((descriptor->register_param_count_ == 0) || | 
| +           x0.Is(descriptor->register_params_[param_count - 1])); | 
| +    // Push arguments | 
| +    // TODO(jbramley): Try to push these in blocks. | 
| +    for (int i = 0; i < param_count; ++i) { | 
| +      __ Push(descriptor->register_params_[i]); | 
| +    } | 
| +    ExternalReference miss = descriptor->miss_handler(); | 
| +    __ CallExternalReference(miss, descriptor->register_param_count_); | 
| +  } | 
| + | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +// See call site for description. | 
| +static void EmitIdenticalObjectComparison(MacroAssembler* masm, | 
| +                                          Register left, | 
| +                                          Register right, | 
| +                                          Register scratch, | 
| +                                          FPRegister double_scratch, | 
| +                                          Label* slow, | 
| +                                          Condition cond) { | 
| +  ASSERT(!AreAliased(left, right, scratch)); | 
| +  Label not_identical, return_equal, heap_number; | 
| +  Register result = x0; | 
| + | 
| +  __ Cmp(right, left); | 
| +  __ B(ne, ¬_identical); | 
| + | 
| +  // Test for NaN. Sadly, we can't just compare to factory::nan_value(), | 
| +  // so we do the second best thing - test it ourselves. | 
| +  // They are both equal and they are not both Smis so both of them are not | 
| +  // Smis.  If it's not a heap number, then return equal. | 
| +  if ((cond == lt) || (cond == gt)) { | 
| +    __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow, | 
| +                        ge); | 
| +  } else { | 
| +    Register right_type = scratch; | 
| +    __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE, | 
| +                        &heap_number); | 
| +    // Comparing JS objects with <=, >= is complicated. | 
| +    if (cond != eq) { | 
| +      __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); | 
| +      __ B(ge, slow); | 
| +      // Normally here we fall through to return_equal, but undefined is | 
| +      // special: (undefined == undefined) == true, but | 
| +      // (undefined <= undefined) == false!  See ECMAScript 11.8.5. | 
| +      if ((cond == le) || (cond == ge)) { | 
| +        __ Cmp(right_type, ODDBALL_TYPE); | 
| +        __ B(ne, &return_equal); | 
| +        __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal); | 
| +        if (cond == le) { | 
| +          // undefined <= undefined should fail. | 
| +          __ Mov(result, GREATER); | 
| +        } else  { | 
| +          // undefined >= undefined should fail. | 
| +          __ Mov(result, LESS); | 
| +        } | 
| +        __ Ret(); | 
| +      } | 
| +    } | 
| +  } | 
| + | 
| +  __ Bind(&return_equal); | 
| +  if (cond == lt) { | 
| +    __ Mov(result, GREATER);  // Things aren't less than themselves. | 
| +  } else if (cond == gt) { | 
| +    __ Mov(result, LESS);     // Things aren't greater than themselves. | 
| +  } else { | 
| +    __ Mov(result, EQUAL);    // Things are <=, >=, ==, === themselves. | 
| +  } | 
| +  __ Ret(); | 
| + | 
| +  // Cases lt and gt have been handled earlier, and case ne is never seen, as | 
| +  // it is handled in the parser (see Parser::ParseBinaryExpression). We are | 
| +  // only concerned with cases ge, le and eq here. | 
| +  if ((cond != lt) && (cond != gt)) { | 
| +    ASSERT((cond == ge) || (cond == le) || (cond == eq)); | 
| +    __ Bind(&heap_number); | 
| +    // Left and right are identical pointers to a heap number object. Return | 
| +    // non-equal if the heap number is a NaN, and equal otherwise. Comparing | 
| +    // the number to itself will set the overflow flag iff the number is NaN. | 
| +    __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset)); | 
| +    __ Fcmp(double_scratch, double_scratch); | 
| +    __ B(vc, &return_equal);  // Not NaN, so treat as normal heap number. | 
| + | 
| +    if (cond == le) { | 
| +      __ Mov(result, GREATER); | 
| +    } else { | 
| +      __ Mov(result, LESS); | 
| +    } | 
| +    __ Ret(); | 
| +  } | 
| + | 
| +  // No fall through here. | 
| +  if (FLAG_debug_code) { | 
| +    __ Unreachable(); | 
| +  } | 
| + | 
| +  __ Bind(¬_identical); | 
| +} | 
| + | 
| + | 
| +// See call site for description. | 
| +static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, | 
| +                                           Register left, | 
| +                                           Register right, | 
| +                                           Register left_type, | 
| +                                           Register right_type, | 
| +                                           Register scratch) { | 
| +  ASSERT(!AreAliased(left, right, left_type, right_type, scratch)); | 
| + | 
| +  if (masm->emit_debug_code()) { | 
| +    // We assume that the arguments are not identical. | 
| +    __ Cmp(left, right); | 
| +    __ Assert(ne, kExpectedNonIdenticalObjects); | 
| +  } | 
| + | 
| +  // If either operand is a JS object or an oddball value, then they are not | 
| +  // equal since their pointers are different. | 
| +  // There is no test for undetectability in strict equality. | 
| +  STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); | 
| +  Label right_non_object; | 
| + | 
| +  __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); | 
| +  __ B(lt, &right_non_object); | 
| + | 
| +  // Return non-zero - x0 already contains a non-zero pointer. | 
| +  ASSERT(left.is(x0) || right.is(x0)); | 
| +  Label return_not_equal; | 
| +  __ Bind(&return_not_equal); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&right_non_object); | 
| + | 
| +  // Check for oddballs: true, false, null, undefined. | 
| +  __ Cmp(right_type, ODDBALL_TYPE); | 
| + | 
| +  // If right is not ODDBALL, test left. Otherwise, set eq condition. | 
| +  __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne); | 
| + | 
| +  // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE. | 
| +  // Otherwise, right or left is ODDBALL, so set a ge condition. | 
| +  __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne); | 
| + | 
| +  __ B(ge, &return_not_equal); | 
| + | 
| +  // Internalized strings are unique, so they can only be equal if they are the | 
| +  // same object. We have already tested that case, so if left and right are | 
| +  // both internalized strings, they cannot be equal. | 
| +  STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); | 
| +  __ Orr(scratch, left_type, right_type); | 
| +  __ TestAndBranchIfAllClear( | 
| +      scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal); | 
| +} | 
| + | 
| + | 
| +// See call site for description. | 
| +static void EmitSmiNonsmiComparison(MacroAssembler* masm, | 
| +                                    Register left, | 
| +                                    Register right, | 
| +                                    FPRegister left_d, | 
| +                                    FPRegister right_d, | 
| +                                    Register scratch, | 
| +                                    Label* slow, | 
| +                                    bool strict) { | 
| +  ASSERT(!AreAliased(left, right, scratch)); | 
| +  ASSERT(!AreAliased(left_d, right_d)); | 
| +  ASSERT((left.is(x0) && right.is(x1)) || | 
| +         (right.is(x0) && left.is(x1))); | 
| +  Register result = x0; | 
| + | 
| +  Label right_is_smi, done; | 
| +  __ JumpIfSmi(right, &right_is_smi); | 
| + | 
| +  // Left is the smi. Check whether right is a heap number. | 
| +  if (strict) { | 
| +    // If right is not a number and left is a smi, then strict equality cannot | 
| +    // succeed. Return non-equal. | 
| +    Label is_heap_number; | 
| +    __ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, | 
| +                        &is_heap_number); | 
| +    // Register right is a non-zero pointer, which is a valid NOT_EQUAL result. | 
| +    if (!right.is(result)) { | 
| +      __ Mov(result, NOT_EQUAL); | 
| +    } | 
| +    __ Ret(); | 
| +    __ Bind(&is_heap_number); | 
| +  } else { | 
| +    // Smi compared non-strictly with a non-smi, non-heap-number. Call the | 
| +    // runtime. | 
| +    __ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow); | 
| +  } | 
| + | 
| +  // Left is the smi. Right is a heap number. Load right value into right_d, and | 
| +  // convert left smi into double in left_d. | 
| +  __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset)); | 
| +  __ SmiUntagToDouble(left_d, left); | 
| +  __ B(&done); | 
| + | 
| +  __ Bind(&right_is_smi); | 
| +  // Right is a smi. Check whether the non-smi left is a heap number. | 
| +  if (strict) { | 
| +    // If left is not a number and right is a smi then strict equality cannot | 
| +    // succeed. Return non-equal. | 
| +    Label is_heap_number; | 
| +    __ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, | 
| +                        &is_heap_number); | 
| +    // Register left is a non-zero pointer, which is a valid NOT_EQUAL result. | 
| +    if (!left.is(result)) { | 
| +      __ Mov(result, NOT_EQUAL); | 
| +    } | 
| +    __ Ret(); | 
| +    __ Bind(&is_heap_number); | 
| +  } else { | 
| +    // Smi compared non-strictly with a non-smi, non-heap-number. Call the | 
| +    // runtime. | 
| +    __ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow); | 
| +  } | 
| + | 
| +  // Right is the smi. Left is a heap number. Load left value into left_d, and | 
| +  // convert right smi into double in right_d. | 
| +  __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset)); | 
| +  __ SmiUntagToDouble(right_d, right); | 
| + | 
| +  // Fall through to both_loaded_as_doubles. | 
| +  __ Bind(&done); | 
| +} | 
| + | 
| + | 
| +// Fast negative check for internalized-to-internalized equality. | 
| +// See call site for description. | 
| +static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, | 
| +                                                     Register left, | 
| +                                                     Register right, | 
| +                                                     Register left_map, | 
| +                                                     Register right_map, | 
| +                                                     Register left_type, | 
| +                                                     Register right_type, | 
| +                                                     Label* possible_strings, | 
| +                                                     Label* not_both_strings) { | 
| +  ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type)); | 
| +  Register result = x0; | 
| + | 
| +  Label object_test; | 
| +  STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); | 
| +  // TODO(all): reexamine this branch sequence for optimisation wrt branch | 
| +  // prediction. | 
| +  __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test); | 
| +  __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings); | 
| +  __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings); | 
| +  __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings); | 
| + | 
| +  // Both are internalized. We already checked that they weren't the same | 
| +  // pointer, so they are not equal. | 
| +  __ Mov(result, NOT_EQUAL); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&object_test); | 
| + | 
| +  __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); | 
| + | 
| +  // If right >= FIRST_SPEC_OBJECT_TYPE, test left. | 
| +  // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition. | 
| +  __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge); | 
| + | 
| +  __ B(lt, not_both_strings); | 
| + | 
| +  // If both objects are undetectable, they are equal. Otherwise, they are not | 
| +  // equal, since they are different objects and an object is not equal to | 
| +  // undefined. | 
| + | 
| +  // Returning here, so we can corrupt right_type and left_type. | 
| +  Register right_bitfield = right_type; | 
| +  Register left_bitfield = left_type; | 
| +  __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset)); | 
| +  __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset)); | 
| +  __ And(result, right_bitfield, left_bitfield); | 
| +  __ And(result, result, 1 << Map::kIsUndetectable); | 
| +  __ Eor(result, result, 1 << Map::kIsUndetectable); | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +static void ICCompareStub_CheckInputType(MacroAssembler* masm, | 
| +                                         Register input, | 
| +                                         Register scratch, | 
| +                                         CompareIC::State expected, | 
| +                                         Label* fail) { | 
| +  Label ok; | 
| +  if (expected == CompareIC::SMI) { | 
| +    __ JumpIfNotSmi(input, fail); | 
| +  } else if (expected == CompareIC::NUMBER) { | 
| +    __ JumpIfSmi(input, &ok); | 
| +    __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, | 
| +                DONT_DO_SMI_CHECK); | 
| +  } | 
| +  // We could be strict about internalized/non-internalized here, but as long as | 
| +  // hydrogen doesn't care, the stub doesn't have to care either. | 
| +  __ Bind(&ok); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { | 
| +  Register lhs = x1; | 
| +  Register rhs = x0; | 
| +  Register result = x0; | 
| +  Condition cond = GetCondition(); | 
| + | 
| +  Label miss; | 
| +  ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss); | 
| +  ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss); | 
| + | 
| +  Label slow;  // Call builtin. | 
| +  Label not_smis, both_loaded_as_doubles; | 
| +  Label not_two_smis, smi_done; | 
| +  __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis); | 
| +  __ SmiUntag(lhs); | 
| +  __ Sub(result, lhs, Operand::UntagSmi(rhs)); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(¬_two_smis); | 
| + | 
| +  // NOTICE! This code is only reached after a smi-fast-case check, so it is | 
| +  // certain that at least one operand isn't a smi. | 
| + | 
| +  // Handle the case where the objects are identical. Either returns the answer | 
| +  // or goes to slow. Only falls through if the objects were not identical. | 
| +  EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond); | 
| + | 
| +  // If either is a smi (we know that at least one is not a smi), then they can | 
| +  // only be strictly equal if the other is a HeapNumber. | 
| +  __ JumpIfBothNotSmi(lhs, rhs, ¬_smis); | 
| + | 
| +  // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that | 
| +  // can: | 
| +  //  1) Return the answer. | 
| +  //  2) Branch to the slow case. | 
| +  //  3) Fall through to both_loaded_as_doubles. | 
| +  // In case 3, we have found out that we were dealing with a number-number | 
| +  // comparison. The double values of the numbers have been loaded, right into | 
| +  // rhs_d, left into lhs_d. | 
| +  FPRegister rhs_d = d0; | 
| +  FPRegister lhs_d = d1; | 
| +  EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict()); | 
| + | 
| +  __ Bind(&both_loaded_as_doubles); | 
| +  // The arguments have been converted to doubles and stored in rhs_d and | 
| +  // lhs_d. | 
| +  Label nan; | 
| +  __ Fcmp(lhs_d, rhs_d); | 
| +  __ B(vs, &nan);  // Overflow flag set if either is NaN. | 
| +  STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); | 
| +  __ Cset(result, gt);  // gt => 1, otherwise (lt, eq) => 0 (EQUAL). | 
| +  __ Csinv(result, result, xzr, ge);  // lt => -1, gt => 1, eq => 0. | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&nan); | 
| +  // Left and/or right is a NaN. Load the result register with whatever makes | 
| +  // the comparison fail, since comparisons with NaN always fail (except ne, | 
| +  // which is filtered out at a higher level.) | 
| +  ASSERT(cond != ne); | 
| +  if ((cond == lt) || (cond == le)) { | 
| +    __ Mov(result, GREATER); | 
| +  } else { | 
| +    __ Mov(result, LESS); | 
| +  } | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(¬_smis); | 
| +  // At this point we know we are dealing with two different objects, and | 
| +  // neither of them is a smi. The objects are in rhs_ and lhs_. | 
| + | 
| +  // Load the maps and types of the objects. | 
| +  Register rhs_map = x10; | 
| +  Register rhs_type = x11; | 
| +  Register lhs_map = x12; | 
| +  Register lhs_type = x13; | 
| +  __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); | 
| +  __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); | 
| +  __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); | 
| +  __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); | 
| + | 
| +  if (strict()) { | 
| +    // This emits a non-equal return sequence for some object types, or falls | 
| +    // through if it was not lucky. | 
| +    EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14); | 
| +  } | 
| + | 
| +  Label check_for_internalized_strings; | 
| +  Label flat_string_check; | 
| +  // Check for heap number comparison. Branch to earlier double comparison code | 
| +  // if they are heap numbers, otherwise, branch to internalized string check. | 
| +  __ Cmp(rhs_type, HEAP_NUMBER_TYPE); | 
| +  __ B(ne, &check_for_internalized_strings); | 
| +  __ Cmp(lhs_map, rhs_map); | 
| + | 
| +  // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat | 
| +  // string check. | 
| +  __ B(ne, &flat_string_check); | 
| + | 
| +  // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double | 
| +  // comparison code. | 
| +  __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); | 
| +  __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); | 
| +  __ B(&both_loaded_as_doubles); | 
| + | 
| +  __ Bind(&check_for_internalized_strings); | 
| +  // In the strict case, the EmitStrictTwoHeapObjectCompare already took care | 
| +  // of internalized strings. | 
| +  if ((cond == eq) && !strict()) { | 
| +    // Returns an answer for two internalized strings or two detectable objects. | 
| +    // Otherwise branches to the string case or not both strings case. | 
| +    EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map, | 
| +                                             lhs_type, rhs_type, | 
| +                                             &flat_string_check, &slow); | 
| +  } | 
| + | 
| +  // Check for both being sequential ASCII strings, and inline if that is the | 
| +  // case. | 
| +  __ Bind(&flat_string_check); | 
| +  __ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14, | 
| +                                                  x15, &slow); | 
| + | 
| +  Isolate* isolate = masm->isolate(); | 
| +  __ IncrementCounter(isolate->counters()->string_compare_native(), 1, x10, | 
| +                      x11); | 
| +  if (cond == eq) { | 
| +    StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, | 
| +                                                     x10, x11, x12); | 
| +  } else { | 
| +    StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, | 
| +                                                       x10, x11, x12, x13); | 
| +  } | 
| + | 
| +  // Never fall through to here. | 
| +  if (FLAG_debug_code) { | 
| +    __ Unreachable(); | 
| +  } | 
| + | 
| +  __ Bind(&slow); | 
| + | 
| +  __ Push(lhs, rhs); | 
| +  // Figure out which native to call and setup the arguments. | 
| +  Builtins::JavaScript native; | 
| +  if (cond == eq) { | 
| +    native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; | 
| +  } else { | 
| +    native = Builtins::COMPARE; | 
| +    int ncr;  // NaN compare result | 
| +    if ((cond == lt) || (cond == le)) { | 
| +      ncr = GREATER; | 
| +    } else { | 
| +      ASSERT((cond == gt) || (cond == ge));  // remaining cases | 
| +      ncr = LESS; | 
| +    } | 
| +    __ Mov(x10, Operand(Smi::FromInt(ncr))); | 
| +    __ Push(x10); | 
| +  } | 
| + | 
| +  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) | 
| +  // tagged as a small integer. | 
| +  __ InvokeBuiltin(native, JUMP_FUNCTION); | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { | 
| +  // Preserve caller-saved registers x0-x7 and x10-x15. We don't care if x8, x9, | 
| +  // ip0 and ip1 are corrupted by the call into C. | 
| +  CPURegList saved_regs = kCallerSaved; | 
| +  saved_regs.Remove(ip0); | 
| +  saved_regs.Remove(ip1); | 
| +  saved_regs.Remove(x8); | 
| +  saved_regs.Remove(x9); | 
| + | 
| +  // We don't allow a GC during a store buffer overflow so there is no need to | 
| +  // store the registers in any particular way, but we do have to store and | 
| +  // restore them. | 
| +  __ PushCPURegList(saved_regs); | 
| +  if (save_doubles_ == kSaveFPRegs) { | 
| +    __ PushCPURegList(kCallerSavedFP); | 
| +  } | 
| + | 
| +  AllowExternalCallThatCantCauseGC scope(masm); | 
| +  __ Mov(x0, Operand(ExternalReference::isolate_address(masm->isolate()))); | 
| +  __ CallCFunction( | 
| +      ExternalReference::store_buffer_overflow_function(masm->isolate()), | 
| +                                                        1, 0); | 
| + | 
| +  if (save_doubles_ == kSaveFPRegs) { | 
| +    __ PopCPURegList(kCallerSavedFP); | 
| +  } | 
| +  __ PopCPURegList(saved_regs); | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( | 
| +    Isolate* isolate) { | 
| +  StoreBufferOverflowStub stub1(kDontSaveFPRegs); | 
| +  stub1.GetCode(isolate); | 
| +  StoreBufferOverflowStub stub2(kSaveFPRegs); | 
| +  stub2.GetCode(isolate); | 
| +} | 
| + | 
| + | 
| +void MathPowStub::Generate(MacroAssembler* masm) { | 
| +  // Stack on entry: | 
| +  // jssp[0]: Exponent (as a tagged value). | 
| +  // jssp[1]: Base (as a tagged value). | 
| +  // | 
| +  // The (tagged) result will be returned in x0, as a heap number. | 
| + | 
| +  Register result_tagged = x0; | 
| +  Register base_tagged = x10; | 
| +  Register exponent_tagged = x11; | 
| +  Register exponent_integer = x12; | 
| +  Register scratch1 = x14; | 
| +  Register scratch0 = x15; | 
| +  Register saved_lr = x19; | 
| +  FPRegister result_double = d0; | 
| +  FPRegister base_double = d0; | 
| +  FPRegister exponent_double = d1; | 
| +  FPRegister base_double_copy = d2; | 
| +  FPRegister scratch1_double = d6; | 
| +  FPRegister scratch0_double = d7; | 
| + | 
| +  // A fast-path for integer exponents. | 
| +  Label exponent_is_smi, exponent_is_integer; | 
| +  // Bail out to runtime. | 
| +  Label call_runtime; | 
| +  // Allocate a heap number for the result, and return it. | 
| +  Label done; | 
| + | 
| +  // Unpack the inputs. | 
| +  if (exponent_type_ == ON_STACK) { | 
| +    Label base_is_smi; | 
| +    Label unpack_exponent; | 
| + | 
| +    __ Pop(exponent_tagged, base_tagged); | 
| + | 
| +    __ JumpIfSmi(base_tagged, &base_is_smi); | 
| +    __ JumpIfNotHeapNumber(base_tagged, &call_runtime); | 
| +    // base_tagged is a heap number, so load its double value. | 
| +    __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset)); | 
| +    __ B(&unpack_exponent); | 
| +    __ Bind(&base_is_smi); | 
| +    // base_tagged is a SMI, so untag it and convert it to a double. | 
| +    __ SmiUntagToDouble(base_double, base_tagged); | 
| + | 
| +    __ Bind(&unpack_exponent); | 
| +    //  x10   base_tagged       The tagged base (input). | 
| +    //  x11   exponent_tagged   The tagged exponent (input). | 
| +    //  d1    base_double       The base as a double. | 
| +    __ JumpIfSmi(exponent_tagged, &exponent_is_smi); | 
| +    __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime); | 
| +    // exponent_tagged is a heap number, so load its double value. | 
| +    __ Ldr(exponent_double, | 
| +           FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); | 
| +  } else if (exponent_type_ == TAGGED) { | 
| +    __ JumpIfSmi(exponent_tagged, &exponent_is_smi); | 
| +    __ Ldr(exponent_double, | 
| +           FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); | 
| +  } | 
| + | 
| +  // Handle double (heap number) exponents. | 
| +  if (exponent_type_ != INTEGER) { | 
| +    // Detect integer exponents stored as doubles and handle those in the | 
| +    // integer fast-path. | 
| +    __ TryConvertDoubleToInt64(exponent_integer, exponent_double, | 
| +                               scratch0_double, &exponent_is_integer); | 
| + | 
| +    if (exponent_type_ == ON_STACK) { | 
| +      FPRegister  half_double = d3; | 
| +      FPRegister  minus_half_double = d4; | 
| +      FPRegister  zero_double = d5; | 
| +      // Detect square root case. Crankshaft detects constant +/-0.5 at compile | 
| +      // time and uses DoMathPowHalf instead. We then skip this check for | 
| +      // non-constant cases of +/-0.5 as these hardly occur. | 
| + | 
| +      __ Fmov(minus_half_double, -0.5); | 
| +      __ Fmov(half_double, 0.5); | 
| +      __ Fcmp(minus_half_double, exponent_double); | 
| +      __ Fccmp(half_double, exponent_double, NZFlag, ne); | 
| +      // Condition flags at this point: | 
| +      //    0.5;  nZCv    // Identified by eq && pl | 
| +      //   -0.5:  NZcv    // Identified by eq && mi | 
| +      //  other:  ?z??    // Identified by ne | 
| +      __ B(ne, &call_runtime); | 
| + | 
| +      // The exponent is 0.5 or -0.5. | 
| + | 
| +      // Given that exponent is known to be either 0.5 or -0.5, the following | 
| +      // special cases could apply (according to ECMA-262 15.8.2.13): | 
| +      // | 
| +      //  base.isNaN():                   The result is NaN. | 
| +      //  (base == +INFINITY) || (base == -INFINITY) | 
| +      //    exponent == 0.5:              The result is +INFINITY. | 
| +      //    exponent == -0.5:             The result is +0. | 
| +      //  (base == +0) || (base == -0) | 
| +      //    exponent == 0.5:              The result is +0. | 
| +      //    exponent == -0.5:             The result is +INFINITY. | 
| +      //  (base < 0) && base.isFinite():  The result is NaN. | 
| +      // | 
| +      // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except | 
| +      // where base is -INFINITY or -0. | 
| + | 
| +      // Add +0 to base. This has no effect other than turning -0 into +0. | 
| +      __ Fmov(zero_double, 0.0); | 
| +      __ Fadd(base_double, base_double, zero_double); | 
| +      // The operation -0+0 results in +0 in all cases except where the | 
| +      // FPCR rounding mode is 'round towards minus infinity' (RM). The | 
| +      // A64 simulator does not currently simulate FPCR (where the rounding | 
| +      // mode is set), so test the operation with some debug code. | 
| +      if (masm->emit_debug_code()) { | 
| +        Register temp = masm->Tmp1(); | 
| +        //  d5  zero_double   The value +0.0 as a double. | 
| +        __ Fneg(scratch0_double, zero_double); | 
| +        // Verify that we correctly generated +0.0 and -0.0. | 
| +        //  bits(+0.0) = 0x0000000000000000 | 
| +        //  bits(-0.0) = 0x8000000000000000 | 
| +        __ Fmov(temp, zero_double); | 
| +        __ CheckRegisterIsClear(temp, kCouldNotGenerateZero); | 
| +        __ Fmov(temp, scratch0_double); | 
| +        __ Eor(temp, temp, kDSignMask); | 
| +        __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero); | 
| +        // Check that -0.0 + 0.0 == +0.0. | 
| +        __ Fadd(scratch0_double, scratch0_double, zero_double); | 
| +        __ Fmov(temp, scratch0_double); | 
| +        __ CheckRegisterIsClear(temp, kExpectedPositiveZero); | 
| +      } | 
| + | 
| +      // If base is -INFINITY, make it +INFINITY. | 
| +      //  * Calculate base - base: All infinities will become NaNs since both | 
| +      //    -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in A64. | 
| +      //  * If the result is NaN, calculate abs(base). | 
| +      __ Fsub(scratch0_double, base_double, base_double); | 
| +      __ Fcmp(scratch0_double, 0.0); | 
| +      __ Fabs(scratch1_double, base_double); | 
| +      __ Fcsel(base_double, scratch1_double, base_double, vs); | 
| + | 
| +      // Calculate the square root of base. | 
| +      __ Fsqrt(result_double, base_double); | 
| +      __ Fcmp(exponent_double, 0.0); | 
| +      __ B(ge, &done);  // Finish now for exponents of 0.5. | 
| +      // Find the inverse for exponents of -0.5. | 
| +      __ Fmov(scratch0_double, 1.0); | 
| +      __ Fdiv(result_double, scratch0_double, result_double); | 
| +      __ B(&done); | 
| +    } | 
| + | 
| +    { | 
| +      AllowExternalCallThatCantCauseGC scope(masm); | 
| +      __ Mov(saved_lr, lr); | 
| +      __ CallCFunction( | 
| +          ExternalReference::power_double_double_function(masm->isolate()), | 
| +          0, 2); | 
| +      __ Mov(lr, saved_lr); | 
| +      __ B(&done); | 
| +    } | 
| + | 
| +    // Handle SMI exponents. | 
| +    __ Bind(&exponent_is_smi); | 
| +    //  x10   base_tagged       The tagged base (input). | 
| +    //  x11   exponent_tagged   The tagged exponent (input). | 
| +    //  d1    base_double       The base as a double. | 
| +    __ SmiUntag(exponent_integer, exponent_tagged); | 
| +  } | 
| + | 
| +  __ Bind(&exponent_is_integer); | 
| +  //  x10   base_tagged       The tagged base (input). | 
| +  //  x11   exponent_tagged   The tagged exponent (input). | 
| +  //  x12   exponent_integer  The exponent as an integer. | 
| +  //  d1    base_double       The base as a double. | 
| + | 
| +  // Find abs(exponent). For negative exponents, we can find the inverse later. | 
| +  Register exponent_abs = x13; | 
| +  __ Cmp(exponent_integer, 0); | 
| +  __ Cneg(exponent_abs, exponent_integer, mi); | 
| +  //  x13   exponent_abs      The value of abs(exponent_integer). | 
| + | 
| +  // Repeatedly multiply to calculate the power. | 
| +  //  result = 1.0; | 
| +  //  For each bit n (exponent_integer{n}) { | 
| +  //    if (exponent_integer{n}) { | 
| +  //      result *= base; | 
| +  //    } | 
| +  //    base *= base; | 
| +  //    if (remaining bits in exponent_integer are all zero) { | 
| +  //      break; | 
| +  //    } | 
| +  //  } | 
| +  Label power_loop, power_loop_entry, power_loop_exit; | 
| +  __ Fmov(scratch1_double, base_double); | 
| +  __ Fmov(base_double_copy, base_double); | 
| +  __ Fmov(result_double, 1.0); | 
| +  __ B(&power_loop_entry); | 
| + | 
| +  __ Bind(&power_loop); | 
| +  __ Fmul(scratch1_double, scratch1_double, scratch1_double); | 
| +  __ Lsr(exponent_abs, exponent_abs, 1); | 
| +  __ Cbz(exponent_abs, &power_loop_exit); | 
| + | 
| +  __ Bind(&power_loop_entry); | 
| +  __ Tbz(exponent_abs, 0, &power_loop); | 
| +  __ Fmul(result_double, result_double, scratch1_double); | 
| +  __ B(&power_loop); | 
| + | 
| +  __ Bind(&power_loop_exit); | 
| + | 
| +  // If the exponent was positive, result_double holds the result. | 
| +  __ Tbz(exponent_integer, kXSignBit, &done); | 
| + | 
| +  // The exponent was negative, so find the inverse. | 
| +  __ Fmov(scratch0_double, 1.0); | 
| +  __ Fdiv(result_double, scratch0_double, result_double); | 
| +  // ECMA-262 only requires Math.pow to return an 'implementation-dependent | 
| +  // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow | 
| +  // to calculate the subnormal value 2^-1074. This method of calculating | 
| +  // negative powers doesn't work because 2^1074 overflows to infinity. To | 
| +  // catch this corner-case, we bail out if the result was 0. (This can only | 
| +  // occur if the divisor is infinity or the base is zero.) | 
| +  __ Fcmp(result_double, 0.0); | 
| +  __ B(&done, ne); | 
| + | 
| +  if (exponent_type_ == ON_STACK) { | 
| +    // Bail out to runtime code. | 
| +    __ Bind(&call_runtime); | 
| +    // Put the arguments back on the stack. | 
| +    __ Push(base_tagged, exponent_tagged); | 
| +    __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); | 
| + | 
| +    // Return. | 
| +    __ Bind(&done); | 
| +    __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1); | 
| +    __ Str(result_double, | 
| +        FieldMemOperand(result_tagged, HeapNumber::kValueOffset)); | 
| +    ASSERT(result_tagged.is(x0)); | 
| +    __ IncrementCounter( | 
| +        masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); | 
| +    __ Ret(); | 
| +  } else { | 
| +    AllowExternalCallThatCantCauseGC scope(masm); | 
| +    __ Mov(saved_lr, lr); | 
| +    __ Fmov(base_double, base_double_copy); | 
| +    __ Scvtf(exponent_double, exponent_integer); | 
| +    __ CallCFunction( | 
| +        ExternalReference::power_double_double_function(masm->isolate()), | 
| +        0, 2); | 
| +    __ Mov(lr, saved_lr); | 
| +    __ Bind(&done); | 
| +    __ IncrementCounter( | 
| +        masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); | 
| +    __ Ret(); | 
| +  } | 
| +} | 
| + | 
| + | 
| +void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { | 
| +  // It is important that the following stubs are generated in this order | 
| +  // because pregenerated stubs can only call other pregenerated stubs. | 
| +  // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses | 
| +  // CEntryStub. | 
| +  CEntryStub::GenerateAheadOfTime(isolate); | 
| +  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); | 
| +  StubFailureTrampolineStub::GenerateAheadOfTime(isolate); | 
| +  ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); | 
| +  CreateAllocationSiteStub::GenerateAheadOfTime(isolate); | 
| +  BinaryOpICStub::GenerateAheadOfTime(isolate); | 
| +  BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); | 
| +} | 
| + | 
| + | 
| +void CodeStub::GenerateFPStubs(Isolate* isolate) { | 
| +  // Floating-point code doesn't get special handling in A64, so there's | 
| +  // nothing to do here. | 
| +  USE(isolate); | 
| +} | 
| + | 
| + | 
| +static void JumpIfOOM(MacroAssembler* masm, | 
| +                      Register value, | 
| +                      Register scratch, | 
| +                      Label* oom_label) { | 
| +  STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3); | 
| +  STATIC_ASSERT(kFailureTag == 3); | 
| +  __ And(scratch, value, 0xf); | 
| +  __ Cmp(scratch, 0xf); | 
| +  __ B(eq, oom_label); | 
| +} | 
| + | 
| + | 
| +bool CEntryStub::NeedsImmovableCode() { | 
| +  // CEntryStub stores the return address on the stack before calling into | 
| +  // C++ code. In some cases, the VM accesses this address, but it is not used | 
| +  // when the C++ code returns to the stub because LR holds the return address | 
| +  // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up | 
| +  // returning to dead code. | 
| +  // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't | 
| +  // find any comment to confirm this, and I don't hit any crashes whatever | 
| +  // this function returns. The anaylsis should be properly confirmed. | 
| +  return true; | 
| +} | 
| + | 
| + | 
| +void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { | 
| +  CEntryStub stub(1, kDontSaveFPRegs); | 
| +  stub.GetCode(isolate); | 
| +  CEntryStub stub_fp(1, kSaveFPRegs); | 
| +  stub_fp.GetCode(isolate); | 
| +} | 
| + | 
| + | 
| +void CEntryStub::GenerateCore(MacroAssembler* masm, | 
| +                              Label* throw_normal, | 
| +                              Label* throw_termination, | 
| +                              Label* throw_out_of_memory, | 
| +                              bool do_gc, | 
| +                              bool always_allocate) { | 
| +  // x0  : Result parameter for PerformGC, if do_gc is true. | 
| +  // x21 : argv | 
| +  // x22 : argc | 
| +  // x23 : target | 
| +  // | 
| +  // The stack (on entry) holds the arguments and the receiver, with the | 
| +  // receiver at the highest address: | 
| +  // | 
| +  //         argv[8]:     receiver | 
| +  // argv -> argv[0]:     arg[argc-2] | 
| +  //         ...          ... | 
| +  //         argv[...]:   arg[1] | 
| +  //         argv[...]:   arg[0] | 
| +  // | 
| +  // Immediately below (after) this is the exit frame, as constructed by | 
| +  // EnterExitFrame: | 
| +  //         fp[8]:    CallerPC (lr) | 
| +  //   fp -> fp[0]:    CallerFP (old fp) | 
| +  //         fp[-8]:   Space reserved for SPOffset. | 
| +  //         fp[-16]:  CodeObject() | 
| +  //         csp[...]: Saved doubles, if saved_doubles is true. | 
| +  //         csp[32]:  Alignment padding, if necessary. | 
| +  //         csp[24]:  Preserved x23 (used for target). | 
| +  //         csp[16]:  Preserved x22 (used for argc). | 
| +  //         csp[8]:   Preserved x21 (used for argv). | 
| +  //  csp -> csp[0]:   Space reserved for the return address. | 
| +  // | 
| +  // After a successful call, the exit frame, preserved registers (x21-x23) and | 
| +  // the arguments (including the receiver) are dropped or popped as | 
| +  // appropriate. The stub then returns. | 
| +  // | 
| +  // After an unsuccessful call, the exit frame and suchlike are left | 
| +  // untouched, and the stub either throws an exception by jumping to one of | 
| +  // the provided throw_ labels, or it falls through. The failure details are | 
| +  // passed through in x0. | 
| +  ASSERT(csp.Is(__ StackPointer())); | 
| + | 
| +  Isolate* isolate = masm->isolate(); | 
| + | 
| +  const Register& argv = x21; | 
| +  const Register& argc = x22; | 
| +  const Register& target = x23; | 
| + | 
| +  if (do_gc) { | 
| +    // Call Runtime::PerformGC, passing x0 (the result parameter for | 
| +    // PerformGC) and x1 (the isolate). | 
| +    __ Mov(x1, Operand(ExternalReference::isolate_address(masm->isolate()))); | 
| +    __ CallCFunction( | 
| +        ExternalReference::perform_gc_function(isolate), 2, 0); | 
| +  } | 
| + | 
| +  ExternalReference scope_depth = | 
| +      ExternalReference::heap_always_allocate_scope_depth(isolate); | 
| +  if (always_allocate) { | 
| +    __ Mov(x10, Operand(scope_depth)); | 
| +    __ Ldr(x11, MemOperand(x10)); | 
| +    __ Add(x11, x11, 1); | 
| +    __ Str(x11, MemOperand(x10)); | 
| +  } | 
| + | 
| +  // Prepare AAPCS64 arguments to pass to the builtin. | 
| +  __ Mov(x0, argc); | 
| +  __ Mov(x1, argv); | 
| +  __ Mov(x2, Operand(ExternalReference::isolate_address(isolate))); | 
| + | 
| +  // Store the return address on the stack, in the space previously allocated | 
| +  // by EnterExitFrame. The return address is queried by | 
| +  // ExitFrame::GetStateForFramePointer. | 
| +  Label return_location; | 
| +  __ Adr(x12, &return_location); | 
| +  __ Poke(x12, 0); | 
| +  if (__ emit_debug_code()) { | 
| +    // Verify that the slot below fp[kSPOffset]-8 points to the return location | 
| +    // (currently in x12). | 
| +    Register temp = masm->Tmp1(); | 
| +    __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset)); | 
| +    __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSizeInBytes))); | 
| +    __ Cmp(temp, x12); | 
| +    __ Check(eq, kReturnAddressNotFoundInFrame); | 
| +  } | 
| + | 
| +  // Call the builtin. | 
| +  __ Blr(target); | 
| +  __ Bind(&return_location); | 
| +  const Register& result = x0; | 
| + | 
| +  if (always_allocate) { | 
| +    __ Mov(x10, Operand(scope_depth)); | 
| +    __ Ldr(x11, MemOperand(x10)); | 
| +    __ Sub(x11, x11, 1); | 
| +    __ Str(x11, MemOperand(x10)); | 
| +  } | 
| + | 
| +  //  x0    result      The return code from the call. | 
| +  //  x21   argv | 
| +  //  x22   argc | 
| +  //  x23   target | 
| +  // | 
| +  // If all of the result bits matching kFailureTagMask are '1', the result is | 
| +  // a failure. Otherwise, it's an ordinary tagged object and the call was a | 
| +  // success. | 
| +  Label failure; | 
| +  __ And(x10, result, kFailureTagMask); | 
| +  __ Cmp(x10, kFailureTagMask); | 
| +  __ B(&failure, eq); | 
| + | 
| +  // The call succeeded, so unwind the stack and return. | 
| + | 
| +  // Restore callee-saved registers x21-x23. | 
| +  __ Mov(x11, argc); | 
| + | 
| +  __ Peek(argv, 1 * kPointerSize); | 
| +  __ Peek(argc, 2 * kPointerSize); | 
| +  __ Peek(target, 3 * kPointerSize); | 
| + | 
| +  __ LeaveExitFrame(save_doubles_, x10, true); | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  // Pop or drop the remaining stack slots and return from the stub. | 
| +  //         jssp[24]:    Arguments array (of size argc), including receiver. | 
| +  //         jssp[16]:    Preserved x23 (used for target). | 
| +  //         jssp[8]:     Preserved x22 (used for argc). | 
| +  //         jssp[0]:     Preserved x21 (used for argv). | 
| +  __ Drop(x11); | 
| +  __ Ret(); | 
| + | 
| +  // The stack pointer is still csp if we aren't returning, and the frame | 
| +  // hasn't changed (except for the return address). | 
| +  __ SetStackPointer(csp); | 
| + | 
| +  __ Bind(&failure); | 
| +  // The call failed, so check if we need to throw an exception, and fall | 
| +  // through (to retry) otherwise. | 
| + | 
| +  Label retry; | 
| +  //  x0    result      The return code from the call, including the failure | 
| +  //                    code and details. | 
| +  //  x21   argv | 
| +  //  x22   argc | 
| +  //  x23   target | 
| +  // Refer to the Failure class for details of the bit layout. | 
| +  STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); | 
| +  __ Tst(result, kFailureTypeTagMask << kFailureTagSize); | 
| +  __ B(eq, &retry);   // RETRY_AFTER_GC | 
| + | 
| +  // Special handling of out-of-memory exceptions: Pass the failure result, | 
| +  // rather than the exception descriptor. | 
| +  JumpIfOOM(masm, result, x10, throw_out_of_memory); | 
| + | 
| +  // Retrieve the pending exception. | 
| +  const Register& exception = result; | 
| +  const Register& exception_address = x11; | 
| +  __ Mov(exception_address, | 
| +         Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 
| +                                   isolate))); | 
| +  __ Ldr(exception, MemOperand(exception_address)); | 
| + | 
| +  // See if we just retrieved an OOM exception. | 
| +  JumpIfOOM(masm, exception, x10, throw_out_of_memory); | 
| + | 
| +  // Clear the pending exception. | 
| +  __ Mov(x10, Operand(isolate->factory()->the_hole_value())); | 
| +  __ Str(x10, MemOperand(exception_address)); | 
| + | 
| +  //  x0    exception   The exception descriptor. | 
| +  //  x21   argv | 
| +  //  x22   argc | 
| +  //  x23   target | 
| + | 
| +  // Special handling of termination exceptions, which are uncatchable by | 
| +  // JavaScript code. | 
| +  __ Cmp(exception, Operand(isolate->factory()->termination_exception())); | 
| +  __ B(eq, throw_termination); | 
| + | 
| +  // Handle normal exception. | 
| +  __ B(throw_normal); | 
| + | 
| +  __ Bind(&retry); | 
| +  // The result (x0) is passed through as the next PerformGC parameter. | 
| +} | 
| + | 
| + | 
| +void CEntryStub::Generate(MacroAssembler* masm) { | 
| +  // The Abort mechanism relies on CallRuntime, which in turn relies on | 
| +  // CEntryStub, so until this stub has been generated, we have to use a | 
| +  // fall-back Abort mechanism. | 
| +  // | 
| +  // Note that this stub must be generated before any use of Abort. | 
| +  MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); | 
| + | 
| +  ASM_LOCATION("CEntryStub::Generate entry"); | 
| +  ProfileEntryHookStub::MaybeCallEntryHook(masm); | 
| + | 
| +  // Register parameters: | 
| +  //    x0: argc (including receiver, untagged) | 
| +  //    x1: target | 
| +  // | 
| +  // The stack on entry holds the arguments and the receiver, with the receiver | 
| +  // at the highest address: | 
| +  // | 
| +  //    jssp]argc-1]: receiver | 
| +  //    jssp[argc-2]: arg[argc-2] | 
| +  //    ...           ... | 
| +  //    jssp[1]:      arg[1] | 
| +  //    jssp[0]:      arg[0] | 
| +  // | 
| +  // The arguments are in reverse order, so that arg[argc-2] is actually the | 
| +  // first argument to the target function and arg[0] is the last. | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  const Register& argc_input = x0; | 
| +  const Register& target_input = x1; | 
| + | 
| +  // Calculate argv, argc and the target address, and store them in | 
| +  // callee-saved registers so we can retry the call without having to reload | 
| +  // these arguments. | 
| +  // TODO(jbramley): If the first call attempt succeeds in the common case (as | 
| +  // it should), then we might be better off putting these parameters directly | 
| +  // into their argument registers, rather than using callee-saved registers and | 
| +  // preserving them on the stack. | 
| +  const Register& argv = x21; | 
| +  const Register& argc = x22; | 
| +  const Register& target = x23; | 
| + | 
| +  // Derive argv from the stack pointer so that it points to the first argument | 
| +  // (arg[argc-2]), or just below the receiver in case there are no arguments. | 
| +  //  - Adjust for the arg[] array. | 
| +  Register temp_argv = x11; | 
| +  __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2)); | 
| +  //  - Adjust for the receiver. | 
| +  __ Sub(temp_argv, temp_argv, 1 * kPointerSize); | 
| + | 
| +  // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved | 
| +  // registers. | 
| +  FrameScope scope(masm, StackFrame::MANUAL); | 
| +  __ EnterExitFrame(save_doubles_, x10, 3); | 
| +  ASSERT(csp.Is(__ StackPointer())); | 
| + | 
| +  // Poke callee-saved registers into reserved space. | 
| +  __ Poke(argv, 1 * kPointerSize); | 
| +  __ Poke(argc, 2 * kPointerSize); | 
| +  __ Poke(target, 3 * kPointerSize); | 
| + | 
| +  // We normally only keep tagged values in callee-saved registers, as they | 
| +  // could be pushed onto the stack by called stubs and functions, and on the | 
| +  // stack they can confuse the GC. However, we're only calling C functions | 
| +  // which can push arbitrary data onto the stack anyway, and so the GC won't | 
| +  // examine that part of the stack. | 
| +  __ Mov(argc, argc_input); | 
| +  __ Mov(target, target_input); | 
| +  __ Mov(argv, temp_argv); | 
| + | 
| +  Label throw_normal; | 
| +  Label throw_termination; | 
| +  Label throw_out_of_memory; | 
| + | 
| +  // Call the runtime function. | 
| +  GenerateCore(masm, | 
| +               &throw_normal, | 
| +               &throw_termination, | 
| +               &throw_out_of_memory, | 
| +               false, | 
| +               false); | 
| + | 
| +  // If successful, the previous GenerateCore will have returned to the | 
| +  // calling code. Otherwise, we fall through into the following. | 
| + | 
| +  // Do space-specific GC and retry runtime call. | 
| +  GenerateCore(masm, | 
| +               &throw_normal, | 
| +               &throw_termination, | 
| +               &throw_out_of_memory, | 
| +               true, | 
| +               false); | 
| + | 
| +  // Do full GC and retry runtime call one final time. | 
| +  __ Mov(x0, reinterpret_cast<uint64_t>(Failure::InternalError())); | 
| +  GenerateCore(masm, | 
| +               &throw_normal, | 
| +               &throw_termination, | 
| +               &throw_out_of_memory, | 
| +               true, | 
| +               true); | 
| + | 
| +  // We didn't execute a return case, so the stack frame hasn't been updated | 
| +  // (except for the return address slot). However, we don't need to initialize | 
| +  // jssp because the throw method will immediately overwrite it when it | 
| +  // unwinds the stack. | 
| +  if (__ emit_debug_code()) { | 
| +    __ Mov(jssp, kDebugZapValue); | 
| +  } | 
| +  __ SetStackPointer(jssp); | 
| + | 
| +  // Throw exceptions. | 
| +  // If we throw an exception, we can end up re-entering CEntryStub before we | 
| +  // pop the exit frame, so need to ensure that x21-x23 contain GC-safe values | 
| +  // here. | 
| +  __ Bind(&throw_out_of_memory); | 
| +  ASM_LOCATION("Throw out of memory"); | 
| +  __ Mov(argv, 0); | 
| +  __ Mov(argc, 0); | 
| +  __ Mov(target, 0); | 
| +  // Set external caught exception to false. | 
| +  Isolate* isolate = masm->isolate(); | 
| +  __ Mov(x2, Operand(ExternalReference(Isolate::kExternalCaughtExceptionAddress, | 
| +                                       isolate))); | 
| +  __ Str(xzr, MemOperand(x2)); | 
| + | 
| +  // Set pending exception and x0 to out of memory exception. | 
| +  Label already_have_failure; | 
| +  JumpIfOOM(masm, x0, x10, &already_have_failure); | 
| +  Failure* out_of_memory = Failure::OutOfMemoryException(0x1); | 
| +  __ Mov(x0, Operand(reinterpret_cast<uint64_t>(out_of_memory))); | 
| +  __ Bind(&already_have_failure); | 
| +  __ Mov(x2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 
| +                                       isolate))); | 
| +  __ Str(x0, MemOperand(x2)); | 
| +  // Fall through to the next label. | 
| + | 
| +  __ Bind(&throw_termination); | 
| +  ASM_LOCATION("Throw termination"); | 
| +  __ Mov(argv, 0); | 
| +  __ Mov(argc, 0); | 
| +  __ Mov(target, 0); | 
| +  __ ThrowUncatchable(x0, x10, x11, x12, x13); | 
| + | 
| +  __ Bind(&throw_normal); | 
| +  ASM_LOCATION("Throw normal"); | 
| +  __ Mov(argv, 0); | 
| +  __ Mov(argc, 0); | 
| +  __ Mov(target, 0); | 
| +  __ Throw(x0, x10, x11, x12, x13); | 
| +} | 
| + | 
| + | 
| +// This is the entry point from C++. 5 arguments are provided in x0-x4. | 
| +// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc. | 
| +// Input: | 
| +//   x0: code entry. | 
| +//   x1: function. | 
| +//   x2: receiver. | 
| +//   x3: argc. | 
| +//   x4: argv. | 
| +// Output: | 
| +//   x0: result. | 
| +void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  Register code_entry = x0; | 
| + | 
| +  // Enable instruction instrumentation. This only works on the simulator, and | 
| +  // will have no effect on the model or real hardware. | 
| +  __ EnableInstrumentation(); | 
| + | 
| +  Label invoke, handler_entry, exit; | 
| + | 
| +  // Push callee-saved registers and synchronize the system stack pointer (csp) | 
| +  // and the JavaScript stack pointer (jssp). | 
| +  // | 
| +  // We must not write to jssp until after the PushCalleeSavedRegisters() | 
| +  // call, since jssp is itself a callee-saved register. | 
| +  __ SetStackPointer(csp); | 
| +  __ PushCalleeSavedRegisters(); | 
| +  __ Mov(jssp, csp); | 
| +  __ SetStackPointer(jssp); | 
| + | 
| +  ProfileEntryHookStub::MaybeCallEntryHook(masm); | 
| + | 
| +  // Build an entry frame (see layout below). | 
| +  Isolate* isolate = masm->isolate(); | 
| + | 
| +  // Build an entry frame. | 
| +  int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; | 
| +  int64_t bad_frame_pointer = -1L;  // Bad frame pointer to fail if it is used. | 
| +  __ Mov(x13, bad_frame_pointer); | 
| +  __ Mov(x12, Operand(Smi::FromInt(marker))); | 
| +  __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); | 
| +  __ Ldr(x10, MemOperand(x11)); | 
| + | 
| +  // TODO(all): Pushing the marker twice seems unnecessary. | 
| +  // In this case perhaps we could push xzr in the slot for the context | 
| +  // (see MAsm::EnterFrame). | 
| +  __ Push(x13, x12, x12, x10); | 
| +  // Set up fp. | 
| +  __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset); | 
| + | 
| +  // Push the JS entry frame marker. Also set js_entry_sp if this is the | 
| +  // outermost JS call. | 
| +  Label non_outermost_js, done; | 
| +  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); | 
| +  __ Mov(x10, Operand(ExternalReference(js_entry_sp))); | 
| +  __ Ldr(x11, MemOperand(x10)); | 
| +  __ Cbnz(x11, &non_outermost_js); | 
| +  __ Str(fp, MemOperand(x10)); | 
| +  __ Mov(x12, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); | 
| +  __ Push(x12); | 
| +  __ B(&done); | 
| +  __ Bind(&non_outermost_js); | 
| +  // We spare one instruction by pushing xzr since the marker is 0. | 
| +  ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL); | 
| +  __ Push(xzr); | 
| +  __ Bind(&done); | 
| + | 
| +  // The frame set up looks like this: | 
| +  // jssp[0] : JS entry frame marker. | 
| +  // jssp[1] : C entry FP. | 
| +  // jssp[2] : stack frame marker. | 
| +  // jssp[3] : stack frmae marker. | 
| +  // jssp[4] : bad frame pointer 0xfff...ff   <- fp points here. | 
| + | 
| + | 
| +  // Jump to a faked try block that does the invoke, with a faked catch | 
| +  // block that sets the pending exception. | 
| +  __ B(&invoke); | 
| + | 
| +  // Prevent the constant pool from being emitted between the record of the | 
| +  // handler_entry position and the first instruction of the sequence here. | 
| +  // There is no risk because Assembler::Emit() emits the instruction before | 
| +  // checking for constant pool emission, but we do not want to depend on | 
| +  // that. | 
| +  { | 
| +    Assembler::BlockConstPoolScope block_const_pool(masm); | 
| +    __ bind(&handler_entry); | 
| +    handler_offset_ = handler_entry.pos(); | 
| +    // Caught exception: Store result (exception) in the pending exception | 
| +    // field in the JSEnv and return a failure sentinel. Coming in here the | 
| +    // fp will be invalid because the PushTryHandler below sets it to 0 to | 
| +    // signal the existence of the JSEntry frame. | 
| +    // TODO(jbramley): Do this in the Assembler. | 
| +    __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 
| +           isolate))); | 
| +  } | 
| +  __ Str(code_entry, MemOperand(x10)); | 
| +  __ Mov(x0, Operand(reinterpret_cast<int64_t>(Failure::Exception()))); | 
| +  __ B(&exit); | 
| + | 
| +  // Invoke: Link this frame into the handler chain.  There's only one | 
| +  // handler block in this code object, so its index is 0. | 
| +  __ Bind(&invoke); | 
| +  __ PushTryHandler(StackHandler::JS_ENTRY, 0); | 
| +  // If an exception not caught by another handler occurs, this handler | 
| +  // returns control to the code after the B(&invoke) above, which | 
| +  // restores all callee-saved registers (including cp and fp) to their | 
| +  // saved values before returning a failure to C. | 
| + | 
| +  // Clear any pending exceptions. | 
| +  __ Mov(x10, Operand(isolate->factory()->the_hole_value())); | 
| +  __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 
| +                                        isolate))); | 
| +  __ Str(x10, MemOperand(x11)); | 
| + | 
| +  // Invoke the function by calling through the JS entry trampoline builtin. | 
| +  // Notice that we cannot store a reference to the trampoline code directly in | 
| +  // this stub, because runtime stubs are not traversed when doing GC. | 
| + | 
| +  // Expected registers by Builtins::JSEntryTrampoline | 
| +  // x0: code entry. | 
| +  // x1: function. | 
| +  // x2: receiver. | 
| +  // x3: argc. | 
| +  // x4: argv. | 
| +  // TODO(jbramley): The latest ARM code checks is_construct and conditionally | 
| +  // uses construct_entry. We probably need to do the same here. | 
| +  ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline | 
| +                                       : Builtins::kJSEntryTrampoline, | 
| +                          isolate); | 
| +  __ Mov(x10, Operand(entry)); | 
| + | 
| +  // Call the JSEntryTrampoline. | 
| +  __ Ldr(x11, MemOperand(x10));  // Dereference the address. | 
| +  __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); | 
| +  __ Blr(x12); | 
| + | 
| +  // Unlink this frame from the handler chain. | 
| +  __ PopTryHandler(); | 
| + | 
| + | 
| +  __ Bind(&exit); | 
| +  // x0 holds the result. | 
| +  // The stack pointer points to the top of the entry frame pushed on entry from | 
| +  // C++ (at the beginning of this stub): | 
| +  // jssp[0] : JS entry frame marker. | 
| +  // jssp[1] : C entry FP. | 
| +  // jssp[2] : stack frame marker. | 
| +  // jssp[3] : stack frmae marker. | 
| +  // jssp[4] : bad frame pointer 0xfff...ff   <- fp points here. | 
| + | 
| +  // Check if the current stack frame is marked as the outermost JS frame. | 
| +  Label non_outermost_js_2; | 
| +  __ Pop(x10); | 
| +  __ Cmp(x10, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); | 
| +  __ B(ne, &non_outermost_js_2); | 
| +  __ Mov(x11, Operand(ExternalReference(js_entry_sp))); | 
| +  __ Str(xzr, MemOperand(x11)); | 
| +  __ Bind(&non_outermost_js_2); | 
| + | 
| +  // Restore the top frame descriptors from the stack. | 
| +  __ Pop(x10); | 
| +  __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); | 
| +  __ Str(x10, MemOperand(x11)); | 
| + | 
| +  // Reset the stack to the callee saved registers. | 
| +  __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes); | 
| +  // Restore the callee-saved registers and return. | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  __ Mov(csp, jssp); | 
| +  __ SetStackPointer(csp); | 
| +  __ PopCalleeSavedRegisters(); | 
| +  // After this point, we must not modify jssp because it is a callee-saved | 
| +  // register which we have just restored. | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void FunctionPrototypeStub::Generate(MacroAssembler* masm) { | 
| +  Label miss; | 
| +  Register receiver; | 
| +  if (kind() == Code::KEYED_LOAD_IC) { | 
| +    // ----------- S t a t e ------------- | 
| +    //  -- lr    : return address | 
| +    //  -- x1    : receiver | 
| +    //  -- x0    : key | 
| +    // ----------------------------------- | 
| +    Register key = x0; | 
| +    receiver = x1; | 
| +    __ Cmp(key, Operand(masm->isolate()->factory()->prototype_string())); | 
| +    __ B(ne, &miss); | 
| +  } else { | 
| +    ASSERT(kind() == Code::LOAD_IC); | 
| +    // ----------- S t a t e ------------- | 
| +    //  -- lr    : return address | 
| +    //  -- x2    : name | 
| +    //  -- x0    : receiver | 
| +    //  -- sp[0] : receiver | 
| +    // ----------------------------------- | 
| +    receiver = x0; | 
| +  } | 
| + | 
| +  StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss); | 
| + | 
| +  __ Bind(&miss); | 
| +  StubCompiler::TailCallBuiltin(masm, | 
| +                                BaseLoadStoreStubCompiler::MissBuiltin(kind())); | 
| +} | 
| + | 
| + | 
| +void StringLengthStub::Generate(MacroAssembler* masm) { | 
| +  Label miss; | 
| +  Register receiver; | 
| +  if (kind() == Code::KEYED_LOAD_IC) { | 
| +    // ----------- S t a t e ------------- | 
| +    //  -- lr    : return address | 
| +    //  -- x1    : receiver | 
| +    //  -- x0    : key | 
| +    // ----------------------------------- | 
| +    Register key = x0; | 
| +    receiver = x1; | 
| +    __ Cmp(key, Operand(masm->isolate()->factory()->length_string())); | 
| +    __ B(ne, &miss); | 
| +  } else { | 
| +    ASSERT(kind() == Code::LOAD_IC); | 
| +    // ----------- S t a t e ------------- | 
| +    //  -- lr    : return address | 
| +    //  -- x2    : name | 
| +    //  -- x0    : receiver | 
| +    //  -- sp[0] : receiver | 
| +    // ----------------------------------- | 
| +    receiver = x0; | 
| +  } | 
| + | 
| +  StubCompiler::GenerateLoadStringLength(masm, receiver, x10, x11, &miss); | 
| + | 
| +  __ Bind(&miss); | 
| +  StubCompiler::TailCallBuiltin(masm, | 
| +                                BaseLoadStoreStubCompiler::MissBuiltin(kind())); | 
| +} | 
| + | 
| + | 
| +void StoreArrayLengthStub::Generate(MacroAssembler* masm) { | 
| +  ASM_LOCATION("StoreArrayLengthStub::Generate"); | 
| +  // This accepts as a receiver anything JSArray::SetElementsLength accepts | 
| +  // (currently anything except for external arrays which means anything with | 
| +  // elements of FixedArray type).  Value must be a number, but only smis are | 
| +  // accepted as the most common case. | 
| +  Label miss; | 
| + | 
| +  Register receiver; | 
| +  Register value; | 
| +  if (kind() == Code::KEYED_STORE_IC) { | 
| +    // ----------- S t a t e ------------- | 
| +    //  -- lr    : return address | 
| +    //  -- x2    : receiver | 
| +    //  -- x1    : key | 
| +    //  -- x0    : value | 
| +    // ----------------------------------- | 
| +    Register key = x1; | 
| +    receiver = x2; | 
| +    value = x0; | 
| +    __ Cmp(key, Operand(masm->isolate()->factory()->length_string())); | 
| +    __ B(ne, &miss); | 
| +  } else { | 
| +    ASSERT(kind() == Code::STORE_IC); | 
| +    // ----------- S t a t e ------------- | 
| +    //  -- lr    : return address | 
| +    //  -- x2    : key | 
| +    //  -- x1    : receiver | 
| +    //  -- x0    : value | 
| +    // ----------------------------------- | 
| +    receiver = x1; | 
| +    value = x0; | 
| +  } | 
| + | 
| +  // Check that the receiver isn't a smi. | 
| +  __ JumpIfSmi(receiver, &miss); | 
| + | 
| +  // Check that the object is a JS array. | 
| +  __ CompareObjectType(receiver, x10, x11, JS_ARRAY_TYPE); | 
| +  __ B(ne, &miss); | 
| + | 
| +  // Check that elements are FixedArray. | 
| +  // We rely on StoreIC_ArrayLength below to deal with all types of | 
| +  // fast elements (including COW). | 
| +  __ Ldr(x10, FieldMemOperand(receiver, JSArray::kElementsOffset)); | 
| +  __ CompareObjectType(x10, x11, x12, FIXED_ARRAY_TYPE); | 
| +  __ B(ne, &miss); | 
| + | 
| +  // Check that the array has fast properties, otherwise the length | 
| +  // property might have been redefined. | 
| +  __ Ldr(x10, FieldMemOperand(receiver, JSArray::kPropertiesOffset)); | 
| +  __ Ldr(x10, FieldMemOperand(x10, FixedArray::kMapOffset)); | 
| +  __ CompareRoot(x10, Heap::kHashTableMapRootIndex); | 
| +  __ B(eq, &miss); | 
| + | 
| +  // Check that value is a smi. | 
| +  __ JumpIfNotSmi(value, &miss); | 
| + | 
| +  // Prepare tail call to StoreIC_ArrayLength. | 
| +  __ Push(receiver, value); | 
| + | 
| +  ExternalReference ref = | 
| +      ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate()); | 
| +  __ TailCallExternalReference(ref, 2, 1); | 
| + | 
| +  __ Bind(&miss); | 
| +  StubCompiler::TailCallBuiltin(masm, | 
| +                                BaseLoadStoreStubCompiler::MissBuiltin(kind())); | 
| +} | 
| + | 
| + | 
| +void InstanceofStub::Generate(MacroAssembler* masm) { | 
| +  // Stack on entry: | 
| +  // jssp[0]: function. | 
| +  // jssp[8]: object. | 
| +  // | 
| +  // Returns result in x0. Zero indicates instanceof, smi 1 indicates not | 
| +  // instanceof. | 
| + | 
| +  Register result = x0; | 
| +  Register function = right(); | 
| +  Register object = left(); | 
| +  Register scratch1 = x6; | 
| +  Register scratch2 = x7; | 
| +  Register res_true = x8; | 
| +  Register res_false = x9; | 
| +  // Only used if there was an inline map check site. (See | 
| +  // LCodeGen::DoInstanceOfKnownGlobal().) | 
| +  Register map_check_site = x4; | 
| +  // Delta for the instructions generated between the inline map check and the | 
| +  // instruction setting the result. | 
| +  const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize; | 
| + | 
| +  Label not_js_object, slow; | 
| + | 
| +  if (!HasArgsInRegisters()) { | 
| +    __ Pop(function, object); | 
| +  } | 
| + | 
| +  if (ReturnTrueFalseObject()) { | 
| +    __ LoadTrueFalseRoots(res_true, res_false); | 
| +  } else { | 
| +    // This is counter-intuitive, but correct. | 
| +    __ Mov(res_true, Operand(Smi::FromInt(0))); | 
| +    __ Mov(res_false, Operand(Smi::FromInt(1))); | 
| +  } | 
| + | 
| +  // Check that the left hand side is a JS object and load its map as a side | 
| +  // effect. | 
| +  Register map = x12; | 
| +  __ JumpIfSmi(object, ¬_js_object); | 
| +  __ IsObjectJSObjectType(object, map, scratch2, ¬_js_object); | 
| + | 
| +  // If there is a call site cache, don't look in the global cache, but do the | 
| +  // real lookup and update the call site cache. | 
| +  if (!HasCallSiteInlineCheck()) { | 
| +    Label miss; | 
| +    __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss); | 
| +    __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss); | 
| +    __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex); | 
| +    __ Ret(); | 
| +    __ Bind(&miss); | 
| +  } | 
| + | 
| +  // Get the prototype of the function. | 
| +  Register prototype = x13; | 
| +  __ TryGetFunctionPrototype(function, prototype, scratch2, &slow, | 
| +                             MacroAssembler::kMissOnBoundFunction); | 
| + | 
| +  // Check that the function prototype is a JS object. | 
| +  __ JumpIfSmi(prototype, &slow); | 
| +  __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow); | 
| + | 
| +  // Update the global instanceof or call site inlined cache with the current | 
| +  // map and function. The cached answer will be set when it is known below. | 
| +  if (HasCallSiteInlineCheck()) { | 
| +    // Patch the (relocated) inlined map check. | 
| +    __ GetRelocatedValueLocation(map_check_site, scratch1); | 
| +    // We have a cell, so need another level of dereferencing. | 
| +    __ Ldr(scratch1, MemOperand(scratch1)); | 
| +    __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset)); | 
| +  } else { | 
| +    __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); | 
| +    __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); | 
| +  } | 
| + | 
| +  Label return_true, return_result; | 
| +  { | 
| +    // Loop through the prototype chain looking for the function prototype. | 
| +    Register chain_map = x1; | 
| +    Register chain_prototype = x14; | 
| +    Register null_value = x15; | 
| +    Label loop; | 
| +    __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset)); | 
| +    __ LoadRoot(null_value, Heap::kNullValueRootIndex); | 
| +    // Speculatively set a result. | 
| +    __ Mov(result, res_false); | 
| + | 
| +    __ Bind(&loop); | 
| + | 
| +    // If the chain prototype is the object prototype, return true. | 
| +    __ Cmp(chain_prototype, prototype); | 
| +    __ B(eq, &return_true); | 
| + | 
| +    // If the chain prototype is null, we've reached the end of the chain, so | 
| +    // return false. | 
| +    __ Cmp(chain_prototype, null_value); | 
| +    __ B(eq, &return_result); | 
| + | 
| +    // Otherwise, load the next prototype in the chain, and loop. | 
| +    __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset)); | 
| +    __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset)); | 
| +    __ B(&loop); | 
| +  } | 
| + | 
| +  // Return sequence when no arguments are on the stack. | 
| +  // We cannot fall through to here. | 
| +  __ Bind(&return_true); | 
| +  __ Mov(result, res_true); | 
| +  __ Bind(&return_result); | 
| +  if (HasCallSiteInlineCheck()) { | 
| +    ASSERT(ReturnTrueFalseObject()); | 
| +    __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult); | 
| +    __ GetRelocatedValueLocation(map_check_site, scratch2); | 
| +    __ Str(result, MemOperand(scratch2)); | 
| +  } else { | 
| +    __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex); | 
| +  } | 
| +  __ Ret(); | 
| + | 
| +  Label object_not_null, object_not_null_or_smi; | 
| + | 
| +  __ Bind(¬_js_object); | 
| +  Register object_type = x14; | 
| +  //   x0   result        result return register (uninit) | 
| +  //   x10  function      pointer to function | 
| +  //   x11  object        pointer to object | 
| +  //   x14  object_type   type of object (uninit) | 
| + | 
| +  // Before null, smi and string checks, check that the rhs is a function. | 
| +  // For a non-function rhs, an exception must be thrown. | 
| +  __ JumpIfSmi(function, &slow); | 
| +  __ JumpIfNotObjectType( | 
| +      function, scratch1, object_type, JS_FUNCTION_TYPE, &slow); | 
| + | 
| +  __ Mov(result, res_false); | 
| + | 
| +  // Null is not instance of anything. | 
| +  __ Cmp(object_type, Operand(masm->isolate()->factory()->null_value())); | 
| +  __ B(ne, &object_not_null); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&object_not_null); | 
| +  // Smi values are not instances of anything. | 
| +  __ JumpIfNotSmi(object, &object_not_null_or_smi); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&object_not_null_or_smi); | 
| +  // String values are not instances of anything. | 
| +  __ IsObjectJSStringType(object, scratch2, &slow); | 
| +  __ Ret(); | 
| + | 
| +  // Slow-case. Tail call builtin. | 
| +  __ Bind(&slow); | 
| +  { | 
| +    FrameScope scope(masm, StackFrame::INTERNAL); | 
| +    // Arguments have either been passed into registers or have been previously | 
| +    // popped. We need to push them before calling builtin. | 
| +    __ Push(object, function); | 
| +    __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); | 
| +  } | 
| +  if (ReturnTrueFalseObject()) { | 
| +    // Reload true/false because they were clobbered in the builtin call. | 
| +    __ LoadTrueFalseRoots(res_true, res_false); | 
| +    __ Cmp(result, 0); | 
| +    __ Csel(result, res_true, res_false, eq); | 
| +  } | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +Register InstanceofStub::left() { | 
| +  // Object to check (instanceof lhs). | 
| +  return x11; | 
| +} | 
| + | 
| + | 
| +Register InstanceofStub::right() { | 
| +  // Constructor function (instanceof rhs). | 
| +  return x10; | 
| +} | 
| + | 
| + | 
| +void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { | 
| +  Register arg_count = x0; | 
| +  Register key = x1; | 
| + | 
| +  // The displacement is the offset of the last parameter (if any) relative | 
| +  // to the frame pointer. | 
| +  static const int kDisplacement = | 
| +      StandardFrameConstants::kCallerSPOffset - kPointerSize; | 
| + | 
| +  // Check that the key is a smi. | 
| +  Label slow; | 
| +  __ JumpIfNotSmi(key, &slow); | 
| + | 
| +  // Check if the calling frame is an arguments adaptor frame. | 
| +  Register local_fp = x11; | 
| +  Register caller_fp = x11; | 
| +  Register caller_ctx = x12; | 
| +  Label skip_adaptor; | 
| +  __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
| +  __ Ldr(caller_ctx, MemOperand(caller_fp, | 
| +                                StandardFrameConstants::kContextOffset)); | 
| +  __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 
| +  __ Csel(local_fp, fp, caller_fp, ne); | 
| +  __ B(ne, &skip_adaptor); | 
| + | 
| +  // Load the actual arguments limit found in the arguments adaptor frame. | 
| +  __ Ldr(arg_count, MemOperand(caller_fp, | 
| +                               ArgumentsAdaptorFrameConstants::kLengthOffset)); | 
| +  __ Bind(&skip_adaptor); | 
| + | 
| +  // Check index against formal parameters count limit. Use unsigned comparison | 
| +  // to get negative check for free: branch if key < 0 or key >= arg_count. | 
| +  __ Cmp(key, arg_count); | 
| +  __ B(hs, &slow); | 
| + | 
| +  // Read the argument from the stack and return it. | 
| +  __ Sub(x10, arg_count, key); | 
| +  __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2)); | 
| +  __ Ldr(x0, MemOperand(x10, kDisplacement)); | 
| +  __ Ret(); | 
| + | 
| +  // Slow case: handle non-smi or out-of-bounds access to arguments by calling | 
| +  // the runtime system. | 
| +  __ Bind(&slow); | 
| +  __ Push(key); | 
| +  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); | 
| +} | 
| + | 
| + | 
| +void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { | 
| +  // Stack layout on entry. | 
| +  //  jssp[0]:  number of parameters (tagged) | 
| +  //  jssp[8]:  address of receiver argument | 
| +  //  jssp[16]: function | 
| + | 
| +  // Check if the calling frame is an arguments adaptor frame. | 
| +  Label runtime; | 
| +  Register caller_fp = x10; | 
| +  __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
| +  // Load and untag the context. | 
| +  STATIC_ASSERT((kSmiShift / kBitsPerByte) == 4); | 
| +  __ Ldr(w11, MemOperand(caller_fp, StandardFrameConstants::kContextOffset + | 
| +                         (kSmiShift / kBitsPerByte))); | 
| +  __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR); | 
| +  __ B(ne, &runtime); | 
| + | 
| +  // Patch the arguments.length and parameters pointer in the current frame. | 
| +  __ Ldr(x11, MemOperand(caller_fp, | 
| +                         ArgumentsAdaptorFrameConstants::kLengthOffset)); | 
| +  __ Poke(x11, 0 * kXRegSizeInBytes); | 
| +  __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2)); | 
| +  __ Add(x10, x10, Operand(StandardFrameConstants::kCallerSPOffset)); | 
| +  __ Poke(x10, 1 * kXRegSizeInBytes); | 
| + | 
| +  __ Bind(&runtime); | 
| +  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); | 
| +} | 
| + | 
| + | 
| +void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { | 
| +  // Stack layout on entry. | 
| +  //  jssp[0]:  number of parameters (tagged) | 
| +  //  jssp[8]:  address of receiver argument | 
| +  //  jssp[16]: function | 
| +  // | 
| +  // Returns pointer to result object in x0. | 
| + | 
| +  // Note: arg_count_smi is an alias of param_count_smi. | 
| +  Register arg_count_smi = x3; | 
| +  Register param_count_smi = x3; | 
| +  Register param_count = x7; | 
| +  Register recv_arg = x14; | 
| +  Register function = x4; | 
| +  __ Pop(param_count_smi, recv_arg, function); | 
| +  __ SmiUntag(param_count, param_count_smi); | 
| + | 
| +  // Check if the calling frame is an arguments adaptor frame. | 
| +  Register caller_fp = x11; | 
| +  Register caller_ctx = x12; | 
| +  Label runtime; | 
| +  Label adaptor_frame, try_allocate; | 
| +  __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
| +  __ Ldr(caller_ctx, MemOperand(caller_fp, | 
| +                                StandardFrameConstants::kContextOffset)); | 
| +  __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 
| +  __ B(eq, &adaptor_frame); | 
| + | 
| +  // No adaptor, parameter count = argument count. | 
| + | 
| +  //   x1   mapped_params number of mapped params, min(params, args) (uninit) | 
| +  //   x2   arg_count     number of function arguments (uninit) | 
| +  //   x3   arg_count_smi number of function arguments (smi) | 
| +  //   x4   function      function pointer | 
| +  //   x7   param_count   number of function parameters | 
| +  //   x11  caller_fp     caller's frame pointer | 
| +  //   x14  recv_arg      pointer to receiver arguments | 
| + | 
| +  Register arg_count = x2; | 
| +  __ Mov(arg_count, param_count); | 
| +  __ B(&try_allocate); | 
| + | 
| +  // We have an adaptor frame. Patch the parameters pointer. | 
| +  __ Bind(&adaptor_frame); | 
| +  __ Ldr(arg_count_smi, | 
| +         MemOperand(caller_fp, | 
| +                    ArgumentsAdaptorFrameConstants::kLengthOffset)); | 
| +  __ SmiUntag(arg_count, arg_count_smi); | 
| +  __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2)); | 
| +  __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset); | 
| + | 
| +  // Compute the mapped parameter count = min(param_count, arg_count) | 
| +  Register mapped_params = x1; | 
| +  __ Cmp(param_count, arg_count); | 
| +  __ Csel(mapped_params, param_count, arg_count, lt); | 
| + | 
| +  __ Bind(&try_allocate); | 
| + | 
| +  //   x0   alloc_obj     pointer to allocated objects: param map, backing | 
| +  //                      store, arguments (uninit) | 
| +  //   x1   mapped_params number of mapped parameters, min(params, args) | 
| +  //   x2   arg_count     number of function arguments | 
| +  //   x3   arg_count_smi number of function arguments (smi) | 
| +  //   x4   function      function pointer | 
| +  //   x7   param_count   number of function parameters | 
| +  //   x10  size          size of objects to allocate (uninit) | 
| +  //   x14  recv_arg      pointer to receiver arguments | 
| + | 
| +  // Compute the size of backing store, parameter map, and arguments object. | 
| +  // 1. Parameter map, has two extra words containing context and backing | 
| +  // store. | 
| +  const int kParameterMapHeaderSize = | 
| +      FixedArray::kHeaderSize + 2 * kPointerSize; | 
| + | 
| +  // Calculate the parameter map size, assuming it exists. | 
| +  Register size = x10; | 
| +  __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2)); | 
| +  __ Add(size, size, kParameterMapHeaderSize); | 
| + | 
| +  // If there are no mapped parameters, set the running size total to zero. | 
| +  // Otherwise, use the parameter map size calculated earlier. | 
| +  __ Cmp(mapped_params, 0); | 
| +  __ CzeroX(size, eq); | 
| + | 
| +  // 2. Add the size of the backing store and arguments object. | 
| +  __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2)); | 
| +  __ Add(size, size, FixedArray::kHeaderSize + Heap::kArgumentsObjectSize); | 
| + | 
| +  // Do the allocation of all three objects in one go. Assign this to x0, as it | 
| +  // will be returned to the caller. | 
| +  Register alloc_obj = x0; | 
| +  __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT); | 
| + | 
| +  // Get the arguments boilerplate from the current (global) context. | 
| + | 
| +  //   x0   alloc_obj     pointer to allocated objects (param map, backing | 
| +  //                      store, arguments) | 
| +  //   x1   mapped_params number of mapped parameters, min(params, args) | 
| +  //   x2   arg_count     number of function arguments | 
| +  //   x3   arg_count_smi number of function arguments (smi) | 
| +  //   x4   function      function pointer | 
| +  //   x7   param_count   number of function parameters | 
| +  //   x11  args_offset   offset to args (or aliased args) boilerplate (uninit) | 
| +  //   x14  recv_arg      pointer to receiver arguments | 
| + | 
| +  Register global_object = x10; | 
| +  Register global_ctx = x10; | 
| +  Register args_offset = x11; | 
| +  Register aliased_args_offset = x10; | 
| +  __ Ldr(global_object, GlobalObjectMemOperand()); | 
| +  __ Ldr(global_ctx, FieldMemOperand(global_object, | 
| +                                     GlobalObject::kNativeContextOffset)); | 
| + | 
| +  __ Ldr(args_offset, ContextMemOperand(global_ctx, | 
| +                                        Context::ARGUMENTS_BOILERPLATE_INDEX)); | 
| +  __ Ldr(aliased_args_offset, | 
| +         ContextMemOperand(global_ctx, | 
| +                           Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)); | 
| +  __ Cmp(mapped_params, 0); | 
| +  __ CmovX(args_offset, aliased_args_offset, ne); | 
| + | 
| +  // Copy the JS object part. | 
| +  __ CopyFields(alloc_obj, args_offset, CPURegList(x10, x12, x13), | 
| +                JSObject::kHeaderSize / kPointerSize); | 
| + | 
| +  // Set up the callee in-object property. | 
| +  STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); | 
| +  const int kCalleeOffset = JSObject::kHeaderSize + | 
| +                            Heap::kArgumentsCalleeIndex * kPointerSize; | 
| +  __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset)); | 
| + | 
| +  // Use the length and set that as an in-object property. | 
| +  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); | 
| +  const int kLengthOffset = JSObject::kHeaderSize + | 
| +                            Heap::kArgumentsLengthIndex * kPointerSize; | 
| +  __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); | 
| + | 
| +  // Set up the elements pointer in the allocated arguments object. | 
| +  // If we allocated a parameter map, "elements" will point there, otherwise | 
| +  // it will point to the backing store. | 
| + | 
| +  //   x0   alloc_obj     pointer to allocated objects (param map, backing | 
| +  //                      store, arguments) | 
| +  //   x1   mapped_params number of mapped parameters, min(params, args) | 
| +  //   x2   arg_count     number of function arguments | 
| +  //   x3   arg_count_smi number of function arguments (smi) | 
| +  //   x4   function      function pointer | 
| +  //   x5   elements      pointer to parameter map or backing store (uninit) | 
| +  //   x6   backing_store pointer to backing store (uninit) | 
| +  //   x7   param_count   number of function parameters | 
| +  //   x14  recv_arg      pointer to receiver arguments | 
| + | 
| +  Register elements = x5; | 
| +  __ Add(elements, alloc_obj, Heap::kArgumentsObjectSize); | 
| +  __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); | 
| + | 
| +  // Initialize parameter map. If there are no mapped arguments, we're done. | 
| +  Label skip_parameter_map; | 
| +  __ Cmp(mapped_params, 0); | 
| +  // Set up backing store address, because it is needed later for filling in | 
| +  // the unmapped arguments. | 
| +  Register backing_store = x6; | 
| +  __ CmovX(backing_store, elements, eq); | 
| +  __ B(eq, &skip_parameter_map); | 
| + | 
| +  __ LoadRoot(x10, Heap::kNonStrictArgumentsElementsMapRootIndex); | 
| +  __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); | 
| +  __ Add(x10, mapped_params, 2); | 
| +  __ SmiTag(x10); | 
| +  __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset)); | 
| +  __ Str(cp, FieldMemOperand(elements, | 
| +                             FixedArray::kHeaderSize + 0 * kPointerSize)); | 
| +  __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2)); | 
| +  __ Add(x10, x10, kParameterMapHeaderSize); | 
| +  __ Str(x10, FieldMemOperand(elements, | 
| +                              FixedArray::kHeaderSize + 1 * kPointerSize)); | 
| + | 
| +  // Copy the parameter slots and the holes in the arguments. | 
| +  // We need to fill in mapped_parameter_count slots. Then index the context, | 
| +  // where parameters are stored in reverse order, at: | 
| +  // | 
| +  //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1 | 
| +  // | 
| +  // The mapped parameter thus needs to get indices: | 
| +  // | 
| +  //   MIN_CONTEXT_SLOTS + parameter_count - 1 .. | 
| +  //     MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count | 
| +  // | 
| +  // We loop from right to left. | 
| + | 
| +  //   x0   alloc_obj     pointer to allocated objects (param map, backing | 
| +  //                      store, arguments) | 
| +  //   x1   mapped_params number of mapped parameters, min(params, args) | 
| +  //   x2   arg_count     number of function arguments | 
| +  //   x3   arg_count_smi number of function arguments (smi) | 
| +  //   x4   function      function pointer | 
| +  //   x5   elements      pointer to parameter map or backing store (uninit) | 
| +  //   x6   backing_store pointer to backing store (uninit) | 
| +  //   x7   param_count   number of function parameters | 
| +  //   x11  loop_count    parameter loop counter (uninit) | 
| +  //   x12  index         parameter index (smi, uninit) | 
| +  //   x13  the_hole      hole value (uninit) | 
| +  //   x14  recv_arg      pointer to receiver arguments | 
| + | 
| +  Register loop_count = x11; | 
| +  Register index = x12; | 
| +  Register the_hole = x13; | 
| +  Label parameters_loop, parameters_test; | 
| +  __ Mov(loop_count, mapped_params); | 
| +  __ Add(index, param_count, Context::MIN_CONTEXT_SLOTS); | 
| +  __ Sub(index, index, mapped_params); | 
| +  __ SmiTag(index); | 
| +  __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex); | 
| +  __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2)); | 
| +  __ Add(backing_store, backing_store, kParameterMapHeaderSize); | 
| + | 
| +  __ B(¶meters_test); | 
| + | 
| +  __ Bind(¶meters_loop); | 
| +  __ Sub(loop_count, loop_count, 1); | 
| +  __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2)); | 
| +  __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag); | 
| +  __ Str(index, MemOperand(elements, x10)); | 
| +  __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize); | 
| +  __ Str(the_hole, MemOperand(backing_store, x10)); | 
| +  __ Add(index, index, Operand(Smi::FromInt(1))); | 
| +  __ Bind(¶meters_test); | 
| +  __ Cbnz(loop_count, ¶meters_loop); | 
| + | 
| +  __ Bind(&skip_parameter_map); | 
| +  // Copy arguments header and remaining slots (if there are any.) | 
| +  __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); | 
| +  __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset)); | 
| +  __ Str(arg_count_smi, FieldMemOperand(backing_store, | 
| +                                        FixedArray::kLengthOffset)); | 
| + | 
| +  //   x0   alloc_obj     pointer to allocated objects (param map, backing | 
| +  //                      store, arguments) | 
| +  //   x1   mapped_params number of mapped parameters, min(params, args) | 
| +  //   x2   arg_count     number of function arguments | 
| +  //   x4   function      function pointer | 
| +  //   x3   arg_count_smi number of function arguments (smi) | 
| +  //   x6   backing_store pointer to backing store (uninit) | 
| +  //   x14  recv_arg      pointer to receiver arguments | 
| + | 
| +  Label arguments_loop, arguments_test; | 
| +  __ Mov(x10, mapped_params); | 
| +  __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2)); | 
| +  __ B(&arguments_test); | 
| + | 
| +  __ Bind(&arguments_loop); | 
| +  __ Sub(recv_arg, recv_arg, kPointerSize); | 
| +  __ Ldr(x11, MemOperand(recv_arg)); | 
| +  __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2)); | 
| +  __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); | 
| +  __ Add(x10, x10, 1); | 
| + | 
| +  __ Bind(&arguments_test); | 
| +  __ Cmp(x10, arg_count); | 
| +  __ B(lt, &arguments_loop); | 
| + | 
| +  __ Ret(); | 
| + | 
| +  // Do the runtime call to allocate the arguments object. | 
| +  __ Bind(&runtime); | 
| +  __ Push(function, recv_arg, arg_count_smi); | 
| +  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); | 
| +} | 
| + | 
| + | 
| +void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { | 
| +  // Stack layout on entry. | 
| +  //  jssp[0]:  number of parameters (tagged) | 
| +  //  jssp[8]:  address of receiver argument | 
| +  //  jssp[16]: function | 
| +  // | 
| +  // Returns pointer to result object in x0. | 
| + | 
| +  // Get the stub arguments from the frame, and make an untagged copy of the | 
| +  // parameter count. | 
| +  Register param_count_smi = x1; | 
| +  Register params = x2; | 
| +  Register function = x3; | 
| +  Register param_count = x13; | 
| +  __ Pop(param_count_smi, params, function); | 
| +  __ SmiUntag(param_count, param_count_smi); | 
| + | 
| +  // Test if arguments adaptor needed. | 
| +  Register caller_fp = x11; | 
| +  Register caller_ctx = x12; | 
| +  Label try_allocate, runtime; | 
| +  __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
| +  __ Ldr(caller_ctx, MemOperand(caller_fp, | 
| +                                StandardFrameConstants::kContextOffset)); | 
| +  __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 
| +  __ B(ne, &try_allocate); | 
| + | 
| +  //   x1   param_count_smi   number of parameters passed to function (smi) | 
| +  //   x2   params            pointer to parameters | 
| +  //   x3   function          function pointer | 
| +  //   x11  caller_fp         caller's frame pointer | 
| +  //   x13  param_count       number of parameters passed to function | 
| + | 
| +  // Patch the argument length and parameters pointer. | 
| +  __ Ldr(param_count_smi, | 
| +         MemOperand(caller_fp, | 
| +                    ArgumentsAdaptorFrameConstants::kLengthOffset)); | 
| +  __ SmiUntag(param_count, param_count_smi); | 
| +  __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2)); | 
| +  __ Add(params, x10, StandardFrameConstants::kCallerSPOffset); | 
| + | 
| +  // Try the new space allocation. Start out with computing the size of the | 
| +  // arguments object and the elements array in words. | 
| +  Register size = x10; | 
| +  __ Bind(&try_allocate); | 
| +  __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize); | 
| +  __ Cmp(param_count, 0); | 
| +  __ CzeroX(size, eq); | 
| +  __ Add(size, size, Heap::kArgumentsObjectSizeStrict / kPointerSize); | 
| + | 
| +  // Do the allocation of both objects in one go. Assign this to x0, as it will | 
| +  // be returned to the caller. | 
| +  Register alloc_obj = x0; | 
| +  __ Allocate(size, alloc_obj, x11, x12, &runtime, | 
| +              static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); | 
| + | 
| +  // Get the arguments boilerplate from the current (native) context. | 
| +  Register global_object = x10; | 
| +  Register global_ctx = x10; | 
| +  Register args_offset = x4; | 
| +  __ Ldr(global_object, GlobalObjectMemOperand()); | 
| +  __ Ldr(global_ctx, FieldMemOperand(global_object, | 
| +                                     GlobalObject::kNativeContextOffset)); | 
| +  __ Ldr(args_offset, | 
| +         ContextMemOperand(global_ctx, | 
| +                           Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)); | 
| + | 
| +  //   x0   alloc_obj         pointer to allocated objects: parameter array and | 
| +  //                          arguments object | 
| +  //   x1   param_count_smi   number of parameters passed to function (smi) | 
| +  //   x2   params            pointer to parameters | 
| +  //   x3   function          function pointer | 
| +  //   x4   args_offset       offset to arguments boilerplate | 
| +  //   x13  param_count       number of parameters passed to function | 
| + | 
| +  // Copy the JS object part. | 
| +  __ CopyFields(alloc_obj, args_offset, CPURegList(x5, x6, x7), | 
| +                JSObject::kHeaderSize / kPointerSize); | 
| + | 
| +  // Set the smi-tagged length as an in-object property. | 
| +  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); | 
| +  const int kLengthOffset = JSObject::kHeaderSize + | 
| +                            Heap::kArgumentsLengthIndex * kPointerSize; | 
| +  __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); | 
| + | 
| +  // If there are no actual arguments, we're done. | 
| +  Label done; | 
| +  __ Cbz(param_count, &done); | 
| + | 
| +  // Set up the elements pointer in the allocated arguments object and | 
| +  // initialize the header in the elements fixed array. | 
| +  Register elements = x5; | 
| +  __ Add(elements, alloc_obj, Heap::kArgumentsObjectSizeStrict); | 
| +  __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); | 
| +  __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); | 
| +  __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); | 
| +  __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset)); | 
| + | 
| +  //   x0   alloc_obj         pointer to allocated objects: parameter array and | 
| +  //                          arguments object | 
| +  //   x1   param_count_smi   number of parameters passed to function (smi) | 
| +  //   x2   params            pointer to parameters | 
| +  //   x3   function          function pointer | 
| +  //   x4   array             pointer to array slot (uninit) | 
| +  //   x5   elements          pointer to elements array of alloc_obj | 
| +  //   x13  param_count       number of parameters passed to function | 
| + | 
| +  // Copy the fixed array slots. | 
| +  Label loop; | 
| +  Register array = x4; | 
| +  // Set up pointer to first array slot. | 
| +  __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag); | 
| + | 
| +  __ Bind(&loop); | 
| +  // Pre-decrement the parameters pointer by kPointerSize on each iteration. | 
| +  // Pre-decrement in order to skip receiver. | 
| +  __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex)); | 
| +  // Post-increment elements by kPointerSize on each iteration. | 
| +  __ Str(x10, MemOperand(array, kPointerSize, PostIndex)); | 
| +  __ Sub(param_count, param_count, 1); | 
| +  __ Cbnz(param_count, &loop); | 
| + | 
| +  // Return from stub. | 
| +  __ Bind(&done); | 
| +  __ Ret(); | 
| + | 
| +  // Do the runtime call to allocate the arguments object. | 
| +  __ Bind(&runtime); | 
| +  __ Push(function, params, param_count_smi); | 
| +  __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); | 
| +} | 
| + | 
| + | 
| +void RegExpExecStub::Generate(MacroAssembler* masm) { | 
| +#ifdef V8_INTERPRETED_REGEXP | 
| +  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); | 
| +#else  // V8_INTERPRETED_REGEXP | 
| + | 
| +  // Stack frame on entry. | 
| +  //  jssp[0]: last_match_info (expected JSArray) | 
| +  //  jssp[8]: previous index | 
| +  //  jssp[16]: subject string | 
| +  //  jssp[24]: JSRegExp object | 
| +  Label runtime; | 
| + | 
| +  // Use of registers for this function. | 
| + | 
| +  // Variable registers: | 
| +  //   x10-x13                                  used as scratch registers | 
| +  //   w0       string_type                     type of subject string | 
| +  //   x2       jsstring_length                 subject string length | 
| +  //   x3       jsregexp_object                 JSRegExp object | 
| +  //   w4       string_encoding                 ASCII or UC16 | 
| +  //   w5       sliced_string_offset            if the string is a SlicedString | 
| +  //                                            offset to the underlying string | 
| +  //   w6       string_representation           groups attributes of the string: | 
| +  //                                              - is a string | 
| +  //                                              - type of the string | 
| +  //                                              - is a short external string | 
| +  Register string_type = w0; | 
| +  Register jsstring_length = x2; | 
| +  Register jsregexp_object = x3; | 
| +  Register string_encoding = w4; | 
| +  Register sliced_string_offset = w5; | 
| +  Register string_representation = w6; | 
| + | 
| +  // These are in callee save registers and will be preserved by the call | 
| +  // to the native RegExp code, as this code is called using the normal | 
| +  // C calling convention. When calling directly from generated code the | 
| +  // native RegExp code will not do a GC and therefore the content of | 
| +  // these registers are safe to use after the call. | 
| + | 
| +  //   x19       subject                        subject string | 
| +  //   x20       regexp_data                    RegExp data (FixedArray) | 
| +  //   x21       last_match_info_elements       info relative to the last match | 
| +  //                                            (FixedArray) | 
| +  //   x22       code_object                    generated regexp code | 
| +  Register subject = x19; | 
| +  Register regexp_data = x20; | 
| +  Register last_match_info_elements = x21; | 
| +  Register code_object = x22; | 
| + | 
| +  // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does. | 
| +  CPURegList used_callee_saved_registers(subject, | 
| +                                         regexp_data, | 
| +                                         last_match_info_elements, | 
| +                                         code_object); | 
| +  __ PushCPURegList(used_callee_saved_registers); | 
| + | 
| +  // Stack frame. | 
| +  //  jssp[0] : x19 | 
| +  //  jssp[8] : x20 | 
| +  //  jssp[16]: x21 | 
| +  //  jssp[24]: x22 | 
| +  //  jssp[32]: last_match_info (JSArray) | 
| +  //  jssp[40]: previous index | 
| +  //  jssp[48]: subject string | 
| +  //  jssp[56]: JSRegExp object | 
| + | 
| +  const int kLastMatchInfoOffset = 4 * kPointerSize; | 
| +  const int kPreviousIndexOffset = 5 * kPointerSize; | 
| +  const int kSubjectOffset = 6 * kPointerSize; | 
| +  const int kJSRegExpOffset = 7 * kPointerSize; | 
| + | 
| +  // Ensure that a RegExp stack is allocated. | 
| +  Isolate* isolate = masm->isolate(); | 
| +  ExternalReference address_of_regexp_stack_memory_address = | 
| +      ExternalReference::address_of_regexp_stack_memory_address(isolate); | 
| +  ExternalReference address_of_regexp_stack_memory_size = | 
| +      ExternalReference::address_of_regexp_stack_memory_size(isolate); | 
| +  __ Mov(x10, Operand(address_of_regexp_stack_memory_size)); | 
| +  __ Ldr(x10, MemOperand(x10)); | 
| +  __ Cbz(x10, &runtime); | 
| + | 
| +  // Check that the first argument is a JSRegExp object. | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  __ Peek(jsregexp_object, kJSRegExpOffset); | 
| +  __ JumpIfSmi(jsregexp_object, &runtime); | 
| +  __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime); | 
| + | 
| +  // Check that the RegExp has been compiled (data contains a fixed array). | 
| +  __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset)); | 
| +  if (FLAG_debug_code) { | 
| +    STATIC_ASSERT(kSmiTag == 0); | 
| +    __ Tst(regexp_data, kSmiTagMask); | 
| +    __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); | 
| +    __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE); | 
| +    __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); | 
| +  } | 
| + | 
| +  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. | 
| +  __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); | 
| +  __ Cmp(x10, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); | 
| +  __ B(ne, &runtime); | 
| + | 
| +  // Check that the number of captures fit in the static offsets vector buffer. | 
| +  // We have always at least one capture for the whole match, plus additional | 
| +  // ones due to capturing parentheses. A capture takes 2 registers. | 
| +  // The number of capture registers then is (number_of_captures + 1) * 2. | 
| +  __ Ldrsw(x10, | 
| +           UntagSmiFieldMemOperand(regexp_data, | 
| +                                   JSRegExp::kIrregexpCaptureCountOffset)); | 
| +  // Check (number_of_captures + 1) * 2 <= offsets vector size | 
| +  //             number_of_captures * 2 <= offsets vector size - 2 | 
| +  STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); | 
| +  __ Add(x10, x10, x10); | 
| +  __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); | 
| +  __ B(hi, &runtime); | 
| + | 
| +  // Initialize offset for possibly sliced string. | 
| +  __ Mov(sliced_string_offset, 0); | 
| + | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  __ Peek(subject, kSubjectOffset); | 
| +  __ JumpIfSmi(subject, &runtime); | 
| + | 
| +  __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); | 
| +  __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); | 
| + | 
| +  __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset)); | 
| + | 
| +  // Handle subject string according to its encoding and representation: | 
| +  // (1) Sequential string?  If yes, go to (5). | 
| +  // (2) Anything but sequential or cons?  If yes, go to (6). | 
| +  // (3) Cons string.  If the string is flat, replace subject with first string. | 
| +  //     Otherwise bailout. | 
| +  // (4) Is subject external?  If yes, go to (7). | 
| +  // (5) Sequential string.  Load regexp code according to encoding. | 
| +  // (E) Carry on. | 
| +  /// [...] | 
| + | 
| +  // Deferred code at the end of the stub: | 
| +  // (6) Not a long external string?  If yes, go to (8). | 
| +  // (7) External string.  Make it, offset-wise, look like a sequential string. | 
| +  //     Go to (5). | 
| +  // (8) Short external string or not a string?  If yes, bail out to runtime. | 
| +  // (9) Sliced string.  Replace subject with parent.  Go to (4). | 
| + | 
| +  Label check_underlying;   // (4) | 
| +  Label seq_string;         // (5) | 
| +  Label not_seq_nor_cons;   // (6) | 
| +  Label external_string;    // (7) | 
| +  Label not_long_external;  // (8) | 
| + | 
| +  // (1) Sequential string?  If yes, go to (5). | 
| +  __ And(string_representation, | 
| +         string_type, | 
| +         kIsNotStringMask | | 
| +             kStringRepresentationMask | | 
| +             kShortExternalStringMask); | 
| +  // We depend on the fact that Strings of type | 
| +  // SeqString and not ShortExternalString are defined | 
| +  // by the following pattern: | 
| +  //   string_type: 0XX0 XX00 | 
| +  //                ^  ^   ^^ | 
| +  //                |  |   || | 
| +  //                |  |   is a SeqString | 
| +  //                |  is not a short external String | 
| +  //                is a String | 
| +  STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); | 
| +  STATIC_ASSERT(kShortExternalStringTag != 0); | 
| +  __ Cbz(string_representation, &seq_string);  // Go to (5). | 
| + | 
| +  // (2) Anything but sequential or cons?  If yes, go to (6). | 
| +  STATIC_ASSERT(kConsStringTag < kExternalStringTag); | 
| +  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); | 
| +  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); | 
| +  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); | 
| +  __ Cmp(string_representation, kExternalStringTag); | 
| +  __ B(ge, ¬_seq_nor_cons);  // Go to (6). | 
| + | 
| +  // (3) Cons string.  Check that it's flat. | 
| +  __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset)); | 
| +  __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime); | 
| +  // Replace subject with first string. | 
| +  __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); | 
| + | 
| +  // (4) Is subject external?  If yes, go to (7). | 
| +  __ Bind(&check_underlying); | 
| +  // Reload the string type. | 
| +  __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); | 
| +  __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); | 
| +  STATIC_ASSERT(kSeqStringTag == 0); | 
| +  // The underlying external string is never a short external string. | 
| +  STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength); | 
| +  STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength); | 
| +  __ TestAndBranchIfAnySet(string_type.X(), | 
| +                           kStringRepresentationMask, | 
| +                           &external_string);  // Go to (7). | 
| + | 
| +  // (5) Sequential string.  Load regexp code according to encoding. | 
| +  __ Bind(&seq_string); | 
| + | 
| +  // Check that the third argument is a positive smi less than the subject | 
| +  // string length. A negative value will be greater (unsigned comparison). | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  __ Peek(x10, kPreviousIndexOffset); | 
| +  __ JumpIfNotSmi(x10, &runtime); | 
| +  __ Cmp(jsstring_length, x10); | 
| +  __ B(ls, &runtime); | 
| + | 
| +  // Argument 2 (x1): We need to load argument 2 (the previous index) into x1 | 
| +  // before entering the exit frame. | 
| +  __ SmiUntag(x1, x10); | 
| + | 
| +  // The third bit determines the string encoding in string_type. | 
| +  STATIC_ASSERT(kOneByteStringTag == 0x04); | 
| +  STATIC_ASSERT(kTwoByteStringTag == 0x00); | 
| +  STATIC_ASSERT(kStringEncodingMask == 0x04); | 
| + | 
| +  // Find the code object based on the assumptions above. | 
| +  // kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset | 
| +  // of kPointerSize to reach the latter. | 
| +  ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize, | 
| +            JSRegExp::kDataUC16CodeOffset); | 
| +  __ Mov(x10, kPointerSize); | 
| +  // We will need the encoding later: ASCII = 0x04 | 
| +  //                                  UC16  = 0x00 | 
| +  __ Ands(string_encoding, string_type, kStringEncodingMask); | 
| +  __ CzeroX(x10, ne); | 
| +  __ Add(x10, regexp_data, x10); | 
| +  __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset)); | 
| + | 
| +  // (E) Carry on.  String handling is done. | 
| + | 
| +  // Check that the irregexp code has been generated for the actual string | 
| +  // encoding. If it has, the field contains a code object otherwise it contains | 
| +  // a smi (code flushing support). | 
| +  __ JumpIfSmi(code_object, &runtime); | 
| + | 
| +  // All checks done. Now push arguments for native regexp code. | 
| +  __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, | 
| +                      x10, | 
| +                      x11); | 
| + | 
| +  // Isolates: note we add an additional parameter here (isolate pointer). | 
| +  __ EnterExitFrame(false, x10, 1); | 
| +  ASSERT(csp.Is(__ StackPointer())); | 
| + | 
| +  // We have 9 arguments to pass to the regexp code, therefore we have to pass | 
| +  // one on the stack and the rest as registers. | 
| + | 
| +  // Note that the placement of the argument on the stack isn't standard | 
| +  // AAPCS64: | 
| +  // csp[0]: Space for the return address placed by DirectCEntryStub. | 
| +  // csp[8]: Argument 9, the current isolate address. | 
| + | 
| +  __ Mov(x10, Operand(ExternalReference::isolate_address(isolate))); | 
| +  __ Poke(x10, kPointerSize); | 
| + | 
| +  Register length = w11; | 
| +  Register previous_index_in_bytes = w12; | 
| +  Register start = x13; | 
| + | 
| +  // Load start of the subject string. | 
| +  __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag); | 
| +  // Load the length from the original subject string from the previous stack | 
| +  // frame. Therefore we have to use fp, which points exactly to two pointer | 
| +  // sizes below the previous sp. (Because creating a new stack frame pushes | 
| +  // the previous fp onto the stack and decrements sp by 2 * kPointerSize.) | 
| +  __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); | 
| +  __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset)); | 
| + | 
| +  // Handle UC16 encoding, two bytes make one character. | 
| +  //   string_encoding: if ASCII: 0x04 | 
| +  //                    if UC16:  0x00 | 
| +  STATIC_ASSERT(kStringEncodingMask == 0x04); | 
| +  __ Ubfx(string_encoding, string_encoding, 2, 1); | 
| +  __ Eor(string_encoding, string_encoding, 1); | 
| +  //   string_encoding: if ASCII: 0 | 
| +  //                    if UC16:  1 | 
| + | 
| +  // Convert string positions from characters to bytes. | 
| +  // Previous index is in x1. | 
| +  __ Lsl(previous_index_in_bytes, w1, string_encoding); | 
| +  __ Lsl(length, length, string_encoding); | 
| +  __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding); | 
| + | 
| +  // Argument 1 (x0): Subject string. | 
| +  __ Mov(x0, subject); | 
| + | 
| +  // Argument 2 (x1): Previous index, already there. | 
| + | 
| +  // Argument 3 (x2): Get the start of input. | 
| +  // Start of input = start of string + previous index + substring offset | 
| +  //                                                     (0 if the string | 
| +  //                                                      is not sliced). | 
| +  __ Add(w10, previous_index_in_bytes, sliced_string_offset); | 
| +  __ Add(x2, start, Operand(w10, UXTW)); | 
| + | 
| +  // Argument 4 (x3): | 
| +  // End of input = start of input + (length of input - previous index) | 
| +  __ Sub(w10, length, previous_index_in_bytes); | 
| +  __ Add(x3, x2, Operand(w10, UXTW)); | 
| + | 
| +  // Argument 5 (x4): static offsets vector buffer. | 
| +  __ Mov(x4, | 
| +         Operand(ExternalReference::address_of_static_offsets_vector(isolate))); | 
| + | 
| +  // Argument 6 (x5): Set the number of capture registers to zero to force | 
| +  // global regexps to behave as non-global. This stub is not used for global | 
| +  // regexps. | 
| +  __ Mov(x5, 0); | 
| + | 
| +  // Argument 7 (x6): Start (high end) of backtracking stack memory area. | 
| +  __ Mov(x10, Operand(address_of_regexp_stack_memory_address)); | 
| +  __ Ldr(x10, MemOperand(x10)); | 
| +  __ Mov(x11, Operand(address_of_regexp_stack_memory_size)); | 
| +  __ Ldr(x11, MemOperand(x11)); | 
| +  __ Add(x6, x10, x11); | 
| + | 
| +  // Argument 8 (x7): Indicate that this is a direct call from JavaScript. | 
| +  __ Mov(x7, 1); | 
| + | 
| +  // Locate the code entry and call it. | 
| +  __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag); | 
| +  DirectCEntryStub stub; | 
| +  stub.GenerateCall(masm, code_object); | 
| + | 
| +  __ LeaveExitFrame(false, x10, true); | 
| + | 
| +  // The generated regexp code returns an int32 in w0. | 
| +  Label failure, exception; | 
| +  __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure); | 
| +  __ CompareAndBranch(w0, | 
| +                      NativeRegExpMacroAssembler::EXCEPTION, | 
| +                      eq, | 
| +                      &exception); | 
| +  __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime); | 
| + | 
| +  // Success: process the result from the native regexp code. | 
| +  Register number_of_capture_registers = x12; | 
| + | 
| +  // Calculate number of capture registers (number_of_captures + 1) * 2 | 
| +  // and store it in the last match info. | 
| +  __ Ldrsw(x10, | 
| +           UntagSmiFieldMemOperand(regexp_data, | 
| +                                   JSRegExp::kIrregexpCaptureCountOffset)); | 
| +  __ Add(x10, x10, x10); | 
| +  __ Add(number_of_capture_registers, x10, 2); | 
| + | 
| +  // Check that the fourth object is a JSArray object. | 
| +  ASSERT(jssp.Is(__ StackPointer())); | 
| +  __ Peek(x10, kLastMatchInfoOffset); | 
| +  __ JumpIfSmi(x10, &runtime); | 
| +  __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime); | 
| + | 
| +  // Check that the JSArray is the fast case. | 
| +  __ Ldr(last_match_info_elements, | 
| +         FieldMemOperand(x10, JSArray::kElementsOffset)); | 
| +  __ Ldr(x10, | 
| +         FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); | 
| +  __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime); | 
| + | 
| +  // Check that the last match info has space for the capture registers and the | 
| +  // additional information (overhead). | 
| +  //     (number_of_captures + 1) * 2 + overhead <= last match info size | 
| +  //     (number_of_captures * 2) + 2 + overhead <= last match info size | 
| +  //      number_of_capture_registers + overhead <= last match info size | 
| +  __ Ldrsw(x10, | 
| +           UntagSmiFieldMemOperand(last_match_info_elements, | 
| +                                   FixedArray::kLengthOffset)); | 
| +  __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead); | 
| +  __ Cmp(x11, x10); | 
| +  __ B(gt, &runtime); | 
| + | 
| +  // Store the capture count. | 
| +  __ SmiTag(x10, number_of_capture_registers); | 
| +  __ Str(x10, | 
| +         FieldMemOperand(last_match_info_elements, | 
| +                         RegExpImpl::kLastCaptureCountOffset)); | 
| +  // Store last subject and last input. | 
| +  __ Str(subject, | 
| +         FieldMemOperand(last_match_info_elements, | 
| +                         RegExpImpl::kLastSubjectOffset)); | 
| +  // Use x10 as the subject string in order to only need | 
| +  // one RecordWriteStub. | 
| +  __ Mov(x10, subject); | 
| +  __ RecordWriteField(last_match_info_elements, | 
| +                      RegExpImpl::kLastSubjectOffset, | 
| +                      x10, | 
| +                      x11, | 
| +                      kLRHasNotBeenSaved, | 
| +                      kDontSaveFPRegs); | 
| +  __ Str(subject, | 
| +         FieldMemOperand(last_match_info_elements, | 
| +                         RegExpImpl::kLastInputOffset)); | 
| +  __ Mov(x10, subject); | 
| +  __ RecordWriteField(last_match_info_elements, | 
| +                      RegExpImpl::kLastInputOffset, | 
| +                      x10, | 
| +                      x11, | 
| +                      kLRHasNotBeenSaved, | 
| +                      kDontSaveFPRegs); | 
| + | 
| +  Register last_match_offsets = x13; | 
| +  Register offsets_vector_index = x14; | 
| +  Register current_offset = x15; | 
| + | 
| +  // Get the static offsets vector filled by the native regexp code | 
| +  // and fill the last match info. | 
| +  ExternalReference address_of_static_offsets_vector = | 
| +      ExternalReference::address_of_static_offsets_vector(isolate); | 
| +  __ Mov(offsets_vector_index, Operand(address_of_static_offsets_vector)); | 
| + | 
| +  Label next_capture, done; | 
| +  // Capture register counter starts from number of capture registers and | 
| +  // iterates down to zero (inclusive). | 
| +  __ Add(last_match_offsets, | 
| +         last_match_info_elements, | 
| +         RegExpImpl::kFirstCaptureOffset - kHeapObjectTag); | 
| +  __ Bind(&next_capture); | 
| +  __ Subs(number_of_capture_registers, number_of_capture_registers, 2); | 
| +  __ B(mi, &done); | 
| +  // Read two 32 bit values from the static offsets vector buffer into | 
| +  // an X register | 
| +  __ Ldr(current_offset, | 
| +         MemOperand(offsets_vector_index, kWRegSizeInBytes * 2, PostIndex)); | 
| +  // Store the smi values in the last match info. | 
| +  __ SmiTag(x10, current_offset); | 
| +  // Clearing the 32 bottom bits gives us a Smi. | 
| +  STATIC_ASSERT(kSmiShift == 32); | 
| +  __ And(x11, current_offset, ~kWRegMask); | 
| +  __ Stp(x10, | 
| +         x11, | 
| +         MemOperand(last_match_offsets, kXRegSizeInBytes * 2, PostIndex)); | 
| +  __ B(&next_capture); | 
| +  __ Bind(&done); | 
| + | 
| +  // Return last match info. | 
| +  __ Peek(x0, kLastMatchInfoOffset); | 
| +  __ PopCPURegList(used_callee_saved_registers); | 
| +  // Drop the 4 arguments of the stub from the stack. | 
| +  __ Drop(4); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&exception); | 
| +  Register exception_value = x0; | 
| +  // A stack overflow (on the backtrack stack) may have occured | 
| +  // in the RegExp code but no exception has been created yet. | 
| +  // If there is no pending exception, handle that in the runtime system. | 
| +  __ Mov(x10, Operand(isolate->factory()->the_hole_value())); | 
| +  __ Mov(x11, | 
| +         Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 
| +                                   isolate))); | 
| +  __ Ldr(exception_value, MemOperand(x11)); | 
| +  __ Cmp(x10, exception_value); | 
| +  __ B(eq, &runtime); | 
| + | 
| +  __ Str(x10, MemOperand(x11));  // Clear pending exception. | 
| + | 
| +  // Check if the exception is a termination. If so, throw as uncatchable. | 
| +  Label termination_exception; | 
| +  __ JumpIfRoot(exception_value, | 
| +                Heap::kTerminationExceptionRootIndex, | 
| +                &termination_exception); | 
| + | 
| +  __ Throw(exception_value, x10, x11, x12, x13); | 
| + | 
| +  __ Bind(&termination_exception); | 
| +  __ ThrowUncatchable(exception_value, x10, x11, x12, x13); | 
| + | 
| +  __ Bind(&failure); | 
| +  __ Mov(x0, Operand(masm->isolate()->factory()->null_value())); | 
| +  __ PopCPURegList(used_callee_saved_registers); | 
| +  // Drop the 4 arguments of the stub from the stack. | 
| +  __ Drop(4); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&runtime); | 
| +  __ PopCPURegList(used_callee_saved_registers); | 
| +  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); | 
| + | 
| +  // Deferred code for string handling. | 
| +  // (6) Not a long external string?  If yes, go to (8). | 
| +  __ Bind(¬_seq_nor_cons); | 
| +  // Compare flags are still set. | 
| +  __ B(ne, ¬_long_external);  // Go to (8). | 
| + | 
| +  // (7) External string. Make it, offset-wise, look like a sequential string. | 
| +  __ Bind(&external_string); | 
| +  if (masm->emit_debug_code()) { | 
| +    // Assert that we do not have a cons or slice (indirect strings) here. | 
| +    // Sequential strings have already been ruled out. | 
| +    __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); | 
| +    __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset)); | 
| +    __ Tst(x10, kIsIndirectStringMask); | 
| +    __ Check(eq, kExternalStringExpectedButNotFound); | 
| +    __ And(x10, x10, kStringRepresentationMask); | 
| +    __ Cmp(x10, 0); | 
| +    __ Check(ne, kExternalStringExpectedButNotFound); | 
| +  } | 
| +  __ Ldr(subject, | 
| +         FieldMemOperand(subject, ExternalString::kResourceDataOffset)); | 
| +  // Move the pointer so that offset-wise, it looks like a sequential string. | 
| +  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | 
| +  __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); | 
| +  __ B(&seq_string);    // Go to (5). | 
| + | 
| +  // (8) If this is a short external string or not a string, bail out to | 
| +  // runtime. | 
| +  __ Bind(¬_long_external); | 
| +  STATIC_ASSERT(kShortExternalStringTag != 0); | 
| +  __ TestAndBranchIfAnySet(string_representation, | 
| +                           kShortExternalStringMask | kIsNotStringMask, | 
| +                           &runtime); | 
| + | 
| +  // (9) Sliced string. Replace subject with parent. | 
| +  __ Ldr(sliced_string_offset, | 
| +         UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset)); | 
| +  __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); | 
| +  __ B(&check_underlying);    // Go to (4). | 
| +#endif | 
| +} | 
| + | 
| + | 
| +// TODO(jbramley): Don't use static registers here, but take them as arguments. | 
| +static void GenerateRecordCallTarget(MacroAssembler* masm) { | 
| +  ASM_LOCATION("GenerateRecordCallTarget"); | 
| +  // Cache the called function in a feedback vector slot. Cache states are | 
| +  // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic. | 
| +  //  x0 : number of arguments to the construct function | 
| +  //  x1 : the function to call | 
| +  //  x2 : feedback vector | 
| +  //  x3 : slot in feedback vector (smi) | 
| +  Label initialize, done, miss, megamorphic, not_array_function; | 
| + | 
| +  ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), | 
| +            masm->isolate()->heap()->undefined_value()); | 
| +  ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), | 
| +            masm->isolate()->heap()->the_hole_value()); | 
| + | 
| +  // Load the cache state. | 
| +  __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); | 
| +  __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize)); | 
| + | 
| +  // A monomorphic cache hit or an already megamorphic state: invoke the | 
| +  // function without changing the state. | 
| +  __ Cmp(x4, x1); | 
| +  __ B(eq, &done); | 
| + | 
| +  // If we came here, we need to see if we are the array function. | 
| +  // If we didn't have a matching function, and we didn't find the megamorph | 
| +  // sentinel, then we have in the slot either some other function or an | 
| +  // AllocationSite. Do a map check on the object in ecx. | 
| +  __ Ldr(x5, FieldMemOperand(x4, AllocationSite::kMapOffset)); | 
| +  __ JumpIfNotRoot(x5, Heap::kAllocationSiteMapRootIndex, &miss); | 
| + | 
| +  // Make sure the function is the Array() function | 
| +  __ LoadArrayFunction(x4); | 
| +  __ Cmp(x1, x4); | 
| +  __ B(ne, &megamorphic); | 
| +  __ B(&done); | 
| + | 
| +  __ Bind(&miss); | 
| + | 
| +  // A monomorphic miss (i.e, here the cache is not uninitialized) goes | 
| +  // megamorphic. | 
| +  __ JumpIfRoot(x4, Heap::kTheHoleValueRootIndex, &initialize); | 
| +  // MegamorphicSentinel is an immortal immovable object (undefined) so no | 
| +  // write-barrier is needed. | 
| +  __ Bind(&megamorphic); | 
| +  __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); | 
| +  __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); | 
| +  __ Str(x10, FieldMemOperand(x4, FixedArray::kHeaderSize)); | 
| +  __ B(&done); | 
| + | 
| +  // An uninitialized cache is patched with the function or sentinel to | 
| +  // indicate the ElementsKind if function is the Array constructor. | 
| +  __ Bind(&initialize); | 
| +  // Make sure the function is the Array() function | 
| +  __ LoadArrayFunction(x4); | 
| +  __ Cmp(x1, x4); | 
| +  __ B(ne, ¬_array_function); | 
| + | 
| +  // The target function is the Array constructor, | 
| +  // Create an AllocationSite if we don't already have it, store it in the slot. | 
| +  { | 
| +    FrameScope scope(masm, StackFrame::INTERNAL); | 
| +    CreateAllocationSiteStub create_stub; | 
| + | 
| +    // Arguments register must be smi-tagged to call out. | 
| +    __ SmiTag(x0); | 
| +    __ Push(x0, x1, x2, x3); | 
| + | 
| +    __ CallStub(&create_stub); | 
| + | 
| +    __ Pop(x3, x2, x1, x0); | 
| +    __ SmiUntag(x0); | 
| +  } | 
| +  __ B(&done); | 
| + | 
| +  __ Bind(¬_array_function); | 
| +  // An uninitialized cache is patched with the function. | 
| + | 
| +  __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); | 
| +  // TODO(all): Does the value need to be left in x4? If not, FieldMemOperand | 
| +  // could be used to avoid this add. | 
| +  __ Add(x4, x4, FixedArray::kHeaderSize - kHeapObjectTag); | 
| +  __ Str(x1, MemOperand(x4, 0)); | 
| + | 
| +  __ Push(x4, x2, x1); | 
| +  __ RecordWrite(x2, x4, x1, kLRHasNotBeenSaved, kDontSaveFPRegs, | 
| +                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); | 
| +  __ Pop(x1, x2, x4); | 
| + | 
| +  // TODO(all): Are x4, x2 and x1 outputs? This isn't clear. | 
| + | 
| +  __ Bind(&done); | 
| +} | 
| + | 
| + | 
| +void CallFunctionStub::Generate(MacroAssembler* masm) { | 
| +  ASM_LOCATION("CallFunctionStub::Generate"); | 
| +  // x1  function    the function to call | 
| +  // x2 : feedback vector | 
| +  // x3 : slot in feedback vector (smi) (if x2 is not undefined) | 
| +  Register function = x1; | 
| +  Register cache_cell = x2; | 
| +  Register slot = x3; | 
| +  Register type = x4; | 
| +  Label slow, non_function, wrap, cont; | 
| + | 
| +  // TODO(jbramley): This function has a lot of unnamed registers. Name them, | 
| +  // and tidy things up a bit. | 
| + | 
| +  if (NeedsChecks()) { | 
| +    // Check that the function is really a JavaScript function. | 
| +    __ JumpIfSmi(function, &non_function); | 
| + | 
| +    // Goto slow case if we do not have a function. | 
| +    __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow); | 
| + | 
| +    if (RecordCallTarget()) { | 
| +      GenerateRecordCallTarget(masm); | 
| +    } | 
| +  } | 
| + | 
| +  // Fast-case: Invoke the function now. | 
| +  // x1  function  pushed function | 
| +  ParameterCount actual(argc_); | 
| + | 
| +  if (CallAsMethod()) { | 
| +    if (NeedsChecks()) { | 
| +      // Do not transform the receiver for strict mode functions. | 
| +      __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); | 
| +      __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset)); | 
| +      __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, &cont); | 
| + | 
| +      // Do not transform the receiver for native (Compilerhints already in x3). | 
| +      __ Tbnz(w4, SharedFunctionInfo::kNative, &cont); | 
| +    } | 
| + | 
| +    // Compute the receiver in non-strict mode. | 
| +    __ Peek(x3, argc_ * kPointerSize); | 
| + | 
| +    if (NeedsChecks()) { | 
| +      __ JumpIfSmi(x3, &wrap); | 
| +      __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt); | 
| +    } else { | 
| +      __ B(&wrap); | 
| +    } | 
| + | 
| +    __ Bind(&cont); | 
| +  } | 
| +  __ InvokeFunction(function, | 
| +                    actual, | 
| +                    JUMP_FUNCTION, | 
| +                    NullCallWrapper()); | 
| + | 
| +  if (NeedsChecks()) { | 
| +    // Slow-case: Non-function called. | 
| +    __ Bind(&slow); | 
| +    if (RecordCallTarget()) { | 
| +      // If there is a call target cache, mark it megamorphic in the | 
| +      // non-function case. MegamorphicSentinel is an immortal immovable object | 
| +      // (undefined) so no write barrier is needed. | 
| +      ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), | 
| +                masm->isolate()->heap()->undefined_value()); | 
| +      __ Add(x12, cache_cell, Operand::UntagSmiAndScale(slot, | 
| +                                                        kPointerSizeLog2)); | 
| +      __ LoadRoot(x11, Heap::kUndefinedValueRootIndex); | 
| +      __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); | 
| +    } | 
| +    // Check for function proxy. | 
| +    // x10 : function type. | 
| +    __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, &non_function); | 
| +    __ Push(function);  // put proxy as additional argument | 
| +    __ Mov(x0, argc_ + 1); | 
| +    __ Mov(x2, 0); | 
| +    __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY); | 
| +    { | 
| +      Handle<Code> adaptor = | 
| +          masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); | 
| +      __ Jump(adaptor, RelocInfo::CODE_TARGET); | 
| +    } | 
| + | 
| +    // CALL_NON_FUNCTION expects the non-function callee as receiver (instead | 
| +    // of the original receiver from the call site). | 
| +    __ Bind(&non_function); | 
| +    __ Poke(function, argc_ * kXRegSizeInBytes); | 
| +    __ Mov(x0, argc_);  // Set up the number of arguments. | 
| +    __ Mov(x2, 0); | 
| +    __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION); | 
| +    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), | 
| +            RelocInfo::CODE_TARGET); | 
| +  } | 
| + | 
| +  if (CallAsMethod()) { | 
| +    __ Bind(&wrap); | 
| +    // Wrap the receiver and patch it back onto the stack. | 
| +    { FrameScope frame_scope(masm, StackFrame::INTERNAL); | 
| +      __ Push(x1, x3); | 
| +      __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); | 
| +      __ Pop(x1); | 
| +    } | 
| +    __ Poke(x0, argc_ * kPointerSize); | 
| +    __ B(&cont); | 
| +  } | 
| +} | 
| + | 
| + | 
| +void CallConstructStub::Generate(MacroAssembler* masm) { | 
| +  ASM_LOCATION("CallConstructStub::Generate"); | 
| +  // x0 : number of arguments | 
| +  // x1 : the function to call | 
| +  // x2 : feedback vector | 
| +  // x3 : slot in feedback vector (smi) (if r2 is not undefined) | 
| +  Register function = x1; | 
| +  Label slow, non_function_call; | 
| + | 
| +  // Check that the function is not a smi. | 
| +  __ JumpIfSmi(function, &non_function_call); | 
| +  // Check that the function is a JSFunction. | 
| +  Register object_type = x10; | 
| +  __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE, | 
| +                         &slow); | 
| + | 
| +  if (RecordCallTarget()) { | 
| +    GenerateRecordCallTarget(masm); | 
| +  } | 
| + | 
| +  // Jump to the function-specific construct stub. | 
| +  Register jump_reg = x4; | 
| +  Register shared_func_info = jump_reg; | 
| +  Register cons_stub = jump_reg; | 
| +  Register cons_stub_code = jump_reg; | 
| +  __ Ldr(shared_func_info, | 
| +         FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); | 
| +  __ Ldr(cons_stub, | 
| +         FieldMemOperand(shared_func_info, | 
| +                         SharedFunctionInfo::kConstructStubOffset)); | 
| +  __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag); | 
| +  __ Br(cons_stub_code); | 
| + | 
| +  Label do_call; | 
| +  __ Bind(&slow); | 
| +  __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE); | 
| +  __ B(ne, &non_function_call); | 
| +  __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); | 
| +  __ B(&do_call); | 
| + | 
| +  __ Bind(&non_function_call); | 
| +  __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); | 
| + | 
| +  __ Bind(&do_call); | 
| +  // Set expected number of arguments to zero (not changing x0). | 
| +  __ Mov(x2, 0); | 
| +  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), | 
| +          RelocInfo::CODE_TARGET); | 
| +} | 
| + | 
| + | 
| +void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { | 
| +  // If the receiver is a smi trigger the non-string case. | 
| +  __ JumpIfSmi(object_, receiver_not_string_); | 
| + | 
| +  // Fetch the instance type of the receiver into result register. | 
| +  __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); | 
| +  __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); | 
| + | 
| +  // If the receiver is not a string trigger the non-string case. | 
| +  __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_); | 
| + | 
| +  // If the index is non-smi trigger the non-smi case. | 
| +  __ JumpIfNotSmi(index_, &index_not_smi_); | 
| + | 
| +  __ Bind(&got_smi_index_); | 
| +  // Check for index out of range. | 
| +  __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset)); | 
| +  __ Cmp(result_, Operand::UntagSmi(index_)); | 
| +  __ B(ls, index_out_of_range_); | 
| + | 
| +  __ SmiUntag(index_); | 
| + | 
| +  StringCharLoadGenerator::Generate(masm, | 
| +                                    object_, | 
| +                                    index_, | 
| +                                    result_, | 
| +                                    &call_runtime_); | 
| +  __ SmiTag(result_); | 
| +  __ Bind(&exit_); | 
| +} | 
| + | 
| + | 
| +void StringCharCodeAtGenerator::GenerateSlow( | 
| +    MacroAssembler* masm, | 
| +    const RuntimeCallHelper& call_helper) { | 
| +  __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); | 
| + | 
| +  __ Bind(&index_not_smi_); | 
| +  // If index is a heap number, try converting it to an integer. | 
| +  __ CheckMap(index_, | 
| +              result_, | 
| +              Heap::kHeapNumberMapRootIndex, | 
| +              index_not_number_, | 
| +              DONT_DO_SMI_CHECK); | 
| +  call_helper.BeforeCall(masm); | 
| +  // Save object_ on the stack and pass index_ as argument for runtime call. | 
| +  __ Push(object_, index_); | 
| +  if (index_flags_ == STRING_INDEX_IS_NUMBER) { | 
| +    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); | 
| +  } else { | 
| +    ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); | 
| +    // NumberToSmi discards numbers that are not exact integers. | 
| +    __ CallRuntime(Runtime::kNumberToSmi, 1); | 
| +  } | 
| +  // Save the conversion result before the pop instructions below | 
| +  // have a chance to overwrite it. | 
| +  __ Mov(index_, x0); | 
| +  __ Pop(object_); | 
| +  // Reload the instance type. | 
| +  __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); | 
| +  __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); | 
| +  call_helper.AfterCall(masm); | 
| + | 
| +  // If index is still not a smi, it must be out of range. | 
| +  __ JumpIfNotSmi(index_, index_out_of_range_); | 
| +  // Otherwise, return to the fast path. | 
| +  __ B(&got_smi_index_); | 
| + | 
| +  // Call runtime. We get here when the receiver is a string and the | 
| +  // index is a number, but the code of getting the actual character | 
| +  // is too complex (e.g., when the string needs to be flattened). | 
| +  __ Bind(&call_runtime_); | 
| +  call_helper.BeforeCall(masm); | 
| +  __ SmiTag(index_); | 
| +  __ Push(object_, index_); | 
| +  __ CallRuntime(Runtime::kStringCharCodeAt, 2); | 
| +  __ Mov(result_, x0); | 
| +  call_helper.AfterCall(masm); | 
| +  __ B(&exit_); | 
| + | 
| +  __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); | 
| +} | 
| + | 
| + | 
| +void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { | 
| +  __ JumpIfNotSmi(code_, &slow_case_); | 
| +  __ Cmp(code_, Operand(Smi::FromInt(String::kMaxOneByteCharCode))); | 
| +  __ B(hi, &slow_case_); | 
| + | 
| +  __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); | 
| +  // At this point code register contains smi tagged ASCII char code. | 
| +  STATIC_ASSERT(kSmiShift > kPointerSizeLog2); | 
| +  __ Add(result_, result_, Operand(code_, LSR, kSmiShift - kPointerSizeLog2)); | 
| +  __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); | 
| +  __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_); | 
| +  __ Bind(&exit_); | 
| +} | 
| + | 
| + | 
| +void StringCharFromCodeGenerator::GenerateSlow( | 
| +    MacroAssembler* masm, | 
| +    const RuntimeCallHelper& call_helper) { | 
| +  __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); | 
| + | 
| +  __ Bind(&slow_case_); | 
| +  call_helper.BeforeCall(masm); | 
| +  __ Push(code_); | 
| +  __ CallRuntime(Runtime::kCharFromCode, 1); | 
| +  __ Mov(result_, x0); | 
| +  call_helper.AfterCall(masm); | 
| +  __ B(&exit_); | 
| + | 
| +  __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateSmis(MacroAssembler* masm) { | 
| +  // Inputs are in x0 (lhs) and x1 (rhs). | 
| +  ASSERT(state_ == CompareIC::SMI); | 
| +  ASM_LOCATION("ICCompareStub[Smis]"); | 
| +  Label miss; | 
| +  // Bail out (to 'miss') unless both x0 and x1 are smis. | 
| +  __ JumpIfEitherNotSmi(x0, x1, &miss); | 
| + | 
| +  // TODO(jbramley): Why do we only set the flags for EQ? | 
| +  if (GetCondition() == eq) { | 
| +    // For equality we do not care about the sign of the result. | 
| +    __ Subs(x0, x0, x1); | 
| +  } else { | 
| +    // Untag before subtracting to avoid handling overflow. | 
| +    __ SmiUntag(x1); | 
| +    __ Sub(x0, x1, Operand::UntagSmi(x0)); | 
| +  } | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { | 
| +  ASSERT(state_ == CompareIC::NUMBER); | 
| +  ASM_LOCATION("ICCompareStub[HeapNumbers]"); | 
| + | 
| +  Label unordered, maybe_undefined1, maybe_undefined2; | 
| +  Label miss, handle_lhs, values_in_d_regs; | 
| +  Label untag_rhs, untag_lhs; | 
| + | 
| +  Register result = x0; | 
| +  Register rhs = x0; | 
| +  Register lhs = x1; | 
| +  FPRegister rhs_d = d0; | 
| +  FPRegister lhs_d = d1; | 
| + | 
| +  if (left_ == CompareIC::SMI) { | 
| +    __ JumpIfNotSmi(lhs, &miss); | 
| +  } | 
| +  if (right_ == CompareIC::SMI) { | 
| +    __ JumpIfNotSmi(rhs, &miss); | 
| +  } | 
| + | 
| +  __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag); | 
| +  __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag); | 
| + | 
| +  // Load rhs if it's a heap number. | 
| +  __ JumpIfSmi(rhs, &handle_lhs); | 
| +  __ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, | 
| +              DONT_DO_SMI_CHECK); | 
| +  __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); | 
| + | 
| +  // Load lhs if it's a heap number. | 
| +  __ Bind(&handle_lhs); | 
| +  __ JumpIfSmi(lhs, &values_in_d_regs); | 
| +  __ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, | 
| +              DONT_DO_SMI_CHECK); | 
| +  __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); | 
| + | 
| +  __ Bind(&values_in_d_regs); | 
| +  __ Fcmp(lhs_d, rhs_d); | 
| +  __ B(vs, &unordered);  // Overflow flag set if either is NaN. | 
| +  STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); | 
| +  __ Cset(result, gt);  // gt => 1, otherwise (lt, eq) => 0 (EQUAL). | 
| +  __ Csinv(result, result, xzr, ge);  // lt => -1, gt => 1, eq => 0. | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&unordered); | 
| +  ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC, | 
| +                     CompareIC::GENERIC); | 
| +  __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); | 
| + | 
| +  __ Bind(&maybe_undefined1); | 
| +  if (Token::IsOrderedRelationalCompareOp(op_)) { | 
| +    __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss); | 
| +    __ JumpIfSmi(lhs, &unordered); | 
| +    __ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2); | 
| +    __ B(&unordered); | 
| +  } | 
| + | 
| +  __ Bind(&maybe_undefined2); | 
| +  if (Token::IsOrderedRelationalCompareOp(op_)) { | 
| +    __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered); | 
| +  } | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { | 
| +  ASSERT(state_ == CompareIC::INTERNALIZED_STRING); | 
| +  ASM_LOCATION("ICCompareStub[InternalizedStrings]"); | 
| +  Label miss; | 
| + | 
| +  Register result = x0; | 
| +  Register rhs = x0; | 
| +  Register lhs = x1; | 
| + | 
| +  // Check that both operands are heap objects. | 
| +  __ JumpIfEitherSmi(lhs, rhs, &miss); | 
| + | 
| +  // Check that both operands are internalized strings. | 
| +  Register rhs_map = x10; | 
| +  Register lhs_map = x11; | 
| +  Register rhs_type = x10; | 
| +  Register lhs_type = x11; | 
| +  __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); | 
| +  __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); | 
| +  __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); | 
| +  __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); | 
| + | 
| +  STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); | 
| +  __ Orr(x12, lhs_type, rhs_type); | 
| +  __ TestAndBranchIfAnySet( | 
| +      x12, kIsNotStringMask | kIsNotInternalizedMask, &miss); | 
| + | 
| +  // Internalized strings are compared by identity. | 
| +  STATIC_ASSERT(EQUAL == 0); | 
| +  __ Cmp(lhs, rhs); | 
| +  __ Cset(result, ne); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { | 
| +  ASSERT(state_ == CompareIC::UNIQUE_NAME); | 
| +  ASM_LOCATION("ICCompareStub[UniqueNames]"); | 
| +  ASSERT(GetCondition() == eq); | 
| +  Label miss; | 
| + | 
| +  Register result = x0; | 
| +  Register rhs = x0; | 
| +  Register lhs = x1; | 
| + | 
| +  Register lhs_instance_type = w2; | 
| +  Register rhs_instance_type = w3; | 
| + | 
| +  // Check that both operands are heap objects. | 
| +  __ JumpIfEitherSmi(lhs, rhs, &miss); | 
| + | 
| +  // Check that both operands are unique names. This leaves the instance | 
| +  // types loaded in tmp1 and tmp2. | 
| +  __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset)); | 
| +  __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset)); | 
| +  __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); | 
| +  __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset)); | 
| + | 
| +  // To avoid a miss, each instance type should be either SYMBOL_TYPE or it | 
| +  // should have kInternalizedTag set. | 
| +  __ JumpIfNotUniqueName(lhs_instance_type, &miss); | 
| +  __ JumpIfNotUniqueName(rhs_instance_type, &miss); | 
| + | 
| +  // Unique names are compared by identity. | 
| +  STATIC_ASSERT(EQUAL == 0); | 
| +  __ Cmp(lhs, rhs); | 
| +  __ Cset(result, ne); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateStrings(MacroAssembler* masm) { | 
| +  ASSERT(state_ == CompareIC::STRING); | 
| +  ASM_LOCATION("ICCompareStub[Strings]"); | 
| + | 
| +  Label miss; | 
| + | 
| +  bool equality = Token::IsEqualityOp(op_); | 
| + | 
| +  Register result = x0; | 
| +  Register rhs = x0; | 
| +  Register lhs = x1; | 
| + | 
| +  // Check that both operands are heap objects. | 
| +  __ JumpIfEitherSmi(rhs, lhs, &miss); | 
| + | 
| +  // Check that both operands are strings. | 
| +  Register rhs_map = x10; | 
| +  Register lhs_map = x11; | 
| +  Register rhs_type = x10; | 
| +  Register lhs_type = x11; | 
| +  __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); | 
| +  __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); | 
| +  __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); | 
| +  __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); | 
| +  STATIC_ASSERT(kNotStringTag != 0); | 
| +  __ Orr(x12, lhs_type, rhs_type); | 
| +  __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss); | 
| + | 
| +  // Fast check for identical strings. | 
| +  Label not_equal; | 
| +  __ Cmp(lhs, rhs); | 
| +  __ B(ne, ¬_equal); | 
| +  __ Mov(result, EQUAL); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(¬_equal); | 
| +  // Handle not identical strings | 
| + | 
| +  // Check that both strings are internalized strings. If they are, we're done | 
| +  // because we already know they are not identical. We know they are both | 
| +  // strings. | 
| +  if (equality) { | 
| +    ASSERT(GetCondition() == eq); | 
| +    STATIC_ASSERT(kInternalizedTag == 0); | 
| +    Label not_internalized_strings; | 
| +    __ Orr(x12, lhs_type, rhs_type); | 
| +    __ TestAndBranchIfAnySet( | 
| +        x12, kIsNotInternalizedMask, ¬_internalized_strings); | 
| +    // Result is in rhs (x0), and not EQUAL, as rhs is not a smi. | 
| +    __ Ret(); | 
| +    __ Bind(¬_internalized_strings); | 
| +  } | 
| + | 
| +  // Check that both strings are sequential ASCII. | 
| +  Label runtime; | 
| +  __ JumpIfBothInstanceTypesAreNotSequentialAscii( | 
| +      lhs_type, rhs_type, x12, x13, &runtime); | 
| + | 
| +  // Compare flat ASCII strings. Returns when done. | 
| +  if (equality) { | 
| +    StringCompareStub::GenerateFlatAsciiStringEquals( | 
| +        masm, lhs, rhs, x10, x11, x12); | 
| +  } else { | 
| +    StringCompareStub::GenerateCompareFlatAsciiStrings( | 
| +        masm, lhs, rhs, x10, x11, x12, x13); | 
| +  } | 
| + | 
| +  // Handle more complex cases in runtime. | 
| +  __ Bind(&runtime); | 
| +  __ Push(lhs, rhs); | 
| +  if (equality) { | 
| +    __ TailCallRuntime(Runtime::kStringEquals, 2, 1); | 
| +  } else { | 
| +    __ TailCallRuntime(Runtime::kStringCompare, 2, 1); | 
| +  } | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateObjects(MacroAssembler* masm) { | 
| +  ASSERT(state_ == CompareIC::OBJECT); | 
| +  ASM_LOCATION("ICCompareStub[Objects]"); | 
| + | 
| +  Label miss; | 
| + | 
| +  Register result = x0; | 
| +  Register rhs = x0; | 
| +  Register lhs = x1; | 
| + | 
| +  __ JumpIfEitherSmi(rhs, lhs, &miss); | 
| + | 
| +  __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss); | 
| +  __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss); | 
| + | 
| +  ASSERT(GetCondition() == eq); | 
| +  __ Sub(result, rhs, lhs); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { | 
| +  ASM_LOCATION("ICCompareStub[KnownObjects]"); | 
| + | 
| +  Label miss; | 
| + | 
| +  Register result = x0; | 
| +  Register rhs = x0; | 
| +  Register lhs = x1; | 
| + | 
| +  __ JumpIfEitherSmi(rhs, lhs, &miss); | 
| + | 
| +  Register rhs_map = x10; | 
| +  Register lhs_map = x11; | 
| +  __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); | 
| +  __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); | 
| +  __ Cmp(rhs_map, Operand(known_map_)); | 
| +  __ B(ne, &miss); | 
| +  __ Cmp(lhs_map, Operand(known_map_)); | 
| +  __ B(ne, &miss); | 
| + | 
| +  __ Sub(result, rhs, lhs); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&miss); | 
| +  GenerateMiss(masm); | 
| +} | 
| + | 
| + | 
| +// This method handles the case where a compare stub had the wrong | 
| +// implementation. It calls a miss handler, which re-writes the stub. All other | 
| +// ICCompareStub::Generate* methods should fall back into this one if their | 
| +// operands were not the expected types. | 
| +void ICCompareStub::GenerateMiss(MacroAssembler* masm) { | 
| +  ASM_LOCATION("ICCompareStub[Miss]"); | 
| + | 
| +  Register stub_entry = x11; | 
| +  { | 
| +    ExternalReference miss = | 
| +      ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); | 
| + | 
| +    FrameScope scope(masm, StackFrame::INTERNAL); | 
| +    Register op = x10; | 
| +    Register left = x1; | 
| +    Register right = x0; | 
| +    // Preserve some caller-saved registers. | 
| +    __ Push(x1, x0, lr); | 
| +    // Push the arguments. | 
| +    __ Mov(op, Operand(Smi::FromInt(op_))); | 
| +    __ Push(left, right, op); | 
| + | 
| +    // Call the miss handler. This also pops the arguments. | 
| +    __ CallExternalReference(miss, 3); | 
| + | 
| +    // Compute the entry point of the rewritten stub. | 
| +    __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag); | 
| +    // Restore caller-saved registers. | 
| +    __ Pop(lr, x0, x1); | 
| +  } | 
| + | 
| +  // Tail-call to the new stub. | 
| +  __ Jump(stub_entry); | 
| +} | 
| + | 
| + | 
| +void StringHelper::GenerateHashInit(MacroAssembler* masm, | 
| +                                    Register hash, | 
| +                                    Register character) { | 
| +  ASSERT(!AreAliased(hash, character)); | 
| + | 
| +  // hash = character + (character << 10); | 
| +  __ LoadRoot(hash, Heap::kHashSeedRootIndex); | 
| +  // Untag smi seed and add the character. | 
| +  __ Add(hash, character, Operand(hash, LSR, kSmiShift)); | 
| + | 
| +  // Compute hashes modulo 2^32 using a 32-bit W register. | 
| +  Register hash_w = hash.W(); | 
| + | 
| +  // hash += hash << 10; | 
| +  __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); | 
| +  // hash ^= hash >> 6; | 
| +  __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); | 
| +} | 
| + | 
| + | 
| +void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, | 
| +                                            Register hash, | 
| +                                            Register character) { | 
| +  ASSERT(!AreAliased(hash, character)); | 
| + | 
| +  // hash += character; | 
| +  __ Add(hash, hash, character); | 
| + | 
| +  // Compute hashes modulo 2^32 using a 32-bit W register. | 
| +  Register hash_w = hash.W(); | 
| + | 
| +  // hash += hash << 10; | 
| +  __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); | 
| +  // hash ^= hash >> 6; | 
| +  __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); | 
| +} | 
| + | 
| + | 
| +void StringHelper::GenerateHashGetHash(MacroAssembler* masm, | 
| +                                       Register hash, | 
| +                                       Register scratch) { | 
| +  // Compute hashes modulo 2^32 using a 32-bit W register. | 
| +  Register hash_w = hash.W(); | 
| +  Register scratch_w = scratch.W(); | 
| +  ASSERT(!AreAliased(hash_w, scratch_w)); | 
| + | 
| +  // hash += hash << 3; | 
| +  __ Add(hash_w, hash_w, Operand(hash_w, LSL, 3)); | 
| +  // hash ^= hash >> 11; | 
| +  __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11)); | 
| +  // hash += hash << 15; | 
| +  __ Add(hash_w, hash_w, Operand(hash_w, LSL, 15)); | 
| + | 
| +  __ Ands(hash_w, hash_w, String::kHashBitMask); | 
| + | 
| +  // if (hash == 0) hash = 27; | 
| +  __ Mov(scratch_w, StringHasher::kZeroHash); | 
| +  __ Csel(hash_w, scratch_w, hash_w, eq); | 
| +} | 
| + | 
| + | 
| +void SubStringStub::Generate(MacroAssembler* masm) { | 
| +  ASM_LOCATION("SubStringStub::Generate"); | 
| +  Label runtime; | 
| + | 
| +  // Stack frame on entry. | 
| +  //  lr: return address | 
| +  //  jssp[0]:  substring "to" offset | 
| +  //  jssp[8]:  substring "from" offset | 
| +  //  jssp[16]: pointer to string object | 
| + | 
| +  // This stub is called from the native-call %_SubString(...), so | 
| +  // nothing can be assumed about the arguments. It is tested that: | 
| +  //  "string" is a sequential string, | 
| +  //  both "from" and "to" are smis, and | 
| +  //  0 <= from <= to <= string.length (in debug mode.) | 
| +  // If any of these assumptions fail, we call the runtime system. | 
| + | 
| +  static const int kToOffset = 0 * kPointerSize; | 
| +  static const int kFromOffset = 1 * kPointerSize; | 
| +  static const int kStringOffset = 2 * kPointerSize; | 
| + | 
| +  Register to = x0; | 
| +  Register from = x15; | 
| +  Register input_string = x10; | 
| +  Register input_length = x11; | 
| +  Register input_type = x12; | 
| +  Register result_string = x0; | 
| +  Register result_length = x1; | 
| +  Register temp = x3; | 
| + | 
| +  __ Peek(to, kToOffset); | 
| +  __ Peek(from, kFromOffset); | 
| + | 
| +  // Check that both from and to are smis. If not, jump to runtime. | 
| +  __ JumpIfEitherNotSmi(from, to, &runtime); | 
| +  __ SmiUntag(from); | 
| +  __ SmiUntag(to); | 
| + | 
| +  // Calculate difference between from and to. If to < from, branch to runtime. | 
| +  __ Subs(result_length, to, from); | 
| +  __ B(mi, &runtime); | 
| + | 
| +  // Check from is positive. | 
| +  __ Tbnz(from, kWSignBit, &runtime); | 
| + | 
| +  // Make sure first argument is a string. | 
| +  __ Peek(input_string, kStringOffset); | 
| +  __ JumpIfSmi(input_string, &runtime); | 
| +  __ IsObjectJSStringType(input_string, input_type, &runtime); | 
| + | 
| +  Label single_char; | 
| +  __ Cmp(result_length, 1); | 
| +  __ B(eq, &single_char); | 
| + | 
| +  // Short-cut for the case of trivial substring. | 
| +  Label return_x0; | 
| +  __ Ldrsw(input_length, | 
| +           UntagSmiFieldMemOperand(input_string, String::kLengthOffset)); | 
| + | 
| +  __ Cmp(result_length, input_length); | 
| +  __ CmovX(x0, input_string, eq); | 
| +  // Return original string. | 
| +  __ B(eq, &return_x0); | 
| + | 
| +  // Longer than original string's length or negative: unsafe arguments. | 
| +  __ B(hi, &runtime); | 
| + | 
| +  // Shorter than original string's length: an actual substring. | 
| + | 
| +  //   x0   to               substring end character offset | 
| +  //   x1   result_length    length of substring result | 
| +  //   x10  input_string     pointer to input string object | 
| +  //   x10  unpacked_string  pointer to unpacked string object | 
| +  //   x11  input_length     length of input string | 
| +  //   x12  input_type       instance type of input string | 
| +  //   x15  from             substring start character offset | 
| + | 
| +  // Deal with different string types: update the index if necessary and put | 
| +  // the underlying string into register unpacked_string. | 
| +  Label underlying_unpacked, sliced_string, seq_or_external_string; | 
| +  Label update_instance_type; | 
| +  // If the string is not indirect, it can only be sequential or external. | 
| +  STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); | 
| +  STATIC_ASSERT(kIsIndirectStringMask != 0); | 
| + | 
| +  // Test for string types, and branch/fall through to appropriate unpacking | 
| +  // code. | 
| +  __ Tst(input_type, kIsIndirectStringMask); | 
| +  __ B(eq, &seq_or_external_string); | 
| +  __ Tst(input_type, kSlicedNotConsMask); | 
| +  __ B(ne, &sliced_string); | 
| + | 
| +  Register unpacked_string = input_string; | 
| + | 
| +  // Cons string. Check whether it is flat, then fetch first part. | 
| +  __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset)); | 
| +  __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime); | 
| +  __ Ldr(unpacked_string, | 
| +         FieldMemOperand(input_string, ConsString::kFirstOffset)); | 
| +  __ B(&update_instance_type); | 
| + | 
| +  __ Bind(&sliced_string); | 
| +  // Sliced string. Fetch parent and correct start index by offset. | 
| +  __ Ldrsw(temp, | 
| +           UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset)); | 
| +  __ Add(from, from, temp); | 
| +  __ Ldr(unpacked_string, | 
| +         FieldMemOperand(input_string, SlicedString::kParentOffset)); | 
| + | 
| +  __ Bind(&update_instance_type); | 
| +  __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset)); | 
| +  __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset)); | 
| +  // TODO(all): This generates "b #+0x4". Can these be optimised out? | 
| +  __ B(&underlying_unpacked); | 
| + | 
| +  __ Bind(&seq_or_external_string); | 
| +  // Sequential or external string. Registers unpacked_string and input_string | 
| +  // alias, so there's nothing to do here. | 
| + | 
| +  //   x0   result_string    pointer to result string object (uninit) | 
| +  //   x1   result_length    length of substring result | 
| +  //   x10  unpacked_string  pointer to unpacked string object | 
| +  //   x11  input_length     length of input string | 
| +  //   x12  input_type       instance type of input string | 
| +  //   x15  from             substring start character offset | 
| +  __ Bind(&underlying_unpacked); | 
| + | 
| +  if (FLAG_string_slices) { | 
| +    Label copy_routine; | 
| +    __ Cmp(result_length, SlicedString::kMinLength); | 
| +    // Short slice. Copy instead of slicing. | 
| +    __ B(lt, ©_routine); | 
| +    // Allocate new sliced string. At this point we do not reload the instance | 
| +    // type including the string encoding because we simply rely on the info | 
| +    // provided by the original string. It does not matter if the original | 
| +    // string's encoding is wrong because we always have to recheck encoding of | 
| +    // the newly created string's parent anyway due to externalized strings. | 
| +    Label two_byte_slice, set_slice_header; | 
| +    STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); | 
| +    STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); | 
| +    __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice); | 
| +    __ AllocateAsciiSlicedString(result_string, result_length, x3, x4, | 
| +                                 &runtime); | 
| +    __ B(&set_slice_header); | 
| + | 
| +    __ Bind(&two_byte_slice); | 
| +    __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4, | 
| +                                   &runtime); | 
| + | 
| +    __ Bind(&set_slice_header); | 
| +    __ SmiTag(from); | 
| +    __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset)); | 
| +    __ Str(unpacked_string, | 
| +           FieldMemOperand(result_string, SlicedString::kParentOffset)); | 
| +    __ B(&return_x0); | 
| + | 
| +    __ Bind(©_routine); | 
| +  } | 
| + | 
| +  //   x0   result_string    pointer to result string object (uninit) | 
| +  //   x1   result_length    length of substring result | 
| +  //   x10  unpacked_string  pointer to unpacked string object | 
| +  //   x11  input_length     length of input string | 
| +  //   x12  input_type       instance type of input string | 
| +  //   x13  unpacked_char0   pointer to first char of unpacked string (uninit) | 
| +  //   x13  substring_char0  pointer to first char of substring (uninit) | 
| +  //   x14  result_char0     pointer to first char of result (uninit) | 
| +  //   x15  from             substring start character offset | 
| +  Register unpacked_char0 = x13; | 
| +  Register substring_char0 = x13; | 
| +  Register result_char0 = x14; | 
| +  Label two_byte_sequential, sequential_string, allocate_result; | 
| +  STATIC_ASSERT(kExternalStringTag != 0); | 
| +  STATIC_ASSERT(kSeqStringTag == 0); | 
| + | 
| +  __ Tst(input_type, kExternalStringTag); | 
| +  __ B(eq, &sequential_string); | 
| + | 
| +  __ Tst(input_type, kShortExternalStringTag); | 
| +  __ B(ne, &runtime); | 
| +  __ Ldr(unpacked_char0, | 
| +         FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset)); | 
| +  // unpacked_char0 points to the first character of the underlying string. | 
| +  __ B(&allocate_result); | 
| + | 
| +  __ Bind(&sequential_string); | 
| +  // Locate first character of underlying subject string. | 
| +  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | 
| +  __ Add(unpacked_char0, unpacked_string, | 
| +         SeqOneByteString::kHeaderSize - kHeapObjectTag); | 
| + | 
| +  __ Bind(&allocate_result); | 
| +  // Sequential ASCII string. Allocate the result. | 
| +  STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); | 
| +  __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential); | 
| + | 
| +  // Allocate and copy the resulting ASCII string. | 
| +  __ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime); | 
| + | 
| +  // Locate first character of substring to copy. | 
| +  __ Add(substring_char0, unpacked_char0, from); | 
| + | 
| +  // Locate first character of result. | 
| +  __ Add(result_char0, result_string, | 
| +         SeqOneByteString::kHeaderSize - kHeapObjectTag); | 
| + | 
| +  STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 
| +  __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); | 
| +  __ B(&return_x0); | 
| + | 
| +  // Allocate and copy the resulting two-byte string. | 
| +  __ Bind(&two_byte_sequential); | 
| +  __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime); | 
| + | 
| +  // Locate first character of substring to copy. | 
| +  __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1)); | 
| + | 
| +  // Locate first character of result. | 
| +  __ Add(result_char0, result_string, | 
| +         SeqTwoByteString::kHeaderSize - kHeapObjectTag); | 
| + | 
| +  STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 
| +  __ Add(result_length, result_length, result_length); | 
| +  __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); | 
| + | 
| +  __ Bind(&return_x0); | 
| +  Counters* counters = masm->isolate()->counters(); | 
| +  __ IncrementCounter(counters->sub_string_native(), 1, x3, x4); | 
| +  __ Drop(3); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&runtime); | 
| +  __ TailCallRuntime(Runtime::kSubString, 3, 1); | 
| + | 
| +  __ bind(&single_char); | 
| +  // x1: result_length | 
| +  // x10: input_string | 
| +  // x12: input_type | 
| +  // x15: from (untagged) | 
| +  __ SmiTag(from); | 
| +  StringCharAtGenerator generator( | 
| +      input_string, from, result_length, x0, | 
| +      &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); | 
| +  generator.GenerateFast(masm); | 
| +  // TODO(jbramley): Why doesn't this jump to return_x0? | 
| +  __ Drop(3); | 
| +  __ Ret(); | 
| +  generator.SkipSlow(masm, &runtime); | 
| +} | 
| + | 
| + | 
| +void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, | 
| +                                                      Register left, | 
| +                                                      Register right, | 
| +                                                      Register scratch1, | 
| +                                                      Register scratch2, | 
| +                                                      Register scratch3) { | 
| +  ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3)); | 
| +  Register result = x0; | 
| +  Register left_length = scratch1; | 
| +  Register right_length = scratch2; | 
| + | 
| +  // Compare lengths. If lengths differ, strings can't be equal. Lengths are | 
| +  // smis, and don't need to be untagged. | 
| +  Label strings_not_equal, check_zero_length; | 
| +  __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset)); | 
| +  __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset)); | 
| +  __ Cmp(left_length, right_length); | 
| +  __ B(eq, &check_zero_length); | 
| + | 
| +  __ Bind(&strings_not_equal); | 
| +  __ Mov(result, Operand(Smi::FromInt(NOT_EQUAL))); | 
| +  __ Ret(); | 
| + | 
| +  // Check if the length is zero. If so, the strings must be equal (and empty.) | 
| +  Label compare_chars; | 
| +  __ Bind(&check_zero_length); | 
| +  STATIC_ASSERT(kSmiTag == 0); | 
| +  __ Cbnz(left_length, &compare_chars); | 
| +  __ Mov(result, Operand(Smi::FromInt(EQUAL))); | 
| +  __ Ret(); | 
| + | 
| +  // Compare characters. Falls through if all characters are equal. | 
| +  __ Bind(&compare_chars); | 
| +  GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2, | 
| +                                scratch3, &strings_not_equal); | 
| + | 
| +  // Characters in strings are equal. | 
| +  __ Mov(result, Operand(Smi::FromInt(EQUAL))); | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, | 
| +                                                        Register left, | 
| +                                                        Register right, | 
| +                                                        Register scratch1, | 
| +                                                        Register scratch2, | 
| +                                                        Register scratch3, | 
| +                                                        Register scratch4) { | 
| +  ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4)); | 
| +  Label result_not_equal, compare_lengths; | 
| + | 
| +  // Find minimum length and length difference. | 
| +  Register length_delta = scratch3; | 
| +  __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); | 
| +  __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); | 
| +  __ Subs(length_delta, scratch1, scratch2); | 
| + | 
| +  Register min_length = scratch1; | 
| +  __ Csel(min_length, scratch2, scratch1, gt); | 
| +  __ Cbz(min_length, &compare_lengths); | 
| + | 
| +  // Compare loop. | 
| +  GenerateAsciiCharsCompareLoop(masm, | 
| +                                left, right, min_length, scratch2, scratch4, | 
| +                                &result_not_equal); | 
| + | 
| +  // Compare lengths - strings up to min-length are equal. | 
| +  __ Bind(&compare_lengths); | 
| + | 
| +  ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); | 
| + | 
| +  // Use length_delta as result if it's zero. | 
| +  Register result = x0; | 
| +  __ Subs(result, length_delta, 0); | 
| + | 
| +  __ Bind(&result_not_equal); | 
| +  Register greater = x10; | 
| +  Register less = x11; | 
| +  __ Mov(greater, Operand(Smi::FromInt(GREATER))); | 
| +  __ Mov(less, Operand(Smi::FromInt(LESS))); | 
| +  __ CmovX(result, greater, gt); | 
| +  __ CmovX(result, less, lt); | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void StringCompareStub::GenerateAsciiCharsCompareLoop( | 
| +    MacroAssembler* masm, | 
| +    Register left, | 
| +    Register right, | 
| +    Register length, | 
| +    Register scratch1, | 
| +    Register scratch2, | 
| +    Label* chars_not_equal) { | 
| +  ASSERT(!AreAliased(left, right, length, scratch1, scratch2)); | 
| + | 
| +  // Change index to run from -length to -1 by adding length to string | 
| +  // start. This means that loop ends when index reaches zero, which | 
| +  // doesn't need an additional compare. | 
| +  __ SmiUntag(length); | 
| +  __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag); | 
| +  __ Add(left, left, scratch1); | 
| +  __ Add(right, right, scratch1); | 
| + | 
| +  Register index = length; | 
| +  __ Neg(index, length);  // index = -length; | 
| + | 
| +  // Compare loop | 
| +  Label loop; | 
| +  __ Bind(&loop); | 
| +  __ Ldrb(scratch1, MemOperand(left, index)); | 
| +  __ Ldrb(scratch2, MemOperand(right, index)); | 
| +  __ Cmp(scratch1, scratch2); | 
| +  __ B(ne, chars_not_equal); | 
| +  __ Add(index, index, 1); | 
| +  __ Cbnz(index, &loop); | 
| +} | 
| + | 
| + | 
| +void StringCompareStub::Generate(MacroAssembler* masm) { | 
| +  Label runtime; | 
| + | 
| +  Counters* counters = masm->isolate()->counters(); | 
| + | 
| +  // Stack frame on entry. | 
| +  //  sp[0]: right string | 
| +  //  sp[8]: left string | 
| +  Register right = x10; | 
| +  Register left = x11; | 
| +  Register result = x0; | 
| +  __ Pop(right, left); | 
| + | 
| +  Label not_same; | 
| +  __ Subs(result, right, left); | 
| +  __ B(ne, ¬_same); | 
| +  STATIC_ASSERT(EQUAL == 0); | 
| +  __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(¬_same); | 
| + | 
| +  // Check that both objects are sequential ASCII strings. | 
| +  __ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime); | 
| + | 
| +  // Compare flat ASCII strings natively. Remove arguments from stack first, | 
| +  // as this function will generate a return. | 
| +  __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); | 
| +  GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15); | 
| + | 
| +  __ Bind(&runtime); | 
| + | 
| +  // Push arguments back on to the stack. | 
| +  //  sp[0] = right string | 
| +  //  sp[8] = left string. | 
| +  __ Push(left, right); | 
| + | 
| +  // Call the runtime. | 
| +  // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer. | 
| +  __ TailCallRuntime(Runtime::kStringCompare, 2, 1); | 
| +} | 
| + | 
| + | 
| +void ArrayPushStub::Generate(MacroAssembler* masm) { | 
| +  Register receiver = x0; | 
| + | 
| +  int argc = arguments_count(); | 
| + | 
| +  if (argc == 0) { | 
| +    // Nothing to do, just return the length. | 
| +    __ Ldr(x0, FieldMemOperand(receiver, JSArray::kLengthOffset)); | 
| +    __ Drop(argc + 1); | 
| +    __ Ret(); | 
| +    return; | 
| +  } | 
| + | 
| +  Isolate* isolate = masm->isolate(); | 
| + | 
| +  if (argc != 1) { | 
| +    __ TailCallExternalReference( | 
| +        ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); | 
| +    return; | 
| +  } | 
| + | 
| +  Label call_builtin, attempt_to_grow_elements, with_write_barrier; | 
| + | 
| +  Register elements_length = x8; | 
| +  Register length = x7; | 
| +  Register elements = x6; | 
| +  Register end_elements = x5; | 
| +  Register value = x4; | 
| +  // Get the elements array of the object. | 
| +  __ Ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); | 
| + | 
| +  if (IsFastSmiOrObjectElementsKind(elements_kind())) { | 
| +    // Check that the elements are in fast mode and writable. | 
| +    __ CheckMap(elements, | 
| +                x10, | 
| +                Heap::kFixedArrayMapRootIndex, | 
| +                &call_builtin, | 
| +                DONT_DO_SMI_CHECK); | 
| +  } | 
| + | 
| +  // Get the array's length and calculate new length. | 
| +  __ Ldr(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); | 
| +  STATIC_ASSERT(kSmiTag == 0); | 
| +  __ Add(length, length, Operand(Smi::FromInt(argc))); | 
| + | 
| +  // Check if we could survive without allocation. | 
| +  __ Ldr(elements_length, | 
| +         FieldMemOperand(elements, FixedArray::kLengthOffset)); | 
| +  __ Cmp(length, elements_length); | 
| + | 
| +  const int kEndElementsOffset = | 
| +      FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize; | 
| + | 
| +  if (IsFastSmiOrObjectElementsKind(elements_kind())) { | 
| +    __ B(gt, &attempt_to_grow_elements); | 
| + | 
| +    // Check if value is a smi. | 
| +    __ Peek(value, (argc - 1) * kPointerSize); | 
| +    __ JumpIfNotSmi(value, &with_write_barrier); | 
| + | 
| +    // Store the value. | 
| +    // We may need a register containing the address end_elements below, | 
| +    // so write back the value in end_elements. | 
| +    __ Add(end_elements, elements, | 
| +           Operand::UntagSmiAndScale(length, kPointerSizeLog2)); | 
| +    __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); | 
| +  } else { | 
| +    // TODO(all): ARM has a redundant cmp here. | 
| +    __ B(gt, &call_builtin); | 
| + | 
| +    __ Peek(value, (argc - 1) * kPointerSize); | 
| +    __ StoreNumberToDoubleElements(value, length, elements, x10, d0, d1, | 
| +                                   &call_builtin, argc * kDoubleSize); | 
| +  } | 
| + | 
| +  // Save new length. | 
| +  __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); | 
| + | 
| +  // Return length. | 
| +  __ Drop(argc + 1); | 
| +  __ Mov(x0, length); | 
| +  __ Ret(); | 
| + | 
| +  if (IsFastDoubleElementsKind(elements_kind())) { | 
| +    __ Bind(&call_builtin); | 
| +    __ TailCallExternalReference( | 
| +        ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); | 
| +    return; | 
| +  } | 
| + | 
| +  __ Bind(&with_write_barrier); | 
| + | 
| +  if (IsFastSmiElementsKind(elements_kind())) { | 
| +    if (FLAG_trace_elements_transitions) { | 
| +      __ B(&call_builtin); | 
| +    } | 
| + | 
| +    __ Ldr(x10, FieldMemOperand(value, HeapObject::kMapOffset)); | 
| +    __ JumpIfHeapNumber(x10, &call_builtin); | 
| + | 
| +    ElementsKind target_kind = IsHoleyElementsKind(elements_kind()) | 
| +        ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; | 
| +    __ Ldr(x10, GlobalObjectMemOperand()); | 
| +    __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kNativeContextOffset)); | 
| +    __ Ldr(x10, ContextMemOperand(x10, Context::JS_ARRAY_MAPS_INDEX)); | 
| +    const int header_size = FixedArrayBase::kHeaderSize; | 
| +    // Verify that the object can be transitioned in place. | 
| +    const int origin_offset = header_size + elements_kind() * kPointerSize; | 
| +    __ ldr(x11, FieldMemOperand(receiver, origin_offset)); | 
| +    __ ldr(x12, FieldMemOperand(x10, HeapObject::kMapOffset)); | 
| +    __ cmp(x11, x12); | 
| +    __ B(ne, &call_builtin); | 
| + | 
| +    const int target_offset = header_size + target_kind * kPointerSize; | 
| +    __ Ldr(x10, FieldMemOperand(x10, target_offset)); | 
| +    __ Mov(x11, receiver); | 
| +    ElementsTransitionGenerator::GenerateMapChangeElementsTransition( | 
| +        masm, DONT_TRACK_ALLOCATION_SITE, NULL); | 
| +  } | 
| + | 
| +  // Save new length. | 
| +  __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); | 
| + | 
| +  // Store the value. | 
| +  // We may need a register containing the address end_elements below, | 
| +  // so write back the value in end_elements. | 
| +  __ Add(end_elements, elements, | 
| +         Operand::UntagSmiAndScale(length, kPointerSizeLog2)); | 
| +  __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); | 
| + | 
| +  __ RecordWrite(elements, | 
| +                 end_elements, | 
| +                 value, | 
| +                 kLRHasNotBeenSaved, | 
| +                 kDontSaveFPRegs, | 
| +                 EMIT_REMEMBERED_SET, | 
| +                 OMIT_SMI_CHECK); | 
| +  __ Drop(argc + 1); | 
| +  __ Mov(x0, length); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&attempt_to_grow_elements); | 
| + | 
| +  if (!FLAG_inline_new) { | 
| +    __ B(&call_builtin); | 
| +  } | 
| + | 
| +  Register argument = x2; | 
| +  __ Peek(argument, (argc - 1) * kPointerSize); | 
| +  // Growing elements that are SMI-only requires special handling in case | 
| +  // the new element is non-Smi. For now, delegate to the builtin. | 
| +  if (IsFastSmiElementsKind(elements_kind())) { | 
| +    __ JumpIfNotSmi(argument, &call_builtin); | 
| +  } | 
| + | 
| +  // We could be lucky and the elements array could be at the top of new-space. | 
| +  // In this case we can just grow it in place by moving the allocation pointer | 
| +  // up. | 
| +  ExternalReference new_space_allocation_top = | 
| +      ExternalReference::new_space_allocation_top_address(isolate); | 
| +  ExternalReference new_space_allocation_limit = | 
| +      ExternalReference::new_space_allocation_limit_address(isolate); | 
| + | 
| +  const int kAllocationDelta = 4; | 
| +  ASSERT(kAllocationDelta >= argc); | 
| +  Register allocation_top_addr = x5; | 
| +  Register allocation_top = x9; | 
| +  // Load top and check if it is the end of elements. | 
| +  __ Add(end_elements, elements, | 
| +         Operand::UntagSmiAndScale(length, kPointerSizeLog2)); | 
| +  __ Add(end_elements, end_elements, kEndElementsOffset); | 
| +  __ Mov(allocation_top_addr, Operand(new_space_allocation_top)); | 
| +  __ Ldr(allocation_top, MemOperand(allocation_top_addr)); | 
| +  __ Cmp(end_elements, allocation_top); | 
| +  __ B(ne, &call_builtin); | 
| + | 
| +  __ Mov(x10, Operand(new_space_allocation_limit)); | 
| +  __ Ldr(x10, MemOperand(x10)); | 
| +  __ Add(allocation_top, allocation_top, kAllocationDelta * kPointerSize); | 
| +  __ Cmp(allocation_top, x10); | 
| +  __ B(hi, &call_builtin); | 
| + | 
| +  // We fit and could grow elements. | 
| +  // Update new_space_allocation_top. | 
| +  __ Str(allocation_top, MemOperand(allocation_top_addr)); | 
| +  // Push the argument. | 
| +  __ Str(argument, MemOperand(end_elements)); | 
| +  // Fill the rest with holes. | 
| +  __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); | 
| +  for (int i = 1; i < kAllocationDelta; i++) { | 
| +    // TODO(all): Try to use stp here. | 
| +    __ Str(x10, MemOperand(end_elements, i * kPointerSize)); | 
| +  } | 
| + | 
| +  // Update elements' and array's sizes. | 
| +  __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); | 
| +  __ Add(elements_length, | 
| +         elements_length, | 
| +         Operand(Smi::FromInt(kAllocationDelta))); | 
| +  __ Str(elements_length, | 
| +         FieldMemOperand(elements, FixedArray::kLengthOffset)); | 
| + | 
| +  // Elements are in new space, so write barrier is not required. | 
| +  __ Drop(argc + 1); | 
| +  __ Mov(x0, length); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&call_builtin); | 
| +  __ TailCallExternalReference( | 
| +      ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); | 
| +} | 
| + | 
| + | 
| +void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { | 
| +  // ----------- S t a t e ------------- | 
| +  //  -- x1    : left | 
| +  //  -- x0    : right | 
| +  //  -- lr    : return address | 
| +  // ----------------------------------- | 
| +  Isolate* isolate = masm->isolate(); | 
| + | 
| +  // Load x2 with the allocation site.  We stick an undefined dummy value here | 
| +  // and replace it with the real allocation site later when we instantiate this | 
| +  // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). | 
| +  __ LoadObject(x2, handle(isolate->heap()->undefined_value())); | 
| + | 
| +  // Make sure that we actually patched the allocation site. | 
| +  if (FLAG_debug_code) { | 
| +    __ AssertNotSmi(x2, kExpectedAllocationSite); | 
| +    __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset)); | 
| +    __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex, | 
| +                            kExpectedAllocationSite); | 
| +  } | 
| + | 
| +  // Tail call into the stub that handles binary operations with allocation | 
| +  // sites. | 
| +  BinaryOpWithAllocationSiteStub stub(state_); | 
| +  __ TailCallStub(&stub); | 
| +} | 
| + | 
| + | 
| +bool CodeStub::CanUseFPRegisters() { | 
| +  // FP registers always available on A64. | 
| +  return true; | 
| +} | 
| + | 
| + | 
| +void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { | 
| +  // We need some extra registers for this stub, they have been allocated | 
| +  // but we need to save them before using them. | 
| +  regs_.Save(masm); | 
| + | 
| +  if (remembered_set_action_ == EMIT_REMEMBERED_SET) { | 
| +    Label dont_need_remembered_set; | 
| + | 
| +    Register value = regs_.scratch0(); | 
| +    __ Ldr(value, MemOperand(regs_.address())); | 
| +    __ JumpIfNotInNewSpace(value, &dont_need_remembered_set); | 
| + | 
| +    __ CheckPageFlagSet(regs_.object(), | 
| +                        value, | 
| +                        1 << MemoryChunk::SCAN_ON_SCAVENGE, | 
| +                        &dont_need_remembered_set); | 
| + | 
| +    // First notify the incremental marker if necessary, then update the | 
| +    // remembered set. | 
| +    CheckNeedsToInformIncrementalMarker( | 
| +        masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); | 
| +    InformIncrementalMarker(masm, mode); | 
| +    regs_.Restore(masm);  // Restore the extra scratch registers we used. | 
| +    __ RememberedSetHelper(object_, | 
| +                           address_, | 
| +                           value_, | 
| +                           save_fp_regs_mode_, | 
| +                           MacroAssembler::kReturnAtEnd); | 
| + | 
| +    __ Bind(&dont_need_remembered_set); | 
| +  } | 
| + | 
| +  CheckNeedsToInformIncrementalMarker( | 
| +      masm, kReturnOnNoNeedToInformIncrementalMarker, mode); | 
| +  InformIncrementalMarker(masm, mode); | 
| +  regs_.Restore(masm);  // Restore the extra scratch registers we used. | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { | 
| +  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); | 
| +  Register address = | 
| +    x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address(); | 
| +  ASSERT(!address.Is(regs_.object())); | 
| +  ASSERT(!address.Is(x0)); | 
| +  __ Mov(address, regs_.address()); | 
| +  __ Mov(x0, regs_.object()); | 
| +  __ Mov(x1, address); | 
| +  __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate()))); | 
| + | 
| +  AllowExternalCallThatCantCauseGC scope(masm); | 
| +  ExternalReference function = (mode == INCREMENTAL_COMPACTION) | 
| +      ? ExternalReference::incremental_evacuation_record_write_function( | 
| +          masm->isolate()) | 
| +      : ExternalReference::incremental_marking_record_write_function( | 
| +          masm->isolate()); | 
| +  __ CallCFunction(function, 3, 0); | 
| + | 
| +  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); | 
| +} | 
| + | 
| + | 
| +void RecordWriteStub::CheckNeedsToInformIncrementalMarker( | 
| +    MacroAssembler* masm, | 
| +    OnNoNeedToInformIncrementalMarker on_no_need, | 
| +    Mode mode) { | 
| +  Label on_black; | 
| +  Label need_incremental; | 
| +  Label need_incremental_pop_scratch; | 
| + | 
| +  Register mem_chunk = regs_.scratch0(); | 
| +  Register counter = regs_.scratch1(); | 
| +  __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask); | 
| +  __ Ldr(counter, | 
| +         MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); | 
| +  __ Subs(counter, counter, 1); | 
| +  __ Str(counter, | 
| +         MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); | 
| +  __ B(mi, &need_incremental); | 
| + | 
| +  // If the object is not black we don't have to inform the incremental marker. | 
| +  __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); | 
| + | 
| +  regs_.Restore(masm);  // Restore the extra scratch registers we used. | 
| +  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { | 
| +    __ RememberedSetHelper(object_, | 
| +                           address_, | 
| +                           value_, | 
| +                           save_fp_regs_mode_, | 
| +                           MacroAssembler::kReturnAtEnd); | 
| +  } else { | 
| +    __ Ret(); | 
| +  } | 
| + | 
| +  __ Bind(&on_black); | 
| +  // Get the value from the slot. | 
| +  Register value = regs_.scratch0(); | 
| +  __ Ldr(value, MemOperand(regs_.address())); | 
| + | 
| +  if (mode == INCREMENTAL_COMPACTION) { | 
| +    Label ensure_not_white; | 
| + | 
| +    __ CheckPageFlagClear(value, | 
| +                          regs_.scratch1(), | 
| +                          MemoryChunk::kEvacuationCandidateMask, | 
| +                          &ensure_not_white); | 
| + | 
| +    __ CheckPageFlagClear(regs_.object(), | 
| +                          regs_.scratch1(), | 
| +                          MemoryChunk::kSkipEvacuationSlotsRecordingMask, | 
| +                          &need_incremental); | 
| + | 
| +    __ Bind(&ensure_not_white); | 
| +  } | 
| + | 
| +  // We need extra registers for this, so we push the object and the address | 
| +  // register temporarily. | 
| +  __ Push(regs_.address(), regs_.object()); | 
| +  __ EnsureNotWhite(value, | 
| +                    regs_.scratch1(),  // Scratch. | 
| +                    regs_.object(),    // Scratch. | 
| +                    regs_.address(),   // Scratch. | 
| +                    regs_.scratch2(),  // Scratch. | 
| +                    &need_incremental_pop_scratch); | 
| +  __ Pop(regs_.object(), regs_.address()); | 
| + | 
| +  regs_.Restore(masm);  // Restore the extra scratch registers we used. | 
| +  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { | 
| +    __ RememberedSetHelper(object_, | 
| +                           address_, | 
| +                           value_, | 
| +                           save_fp_regs_mode_, | 
| +                           MacroAssembler::kReturnAtEnd); | 
| +  } else { | 
| +    __ Ret(); | 
| +  } | 
| + | 
| +  __ Bind(&need_incremental_pop_scratch); | 
| +  __ Pop(regs_.object(), regs_.address()); | 
| + | 
| +  __ Bind(&need_incremental); | 
| +  // Fall through when we need to inform the incremental marker. | 
| +} | 
| + | 
| + | 
| +void RecordWriteStub::Generate(MacroAssembler* masm) { | 
| +  Label skip_to_incremental_noncompacting; | 
| +  Label skip_to_incremental_compacting; | 
| + | 
| +  // We patch these two first instructions back and forth between a nop and | 
| +  // real branch when we start and stop incremental heap marking. | 
| +  // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops | 
| +  // are generated. | 
| +  // See RecordWriteStub::Patch for details. | 
| +  { | 
| +    InstructionAccurateScope scope(masm, 2); | 
| +    __ adr(xzr, &skip_to_incremental_noncompacting); | 
| +    __ adr(xzr, &skip_to_incremental_compacting); | 
| +  } | 
| + | 
| +  if (remembered_set_action_ == EMIT_REMEMBERED_SET) { | 
| +    __ RememberedSetHelper(object_, | 
| +                           address_, | 
| +                           value_, | 
| +                           save_fp_regs_mode_, | 
| +                           MacroAssembler::kReturnAtEnd); | 
| +  } | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&skip_to_incremental_noncompacting); | 
| +  GenerateIncremental(masm, INCREMENTAL); | 
| + | 
| +  __ Bind(&skip_to_incremental_compacting); | 
| +  GenerateIncremental(masm, INCREMENTAL_COMPACTION); | 
| +} | 
| + | 
| + | 
| +void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { | 
| +  // TODO(all): Possible optimisations in this function: | 
| +  // 1. Merge CheckFastElements and CheckFastSmiElements, so that the map | 
| +  //    bitfield is loaded only once. | 
| +  // 2. Refactor the Ldr/Add sequence at the start of fast_elements and | 
| +  //    smi_element. | 
| + | 
| +  // x0     value            element value to store | 
| +  // x3     index_smi        element index as smi | 
| +  // sp[0]  array_index_smi  array literal index in function as smi | 
| +  // sp[1]  array            array literal | 
| + | 
| +  Register value = x0; | 
| +  Register index_smi = x3; | 
| + | 
| +  Register array = x1; | 
| +  Register array_map = x2; | 
| +  Register array_index_smi = x4; | 
| +  __ PeekPair(array_index_smi, array, 0); | 
| +  __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset)); | 
| + | 
| +  Label double_elements, smi_element, fast_elements, slow_elements; | 
| +  __ CheckFastElements(array_map, x10, &double_elements); | 
| +  __ JumpIfSmi(value, &smi_element); | 
| +  __ CheckFastSmiElements(array_map, x10, &fast_elements); | 
| + | 
| +  // Store into the array literal requires an elements transition. Call into | 
| +  // the runtime. | 
| +  __ Bind(&slow_elements); | 
| +  __ Push(array, index_smi, value); | 
| +  __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | 
| +  __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset)); | 
| +  __ Push(x11, array_index_smi); | 
| +  __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); | 
| + | 
| +  // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. | 
| +  __ Bind(&fast_elements); | 
| +  __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); | 
| +  __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); | 
| +  __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag); | 
| +  __ Str(value, MemOperand(x11)); | 
| +  // Update the write barrier for the array store. | 
| +  __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs, | 
| +                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); | 
| +  __ Ret(); | 
| + | 
| +  // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, | 
| +  // and value is Smi. | 
| +  __ Bind(&smi_element); | 
| +  __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); | 
| +  __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); | 
| +  __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize)); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(&double_elements); | 
| +  __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); | 
| +  __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0, d1, | 
| +                                 &slow_elements); | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { | 
| +  // TODO(jbramley): The ARM code leaves the (shifted) offset in r1. Why? | 
| +  CEntryStub ces(1, kSaveFPRegs); | 
| +  __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); | 
| +  int parameter_count_offset = | 
| +      StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; | 
| +  __ Ldr(x1, MemOperand(fp, parameter_count_offset)); | 
| +  if (function_mode_ == JS_FUNCTION_STUB_MODE) { | 
| +    __ Add(x1, x1, 1); | 
| +  } | 
| +  masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); | 
| +  __ Drop(x1); | 
| +  // Return to IC Miss stub, continuation still on stack. | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { | 
| +  if (masm->isolate()->function_entry_hook() != NULL) { | 
| +    // TODO(all): This needs to be reliably consistent with | 
| +    // kReturnAddressDistanceFromFunctionStart in ::Generate. | 
| +    Assembler::BlockConstPoolScope no_const_pools(masm); | 
| +    ProfileEntryHookStub stub; | 
| +    __ Push(lr); | 
| +    __ CallStub(&stub); | 
| +    __ Pop(lr); | 
| +  } | 
| +} | 
| + | 
| + | 
| +void ProfileEntryHookStub::Generate(MacroAssembler* masm) { | 
| +  MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); | 
| +  // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by | 
| +  // a "Push lr" instruction, followed by a call. | 
| +  // TODO(jbramley): Verify that this call is always made with relocation. | 
| +  static const int kReturnAddressDistanceFromFunctionStart = | 
| +      Assembler::kCallSizeWithRelocation + (2 * kInstructionSize); | 
| + | 
| +  // Save all kCallerSaved registers (including lr), since this can be called | 
| +  // from anywhere. | 
| +  // TODO(jbramley): What about FP registers? | 
| +  __ PushCPURegList(kCallerSaved); | 
| +  ASSERT(kCallerSaved.IncludesAliasOf(lr)); | 
| +  const int kNumSavedRegs = kCallerSaved.Count(); | 
| + | 
| +  // Compute the function's address as the first argument. | 
| +  __ Sub(x0, lr, kReturnAddressDistanceFromFunctionStart); | 
| + | 
| +#if V8_HOST_ARCH_A64 | 
| +  uintptr_t entry_hook = | 
| +      reinterpret_cast<uintptr_t>(masm->isolate()->function_entry_hook()); | 
| +  __ Mov(x10, entry_hook); | 
| +#else | 
| +  // Under the simulator we need to indirect the entry hook through a trampoline | 
| +  // function at a known address. | 
| +  ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); | 
| +  __ Mov(x10, Operand(ExternalReference(&dispatcher, | 
| +                                        ExternalReference::BUILTIN_CALL, | 
| +                                        masm->isolate()))); | 
| +  // It additionally takes an isolate as a third parameter | 
| +  __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate()))); | 
| +#endif | 
| + | 
| +  // The caller's return address is above the saved temporaries. | 
| +  // Grab its location for the second argument to the hook. | 
| +  __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize); | 
| + | 
| +  { | 
| +    // Create a dummy frame, as CallCFunction requires this. | 
| +    FrameScope frame(masm, StackFrame::MANUAL); | 
| +    __ CallCFunction(x10, 2, 0); | 
| +  } | 
| + | 
| +  __ PopCPURegList(kCallerSaved); | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +void DirectCEntryStub::Generate(MacroAssembler* masm) { | 
| +  // When calling into C++ code the stack pointer must be csp. | 
| +  // Therefore this code must use csp for peek/poke operations when the | 
| +  // stub is generated. When the stub is called | 
| +  // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame | 
| +  // and configure the stack pointer *before* doing the call. | 
| +  const Register old_stack_pointer = __ StackPointer(); | 
| +  __ SetStackPointer(csp); | 
| + | 
| +  // Put return address on the stack (accessible to GC through exit frame pc). | 
| +  __ Poke(lr, 0); | 
| +  // Call the C++ function. | 
| +  __ Blr(x10); | 
| +  // Return to calling code. | 
| +  __ Peek(lr, 0); | 
| +  __ Ret(); | 
| + | 
| +  __ SetStackPointer(old_stack_pointer); | 
| +} | 
| + | 
| +void DirectCEntryStub::GenerateCall(MacroAssembler* masm, | 
| +                                    Register target) { | 
| +  // Make sure the caller configured the stack pointer (see comment in | 
| +  // DirectCEntryStub::Generate). | 
| +  ASSERT(csp.Is(__ StackPointer())); | 
| + | 
| +  intptr_t code = | 
| +      reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location()); | 
| +  __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET)); | 
| +  __ Mov(x10, target); | 
| +  // Branch to the stub. | 
| +  __ Blr(lr); | 
| +} | 
| + | 
| + | 
| +// Probe the name dictionary in the 'elements' register. | 
| +// Jump to the 'done' label if a property with the given name is found. | 
| +// Jump to the 'miss' label otherwise. | 
| +// | 
| +// If lookup was successful 'scratch2' will be equal to elements + 4 * index. | 
| +// 'elements' and 'name' registers are preserved on miss. | 
| +void NameDictionaryLookupStub::GeneratePositiveLookup( | 
| +    MacroAssembler* masm, | 
| +    Label* miss, | 
| +    Label* done, | 
| +    Register elements, | 
| +    Register name, | 
| +    Register scratch1, | 
| +    Register scratch2) { | 
| +  ASSERT(!AreAliased(elements, name, scratch1, scratch2)); | 
| + | 
| +  // Assert that name contains a string. | 
| +  __ AssertName(name); | 
| + | 
| +  // Compute the capacity mask. | 
| +  __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset)); | 
| +  __ Sub(scratch1, scratch1, 1); | 
| + | 
| +  // Generate an unrolled loop that performs a few probes before giving up. | 
| +  for (int i = 0; i < kInlinedProbes; i++) { | 
| +    // Compute the masked index: (hash + i + i * i) & mask. | 
| +    __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); | 
| +    if (i > 0) { | 
| +      // Add the probe offset (i + i * i) left shifted to avoid right shifting | 
| +      // the hash in a separate instruction. The value hash + i + i * i is right | 
| +      // shifted in the following and instruction. | 
| +      ASSERT(NameDictionary::GetProbeOffset(i) < | 
| +          1 << (32 - Name::kHashFieldOffset)); | 
| +      __ Add(scratch2, scratch2, Operand( | 
| +          NameDictionary::GetProbeOffset(i) << Name::kHashShift)); | 
| +    } | 
| +    __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); | 
| + | 
| +    // Scale the index by multiplying by the element size. | 
| +    ASSERT(NameDictionary::kEntrySize == 3); | 
| +    __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); | 
| + | 
| +    // Check if the key is identical to the name. | 
| +    __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); | 
| +    // TODO(jbramley): We need another scratch here, but some callers can't | 
| +    // provide a scratch3 so we have to use Tmp1(). We should find a clean way | 
| +    // to make it unavailable to the MacroAssembler for a short time. | 
| +    __ Ldr(__ Tmp1(), FieldMemOperand(scratch2, kElementsStartOffset)); | 
| +    __ Cmp(name, __ Tmp1()); | 
| +    __ B(eq, done); | 
| +  } | 
| + | 
| +  // The inlined probes didn't find the entry. | 
| +  // Call the complete stub to scan the whole dictionary. | 
| + | 
| +  CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6); | 
| +  spill_list.Combine(lr); | 
| +  spill_list.Remove(scratch1); | 
| +  spill_list.Remove(scratch2); | 
| + | 
| +  __ PushCPURegList(spill_list); | 
| + | 
| +  if (name.is(x0)) { | 
| +    ASSERT(!elements.is(x1)); | 
| +    __ Mov(x1, name); | 
| +    __ Mov(x0, elements); | 
| +  } else { | 
| +    __ Mov(x0, elements); | 
| +    __ Mov(x1, name); | 
| +  } | 
| + | 
| +  Label not_found; | 
| +  NameDictionaryLookupStub stub(POSITIVE_LOOKUP); | 
| +  __ CallStub(&stub); | 
| +  __ Cbz(x0, ¬_found); | 
| +  __ Mov(scratch2, x2);  // Move entry index into scratch2. | 
| +  __ PopCPURegList(spill_list); | 
| +  __ B(done); | 
| + | 
| +  __ Bind(¬_found); | 
| +  __ PopCPURegList(spill_list); | 
| +  __ B(miss); | 
| +} | 
| + | 
| + | 
| +void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, | 
| +                                                      Label* miss, | 
| +                                                      Label* done, | 
| +                                                      Register receiver, | 
| +                                                      Register properties, | 
| +                                                      Handle<Name> name, | 
| +                                                      Register scratch0) { | 
| +  ASSERT(!AreAliased(receiver, properties, scratch0)); | 
| +  ASSERT(name->IsUniqueName()); | 
| +  // If names of slots in range from 1 to kProbes - 1 for the hash value are | 
| +  // not equal to the name and kProbes-th slot is not used (its name is the | 
| +  // undefined value), it guarantees the hash table doesn't contain the | 
| +  // property. It's true even if some slots represent deleted properties | 
| +  // (their names are the hole value). | 
| +  for (int i = 0; i < kInlinedProbes; i++) { | 
| +    // scratch0 points to properties hash. | 
| +    // Compute the masked index: (hash + i + i * i) & mask. | 
| +    Register index = scratch0; | 
| +    // Capacity is smi 2^n. | 
| +    __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset)); | 
| +    __ Sub(index, index, 1); | 
| +    __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i)); | 
| + | 
| +    // Scale the index by multiplying by the entry size. | 
| +    ASSERT(NameDictionary::kEntrySize == 3); | 
| +    __ Add(index, index, Operand(index, LSL, 1));  // index *= 3. | 
| + | 
| +    Register entity_name = scratch0; | 
| +    // Having undefined at this place means the name is not contained. | 
| +    Register tmp = index; | 
| +    __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2)); | 
| +    __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); | 
| + | 
| +    __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done); | 
| + | 
| +    // Stop if found the property. | 
| +    __ Cmp(entity_name, Operand(name)); | 
| +    __ B(eq, miss); | 
| + | 
| +    Label good; | 
| +    __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good); | 
| + | 
| +    // Check if the entry name is not a unique name. | 
| +    __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); | 
| +    __ Ldrb(entity_name, | 
| +            FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); | 
| +    __ JumpIfNotUniqueName(entity_name, miss); | 
| +    __ Bind(&good); | 
| +  } | 
| + | 
| +  CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6); | 
| +  spill_list.Combine(lr); | 
| +  spill_list.Remove(scratch0);  // Scratch registers don't need to be preserved. | 
| + | 
| +  __ PushCPURegList(spill_list); | 
| + | 
| +  __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); | 
| +  __ Mov(x1, Operand(name)); | 
| +  NameDictionaryLookupStub stub(NEGATIVE_LOOKUP); | 
| +  __ CallStub(&stub); | 
| +  // Move stub return value to scratch0. Note that scratch0 is not included in | 
| +  // spill_list and won't be clobbered by PopCPURegList. | 
| +  __ Mov(scratch0, x0); | 
| +  __ PopCPURegList(spill_list); | 
| + | 
| +  __ Cbz(scratch0, done); | 
| +  __ B(miss); | 
| +} | 
| + | 
| + | 
| +void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { | 
| +  // This stub overrides SometimesSetsUpAFrame() to return false. That means | 
| +  // we cannot call anything that could cause a GC from this stub. | 
| +  // | 
| +  // Arguments are in x0 and x1: | 
| +  //   x0: property dictionary. | 
| +  //   x1: the name of the property we are looking for. | 
| +  // | 
| +  // Return value is in x0 and is zero if lookup failed, non zero otherwise. | 
| +  // If the lookup is successful, x2 will contains the index of the entry. | 
| + | 
| +  Register result = x0; | 
| +  Register dictionary = x0; | 
| +  Register key = x1; | 
| +  Register index = x2; | 
| +  Register mask = x3; | 
| +  Register hash = x4; | 
| +  Register undefined = x5; | 
| +  Register entry_key = x6; | 
| + | 
| +  Label in_dictionary, maybe_in_dictionary, not_in_dictionary; | 
| + | 
| +  __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset)); | 
| +  __ Sub(mask, mask, 1); | 
| + | 
| +  __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); | 
| +  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); | 
| + | 
| +  for (int i = kInlinedProbes; i < kTotalProbes; i++) { | 
| +    // Compute the masked index: (hash + i + i * i) & mask. | 
| +    // Capacity is smi 2^n. | 
| +    if (i > 0) { | 
| +      // Add the probe offset (i + i * i) left shifted to avoid right shifting | 
| +      // the hash in a separate instruction. The value hash + i + i * i is right | 
| +      // shifted in the following and instruction. | 
| +      ASSERT(NameDictionary::GetProbeOffset(i) < | 
| +             1 << (32 - Name::kHashFieldOffset)); | 
| +      __ Add(index, hash, | 
| +             NameDictionary::GetProbeOffset(i) << Name::kHashShift); | 
| +    } else { | 
| +      __ Mov(index, hash); | 
| +    } | 
| +    __ And(index, mask, Operand(index, LSR, Name::kHashShift)); | 
| + | 
| +    // Scale the index by multiplying by the entry size. | 
| +    ASSERT(NameDictionary::kEntrySize == 3); | 
| +    __ Add(index, index, Operand(index, LSL, 1));  // index *= 3. | 
| + | 
| +    __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2)); | 
| +    __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); | 
| + | 
| +    // Having undefined at this place means the name is not contained. | 
| +    __ Cmp(entry_key, undefined); | 
| +    __ B(eq, ¬_in_dictionary); | 
| + | 
| +    // Stop if found the property. | 
| +    __ Cmp(entry_key, key); | 
| +    __ B(eq, &in_dictionary); | 
| + | 
| +    if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { | 
| +      // Check if the entry name is not a unique name. | 
| +      __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); | 
| +      __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); | 
| +      __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); | 
| +    } | 
| +  } | 
| + | 
| +  __ Bind(&maybe_in_dictionary); | 
| +  // If we are doing negative lookup then probing failure should be | 
| +  // treated as a lookup success. For positive lookup, probing failure | 
| +  // should be treated as lookup failure. | 
| +  if (mode_ == POSITIVE_LOOKUP) { | 
| +    __ Mov(result, 0); | 
| +    __ Ret(); | 
| +  } | 
| + | 
| +  __ Bind(&in_dictionary); | 
| +  __ Mov(result, 1); | 
| +  __ Ret(); | 
| + | 
| +  __ Bind(¬_in_dictionary); | 
| +  __ Mov(result, 0); | 
| +  __ Ret(); | 
| +} | 
| + | 
| + | 
| +template<class T> | 
| +static void CreateArrayDispatch(MacroAssembler* masm, | 
| +                                AllocationSiteOverrideMode mode) { | 
| +  ASM_LOCATION("CreateArrayDispatch"); | 
| +  if (mode == DISABLE_ALLOCATION_SITES) { | 
| +    T stub(GetInitialFastElementsKind(), mode); | 
| +     __ TailCallStub(&stub); | 
| + | 
| +  } else if (mode == DONT_OVERRIDE) { | 
| +    Register kind = x3; | 
| +    int last_index = | 
| +        GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); | 
| +    for (int i = 0; i <= last_index; ++i) { | 
| +      Label next; | 
| +      ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); | 
| +      // TODO(jbramley): Is this the best way to handle this? Can we make the | 
| +      // tail calls conditional, rather than hopping over each one? | 
| +      __ CompareAndBranch(kind, candidate_kind, ne, &next); | 
| +      T stub(candidate_kind); | 
| +      __ TailCallStub(&stub); | 
| +      __ Bind(&next); | 
| +    } | 
| + | 
| +    // If we reached this point there is a problem. | 
| +    __ Abort(kUnexpectedElementsKindInArrayConstructor); | 
| + | 
| +  } else { | 
| +    UNREACHABLE(); | 
| +  } | 
| +} | 
| + | 
| + | 
| +// TODO(jbramley): If this needs to be a special case, make it a proper template | 
| +// specialization, and not a separate function. | 
| +static void CreateArrayDispatchOneArgument(MacroAssembler* masm, | 
| +                                           AllocationSiteOverrideMode mode) { | 
| +  ASM_LOCATION("CreateArrayDispatchOneArgument"); | 
| +  // x0 - argc | 
| +  // x1 - constructor? | 
| +  // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) | 
| +  // x3 - kind (if mode != DISABLE_ALLOCATION_SITES) | 
| +  // sp[0] - last argument | 
| + | 
| +  Register allocation_site = x2; | 
| +  Register kind = x3; | 
| + | 
| +  Label normal_sequence; | 
| +  if (mode == DONT_OVERRIDE) { | 
| +    STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); | 
| +    STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); | 
| +    STATIC_ASSERT(FAST_ELEMENTS == 2); | 
| +    STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); | 
| +    STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); | 
| +    STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); | 
| + | 
| +    // Is the low bit set? If so, the array is holey. | 
| +    __ Tbnz(kind, 0, &normal_sequence); | 
| +  } | 
| + | 
| +  // Look at the last argument. | 
| +  // TODO(jbramley): What does a 0 argument represent? | 
| +  __ Peek(x10, 0); | 
| +  __ Cbz(x10, &normal_sequence); | 
| + | 
| +  if (mode == DISABLE_ALLOCATION_SITES) { | 
| +    ElementsKind initial = GetInitialFastElementsKind(); | 
| +    ElementsKind holey_initial = GetHoleyElementsKind(initial); | 
| + | 
| +    ArraySingleArgumentConstructorStub stub_holey(holey_initial, | 
| +                                                  DISABLE_ALLOCATION_SITES); | 
| +    __ TailCallStub(&stub_holey); | 
| + | 
| +    __ Bind(&normal_sequence); | 
| +    ArraySingleArgumentConstructorStub stub(initial, | 
| +                                            DISABLE_ALLOCATION_SITES); | 
| +    __ TailCallStub(&stub); | 
| +  } else if (mode == DONT_OVERRIDE) { | 
| +    // We are going to create a holey array, but our kind is non-holey. | 
| +    // Fix kind and retry (only if we have an allocation site in the slot). | 
| +    __ Orr(kind, kind, 1); | 
| + | 
| +    if (FLAG_debug_code) { | 
| +      __ Ldr(x10, FieldMemOperand(allocation_site, 0)); | 
| +      __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, | 
| +                       &normal_sequence); | 
| +      __ Assert(eq, kExpectedAllocationSite); | 
| +    } | 
| + | 
| +    // Save the resulting elements kind in type info. We can't just store 'kind' | 
| +    // in the AllocationSite::transition_info field because elements kind is | 
| +    // restricted to a portion of the field; upper bits need to be left alone. | 
| +    STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); | 
| +    __ Ldr(x11, FieldMemOperand(allocation_site, | 
| +                                AllocationSite::kTransitionInfoOffset)); | 
| +    __ Add(x11, x11, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); | 
| +    __ Str(x11, FieldMemOperand(allocation_site, | 
| +                                AllocationSite::kTransitionInfoOffset)); | 
| + | 
| +    __ Bind(&normal_sequence); | 
| +    int last_index = | 
| +        GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); | 
| +    for (int i = 0; i <= last_index; ++i) { | 
| +      Label next; | 
| +      ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); | 
| +      // TODO(jbramley): Is this the best way to handle this? Can we make the | 
| +      // tail calls conditional, rather than hopping over each one? | 
| +      __ CompareAndBranch(kind, candidate_kind, ne, &next); | 
| +      ArraySingleArgumentConstructorStub stub(candidate_kind); | 
| +      __ TailCallStub(&stub); | 
| +      __ Bind(&next); | 
| +    } | 
| + | 
| +    // If we reached this point there is a problem. | 
| +    __ Abort(kUnexpectedElementsKindInArrayConstructor); | 
| +  } else { | 
| +    UNREACHABLE(); | 
| +  } | 
| +} | 
| + | 
| + | 
| +template<class T> | 
| +static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { | 
| +  int to_index = GetSequenceIndexFromFastElementsKind( | 
| +      TERMINAL_FAST_ELEMENTS_KIND); | 
| +  for (int i = 0; i <= to_index; ++i) { | 
| +    ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); | 
| +    T stub(kind); | 
| +    stub.GetCode(isolate); | 
| +    if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { | 
| +      T stub1(kind, DISABLE_ALLOCATION_SITES); | 
| +      stub1.GetCode(isolate); | 
| +    } | 
| +  } | 
| +} | 
| + | 
| + | 
| +void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { | 
| +  ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( | 
| +      isolate); | 
| +  ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( | 
| +      isolate); | 
| +  ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( | 
| +      isolate); | 
| +} | 
| + | 
| + | 
| +void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( | 
| +    Isolate* isolate) { | 
| +  ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; | 
| +  for (int i = 0; i < 2; i++) { | 
| +    // For internal arrays we only need a few things | 
| +    InternalArrayNoArgumentConstructorStub stubh1(kinds[i]); | 
| +    stubh1.GetCode(isolate); | 
| +    InternalArraySingleArgumentConstructorStub stubh2(kinds[i]); | 
| +    stubh2.GetCode(isolate); | 
| +    InternalArrayNArgumentsConstructorStub stubh3(kinds[i]); | 
| +    stubh3.GetCode(isolate); | 
| +  } | 
| +} | 
| + | 
| + | 
| +void ArrayConstructorStub::GenerateDispatchToArrayStub( | 
| +    MacroAssembler* masm, | 
| +    AllocationSiteOverrideMode mode) { | 
| +  Register argc = x0; | 
| +  if (argument_count_ == ANY) { | 
| +    Label zero_case, n_case; | 
| +    __ Cbz(argc, &zero_case); | 
| +    __ Cmp(argc, 1); | 
| +    __ B(ne, &n_case); | 
| + | 
| +    // One argument. | 
| +    CreateArrayDispatchOneArgument(masm, mode); | 
| + | 
| +    __ Bind(&zero_case); | 
| +    // No arguments. | 
| +    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); | 
| + | 
| +    __ Bind(&n_case); | 
| +    // N arguments. | 
| +    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); | 
| + | 
| +  } else if (argument_count_ == NONE) { | 
| +    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); | 
| +  } else if (argument_count_ == ONE) { | 
| +    CreateArrayDispatchOneArgument(masm, mode); | 
| +  } else if (argument_count_ == MORE_THAN_ONE) { | 
| +    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); | 
| +  } else { | 
| +    UNREACHABLE(); | 
| +  } | 
| +} | 
| + | 
| + | 
| +void ArrayConstructorStub::Generate(MacroAssembler* masm) { | 
| +  ASM_LOCATION("ArrayConstructorStub::Generate"); | 
| +  // ----------- S t a t e ------------- | 
| +  //  -- x0 : argc (only if argument_count_ == ANY) | 
| +  //  -- x1 : constructor | 
| +  //  -- x2 : feedback vector (fixed array or undefined) | 
| +  //  -- x3 : slot index (if x2 is fixed array) | 
| +  //  -- sp[0] : return address | 
| +  //  -- sp[4] : last argument | 
| +  // ----------------------------------- | 
| +  Register constructor = x1; | 
| +  Register feedback_vector = x2; | 
| +  Register slot_index = x3; | 
| + | 
| +  if (FLAG_debug_code) { | 
| +    // The array construct code is only set for the global and natives | 
| +    // builtin Array functions which always have maps. | 
| + | 
| +    Label unexpected_map, map_ok; | 
| +    // Initial map for the builtin Array function should be a map. | 
| +    __ Ldr(x10, FieldMemOperand(constructor, | 
| +                                JSFunction::kPrototypeOrInitialMapOffset)); | 
| +    // Will both indicate a NULL and a Smi. | 
| +    __ JumpIfSmi(x10, &unexpected_map); | 
| +    __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); | 
| +    __ Bind(&unexpected_map); | 
| +    __ Abort(kUnexpectedInitialMapForArrayFunction); | 
| +    __ Bind(&map_ok); | 
| + | 
| +    // In feedback_vector, we expect either undefined or a valid fixed array. | 
| +    Label okay_here; | 
| +    Handle<Map> fixed_array_map = masm->isolate()->factory()->fixed_array_map(); | 
| +    __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &okay_here); | 
| +    __ Ldr(x10, FieldMemOperand(feedback_vector, FixedArray::kMapOffset)); | 
| +    __ Cmp(x10, Operand(fixed_array_map)); | 
| +    __ Assert(eq, kExpectedFixedArrayInFeedbackVector); | 
| + | 
| +    // slot_index should be a smi if we don't have undefined in feedback_vector. | 
| +    __ AssertSmi(slot_index); | 
| + | 
| +    __ Bind(&okay_here); | 
| +  } | 
| + | 
| +  Register allocation_site = x2;  // Overwrites feedback_vector. | 
| +  Register kind = x3; | 
| +  Label no_info; | 
| +  // Get the elements kind and case on that. | 
| +  __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &no_info); | 
| +  __ Add(feedback_vector, feedback_vector, | 
| +         Operand::UntagSmiAndScale(slot_index, kPointerSizeLog2)); | 
| +  __ Ldr(allocation_site, FieldMemOperand(feedback_vector, | 
| +                                          FixedArray::kHeaderSize)); | 
| + | 
| +  // If the feedback vector is undefined, or contains anything other than an | 
| +  // AllocationSite, call an array constructor that doesn't use AllocationSites. | 
| +  __ Ldr(x10, FieldMemOperand(allocation_site, AllocationSite::kMapOffset)); | 
| +  __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, &no_info); | 
| + | 
| +  __ Ldrsw(kind, | 
| +           UntagSmiFieldMemOperand(allocation_site, | 
| +                                   AllocationSite::kTransitionInfoOffset)); | 
| +  __ And(kind, kind, AllocationSite::ElementsKindBits::kMask); | 
| +  GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); | 
| + | 
| +  __ Bind(&no_info); | 
| +  GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); | 
| +} | 
| + | 
| + | 
| +void InternalArrayConstructorStub::GenerateCase( | 
| +    MacroAssembler* masm, ElementsKind kind) { | 
| +  Label zero_case, n_case; | 
| +  Register argc = x0; | 
| + | 
| +  __ Cbz(argc, &zero_case); | 
| +  __ CompareAndBranch(argc, 1, ne, &n_case); | 
| + | 
| +  // One argument. | 
| +  if (IsFastPackedElementsKind(kind)) { | 
| +    Label packed_case; | 
| + | 
| +    // We might need to create a holey array; look at the first argument. | 
| +    __ Peek(x10, 0); | 
| +    __ Cbz(x10, &packed_case); | 
| + | 
| +    InternalArraySingleArgumentConstructorStub | 
| +        stub1_holey(GetHoleyElementsKind(kind)); | 
| +    __ TailCallStub(&stub1_holey); | 
| + | 
| +    __ Bind(&packed_case); | 
| +  } | 
| +  InternalArraySingleArgumentConstructorStub stub1(kind); | 
| +  __ TailCallStub(&stub1); | 
| + | 
| +  __ Bind(&zero_case); | 
| +  // No arguments. | 
| +  InternalArrayNoArgumentConstructorStub stub0(kind); | 
| +  __ TailCallStub(&stub0); | 
| + | 
| +  __ Bind(&n_case); | 
| +  // N arguments. | 
| +  InternalArrayNArgumentsConstructorStub stubN(kind); | 
| +  __ TailCallStub(&stubN); | 
| +} | 
| + | 
| + | 
| +void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { | 
| +  // ----------- S t a t e ------------- | 
| +  //  -- x0 : argc | 
| +  //  -- x1 : constructor | 
| +  //  -- sp[0] : return address | 
| +  //  -- sp[4] : last argument | 
| +  // ----------------------------------- | 
| +  Handle<Object> undefined_sentinel( | 
| +      masm->isolate()->heap()->undefined_value(), masm->isolate()); | 
| + | 
| +  Register constructor = x1; | 
| + | 
| +  if (FLAG_debug_code) { | 
| +    // The array construct code is only set for the global and natives | 
| +    // builtin Array functions which always have maps. | 
| + | 
| +    Label unexpected_map, map_ok; | 
| +    // Initial map for the builtin Array function should be a map. | 
| +    __ Ldr(x10, FieldMemOperand(constructor, | 
| +                                JSFunction::kPrototypeOrInitialMapOffset)); | 
| +    // Will both indicate a NULL and a Smi. | 
| +    __ JumpIfSmi(x10, &unexpected_map); | 
| +    __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); | 
| +    __ Bind(&unexpected_map); | 
| +    __ Abort(kUnexpectedInitialMapForArrayFunction); | 
| +    __ Bind(&map_ok); | 
| +  } | 
| + | 
| +  Register kind = w3; | 
| +  // Figure out the right elements kind | 
| +  __ Ldr(x10, FieldMemOperand(constructor, | 
| +                              JSFunction::kPrototypeOrInitialMapOffset)); | 
| + | 
| +  // TODO(jbramley): Add a helper function to read elements kind from an | 
| +  // existing map. | 
| +  // Load the map's "bit field 2" into result. | 
| +  __ Ldr(kind, FieldMemOperand(x10, Map::kBitField2Offset)); | 
| +  // Retrieve elements_kind from bit field 2. | 
| +  __ Ubfx(kind, kind, Map::kElementsKindShift, Map::kElementsKindBitCount); | 
| + | 
| +  if (FLAG_debug_code) { | 
| +    Label done; | 
| +    __ Cmp(x3, FAST_ELEMENTS); | 
| +    __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne); | 
| +    __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); | 
| +  } | 
| + | 
| +  Label fast_elements_case; | 
| +  __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case); | 
| +  GenerateCase(masm, FAST_HOLEY_ELEMENTS); | 
| + | 
| +  __ Bind(&fast_elements_case); | 
| +  GenerateCase(masm, FAST_ELEMENTS); | 
| +} | 
| + | 
| + | 
| +void CallApiFunctionStub::Generate(MacroAssembler* masm) { | 
| +  // ----------- S t a t e ------------- | 
| +  //  -- x0                  : callee | 
| +  //  -- x4                  : call_data | 
| +  //  -- x2                  : holder | 
| +  //  -- x1                  : api_function_address | 
| +  //  -- cp                  : context | 
| +  //  -- | 
| +  //  -- sp[0]               : last argument | 
| +  //  -- ... | 
| +  //  -- sp[(argc - 1) * 8]  : first argument | 
| +  //  -- sp[argc * 8]        : receiver | 
| +  // ----------------------------------- | 
| + | 
| +  Register callee = x0; | 
| +  Register call_data = x4; | 
| +  Register holder = x2; | 
| +  Register api_function_address = x1; | 
| +  Register context = cp; | 
| + | 
| +  int argc = ArgumentBits::decode(bit_field_); | 
| +  bool restore_context = RestoreContextBits::decode(bit_field_); | 
| +  bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); | 
| + | 
| +  typedef FunctionCallbackArguments FCA; | 
| + | 
| +  STATIC_ASSERT(FCA::kContextSaveIndex == 6); | 
| +  STATIC_ASSERT(FCA::kCalleeIndex == 5); | 
| +  STATIC_ASSERT(FCA::kDataIndex == 4); | 
| +  STATIC_ASSERT(FCA::kReturnValueOffset == 3); | 
| +  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); | 
| +  STATIC_ASSERT(FCA::kIsolateIndex == 1); | 
| +  STATIC_ASSERT(FCA::kHolderIndex == 0); | 
| +  STATIC_ASSERT(FCA::kArgsLength == 7); | 
| + | 
| +  Isolate* isolate = masm->isolate(); | 
| + | 
| +  // FunctionCallbackArguments: context, callee and call data. | 
| +  __ Push(context, callee, call_data); | 
| + | 
| +  // Load context from callee | 
| +  __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); | 
| + | 
| +  if (!call_data_undefined) { | 
| +    __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); | 
| +  } | 
| +  Register isolate_reg = x5; | 
| +  __ Mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate))); | 
| + | 
| +  // FunctionCallbackArguments: | 
| +  //    return value, return value default, isolate, holder. | 
| +  __ Push(call_data, call_data, isolate_reg, holder); | 
| + | 
| +  // Prepare arguments. | 
| +  Register args = x6; | 
| +  __ Mov(args, masm->StackPointer()); | 
| + | 
| +  // Allocate the v8::Arguments structure in the arguments' space, since it's | 
| +  // not controlled by GC. | 
| +  const int kApiStackSpace = 4; | 
| + | 
| +  // Allocate space for CallApiFunctionAndReturn can store some scratch | 
| +  // registeres on the stack. | 
| +  const int kCallApiFunctionSpillSpace = 4; | 
| + | 
| +  FrameScope frame_scope(masm, StackFrame::MANUAL); | 
| +  __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); | 
| + | 
| +  // TODO(all): Optimize this with stp and suchlike. | 
| +  ASSERT(!AreAliased(x0, api_function_address)); | 
| +  // x0 = FunctionCallbackInfo& | 
| +  // Arguments is after the return address. | 
| +  __ Add(x0, masm->StackPointer(), 1 * kPointerSize); | 
| +  // FunctionCallbackInfo::implicit_args_ | 
| +  __ Str(args, MemOperand(x0, 0 * kPointerSize)); | 
| +  // FunctionCallbackInfo::values_ | 
| +  __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); | 
| +  __ Str(x10, MemOperand(x0, 1 * kPointerSize)); | 
| +  // FunctionCallbackInfo::length_ = argc | 
| +  __ Mov(x10, argc); | 
| +  __ Str(x10, MemOperand(x0, 2 * kPointerSize)); | 
| +  // FunctionCallbackInfo::is_construct_call = 0 | 
| +  __ Str(xzr, MemOperand(x0, 3 * kPointerSize)); | 
| + | 
| +  const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; | 
| +  Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); | 
| +  ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; | 
| +  ApiFunction thunk_fun(thunk_address); | 
| +  ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, | 
| +      masm->isolate()); | 
| + | 
| +  AllowExternalCallThatCantCauseGC scope(masm); | 
| +  MemOperand context_restore_operand( | 
| +      fp, (2 + FCA::kContextSaveIndex) * kPointerSize); | 
| +  MemOperand return_value_operand(fp, | 
| +                                  (2 + FCA::kReturnValueOffset) * kPointerSize); | 
| + | 
| +  const int spill_offset = 1 + kApiStackSpace; | 
| +  __ CallApiFunctionAndReturn(api_function_address, | 
| +                              thunk_ref, | 
| +                              kStackUnwindSpace, | 
| +                              spill_offset, | 
| +                              return_value_operand, | 
| +                              restore_context ? | 
| +                                  &context_restore_operand : NULL); | 
| +} | 
| + | 
| + | 
| +void CallApiGetterStub::Generate(MacroAssembler* masm) { | 
| +  // ----------- S t a t e ------------- | 
| +  //  -- sp[0]                  : name | 
| +  //  -- sp[8 - kArgsLength*8]  : PropertyCallbackArguments object | 
| +  //  -- ... | 
| +  //  -- x2                     : api_function_address | 
| +  // ----------------------------------- | 
| + | 
| +  Register api_function_address = x2; | 
| + | 
| +  __ Mov(x0, masm->StackPointer());  // x0 = Handle<Name> | 
| +  __ Add(x1, x0, 1 * kPointerSize);  // x1 = PCA | 
| + | 
| +  const int kApiStackSpace = 1; | 
| + | 
| +  // Allocate space for CallApiFunctionAndReturn can store some scratch | 
| +  // registeres on the stack. | 
| +  const int kCallApiFunctionSpillSpace = 4; | 
| + | 
| +  FrameScope frame_scope(masm, StackFrame::MANUAL); | 
| +  __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); | 
| + | 
| +  // Create PropertyAccessorInfo instance on the stack above the exit frame with | 
| +  // x1 (internal::Object** args_) as the data. | 
| +  __ Poke(x1, 1 * kPointerSize); | 
| +  __ Add(x1, masm->StackPointer(), 1 * kPointerSize);  // x1 = AccessorInfo& | 
| + | 
| +  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; | 
| + | 
| +  Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); | 
| +  ExternalReference::Type thunk_type = | 
| +      ExternalReference::PROFILING_GETTER_CALL; | 
| +  ApiFunction thunk_fun(thunk_address); | 
| +  ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, | 
| +      masm->isolate()); | 
| + | 
| +  const int spill_offset = 1 + kApiStackSpace; | 
| +  __ CallApiFunctionAndReturn(api_function_address, | 
| +                              thunk_ref, | 
| +                              kStackUnwindSpace, | 
| +                              spill_offset, | 
| +                              MemOperand(fp, 6 * kPointerSize), | 
| +                              NULL); | 
| +} | 
| + | 
| + | 
| +#undef __ | 
| + | 
| +} }  // namespace v8::internal | 
| + | 
| +#endif  // V8_TARGET_ARCH_A64 | 
|  |