Index: src/a64/code-stubs-a64.cc |
diff --git a/src/a64/code-stubs-a64.cc b/src/a64/code-stubs-a64.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..269b97f41c17fe8d4107bceb1fbaf832977aabeb |
--- /dev/null |
+++ b/src/a64/code-stubs-a64.cc |
@@ -0,0 +1,5721 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#if V8_TARGET_ARCH_A64 |
+ |
+#include "bootstrapper.h" |
+#include "code-stubs.h" |
+#include "regexp-macro-assembler.h" |
+#include "stub-cache.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+ |
+void FastNewClosureStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x2: function info |
+ static Register registers[] = { x2 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry; |
+} |
+ |
+ |
+void FastNewContextStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x1: function |
+ static Register registers[] = { x1 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = NULL; |
+} |
+ |
+ |
+void ToNumberStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x0: value |
+ static Register registers[] = { x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = NULL; |
+} |
+ |
+ |
+void NumberToStringStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x0: value |
+ static Register registers[] = { x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kNumberToString)->entry; |
+} |
+ |
+ |
+void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x3: array literals array |
+ // x2: array literal index |
+ // x1: constant elements |
+ static Register registers[] = { x3, x2, x1 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry; |
+} |
+ |
+ |
+void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x3: object literals array |
+ // x2: object literal index |
+ // x1: constant properties |
+ // x0: object literal flags |
+ static Register registers[] = { x3, x2, x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry; |
+} |
+ |
+ |
+void CreateAllocationSiteStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x2: feedback vector |
+ // x3: call feedback slot |
+ static Register registers[] = { x2, x3 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = NULL; |
+} |
+ |
+ |
+void KeyedLoadFastElementStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x1: receiver |
+ // x0: key |
+ static Register registers[] = { x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); |
+} |
+ |
+ |
+void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x1: receiver |
+ // x0: key |
+ static Register registers[] = { x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); |
+} |
+ |
+ |
+void RegExpConstructResultStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x2: length |
+ // x1: index (of last match) |
+ // x0: string |
+ static Register registers[] = { x2, x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry; |
+} |
+ |
+ |
+void LoadFieldStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x0: receiver |
+ static Register registers[] = { x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = NULL; |
+} |
+ |
+ |
+void KeyedLoadFieldStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x1: receiver |
+ static Register registers[] = { x1 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = NULL; |
+} |
+ |
+ |
+void KeyedStoreFastElementStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x2: receiver |
+ // x1: key |
+ // x0: value |
+ static Register registers[] = { x2, x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure); |
+} |
+ |
+ |
+void TransitionElementsKindStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x0: value (js_array) |
+ // x1: to_map |
+ static Register registers[] = { x0, x1 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ Address entry = |
+ Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; |
+ descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry); |
+} |
+ |
+ |
+void CompareNilICStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x0: value to compare |
+ static Register registers[] = { x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ FUNCTION_ADDR(CompareNilIC_Miss); |
+ descriptor->SetMissHandler( |
+ ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate)); |
+} |
+ |
+ |
+static void InitializeArrayConstructorDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor, |
+ int constant_stack_parameter_count) { |
+ // x1: function |
+ // x2: allocation site with elements kind |
+ // x0: number of arguments to the constructor function |
+ static Register registers_variable_args[] = { x1, x2, x0 }; |
+ static Register registers_no_args[] = { x1, x2 }; |
+ |
+ if (constant_stack_parameter_count == 0) { |
+ descriptor->register_param_count_ = |
+ sizeof(registers_no_args) / sizeof(registers_no_args[0]); |
+ descriptor->register_params_ = registers_no_args; |
+ } else { |
+ // stack param count needs (constructor pointer, and single argument) |
+ descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; |
+ descriptor->stack_parameter_count_ = x0; |
+ descriptor->register_param_count_ = |
+ sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); |
+ descriptor->register_params_ = registers_variable_args; |
+ } |
+ |
+ descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; |
+ descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kArrayConstructor)->entry; |
+} |
+ |
+ |
+void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ InitializeArrayConstructorDescriptor(isolate, descriptor, 0); |
+} |
+ |
+ |
+void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ InitializeArrayConstructorDescriptor(isolate, descriptor, 1); |
+} |
+ |
+ |
+void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ InitializeArrayConstructorDescriptor(isolate, descriptor, -1); |
+} |
+ |
+ |
+static void InitializeInternalArrayConstructorDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor, |
+ int constant_stack_parameter_count) { |
+ // x1: constructor function |
+ // x0: number of arguments to the constructor function |
+ static Register registers_variable_args[] = { x1, x0 }; |
+ static Register registers_no_args[] = { x1 }; |
+ |
+ if (constant_stack_parameter_count == 0) { |
+ descriptor->register_param_count_ = |
+ sizeof(registers_no_args) / sizeof(registers_no_args[0]); |
+ descriptor->register_params_ = registers_no_args; |
+ } else { |
+ // stack param count needs (constructor pointer, and single argument) |
+ descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; |
+ descriptor->stack_parameter_count_ = x0; |
+ descriptor->register_param_count_ = |
+ sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); |
+ descriptor->register_params_ = registers_variable_args; |
+ } |
+ |
+ descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; |
+ descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry; |
+} |
+ |
+ |
+void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0); |
+} |
+ |
+ |
+void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1); |
+} |
+ |
+ |
+void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1); |
+} |
+ |
+ |
+void ToBooleanStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x0: value |
+ static Register registers[] = { x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss); |
+ descriptor->SetMissHandler( |
+ ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate)); |
+} |
+ |
+ |
+void StoreGlobalStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x1: receiver |
+ // x2: key (unused) |
+ // x0: value |
+ static Register registers[] = { x1, x2, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ FUNCTION_ADDR(StoreIC_MissFromStubFailure); |
+} |
+ |
+ |
+void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x0: value |
+ // x3: target map |
+ // x1: key |
+ // x2: receiver |
+ static Register registers[] = { x0, x3, x1, x2 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss); |
+} |
+ |
+ |
+void BinaryOpICStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x1: left operand |
+ // x0: right operand |
+ static Register registers[] = { x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss); |
+ descriptor->SetMissHandler( |
+ ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate)); |
+} |
+ |
+ |
+void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x2: allocation site |
+ // x1: left operand |
+ // x0: right operand |
+ static Register registers[] = { x2, x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite); |
+} |
+ |
+ |
+void StringAddStub::InitializeInterfaceDescriptor( |
+ Isolate* isolate, |
+ CodeStubInterfaceDescriptor* descriptor) { |
+ // x1: left operand |
+ // x0: right operand |
+ static Register registers[] = { x1, x0 }; |
+ descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
+ descriptor->register_params_ = registers; |
+ descriptor->deoptimization_handler_ = |
+ Runtime::FunctionForId(Runtime::kStringAdd)->entry; |
+} |
+ |
+ |
+void CallDescriptors::InitializeForIsolate(Isolate* isolate) { |
+ static PlatformCallInterfaceDescriptor default_descriptor = |
+ PlatformCallInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS); |
+ |
+ static PlatformCallInterfaceDescriptor noInlineDescriptor = |
+ PlatformCallInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS); |
+ |
+ { |
+ CallInterfaceDescriptor* descriptor = |
+ isolate->call_descriptor(Isolate::ArgumentAdaptorCall); |
+ static Register registers[] = { x1, // JSFunction |
+ cp, // context |
+ x0, // actual number of arguments |
+ x2, // expected number of arguments |
+ }; |
+ static Representation representations[] = { |
+ Representation::Tagged(), // JSFunction |
+ Representation::Tagged(), // context |
+ Representation::Integer32(), // actual number of arguments |
+ Representation::Integer32(), // expected number of arguments |
+ }; |
+ descriptor->register_param_count_ = 4; |
+ descriptor->register_params_ = registers; |
+ descriptor->param_representations_ = representations; |
+ descriptor->platform_specific_descriptor_ = &default_descriptor; |
+ } |
+ { |
+ CallInterfaceDescriptor* descriptor = |
+ isolate->call_descriptor(Isolate::KeyedCall); |
+ static Register registers[] = { cp, // context |
+ x2, // key |
+ }; |
+ static Representation representations[] = { |
+ Representation::Tagged(), // context |
+ Representation::Tagged(), // key |
+ }; |
+ descriptor->register_param_count_ = 2; |
+ descriptor->register_params_ = registers; |
+ descriptor->param_representations_ = representations; |
+ descriptor->platform_specific_descriptor_ = &noInlineDescriptor; |
+ } |
+ { |
+ CallInterfaceDescriptor* descriptor = |
+ isolate->call_descriptor(Isolate::NamedCall); |
+ static Register registers[] = { cp, // context |
+ x2, // name |
+ }; |
+ static Representation representations[] = { |
+ Representation::Tagged(), // context |
+ Representation::Tagged(), // name |
+ }; |
+ descriptor->register_param_count_ = 2; |
+ descriptor->register_params_ = registers; |
+ descriptor->param_representations_ = representations; |
+ descriptor->platform_specific_descriptor_ = &noInlineDescriptor; |
+ } |
+ { |
+ CallInterfaceDescriptor* descriptor = |
+ isolate->call_descriptor(Isolate::CallHandler); |
+ static Register registers[] = { cp, // context |
+ x0, // receiver |
+ }; |
+ static Representation representations[] = { |
+ Representation::Tagged(), // context |
+ Representation::Tagged(), // receiver |
+ }; |
+ descriptor->register_param_count_ = 2; |
+ descriptor->register_params_ = registers; |
+ descriptor->param_representations_ = representations; |
+ descriptor->platform_specific_descriptor_ = &default_descriptor; |
+ } |
+ { |
+ CallInterfaceDescriptor* descriptor = |
+ isolate->call_descriptor(Isolate::ApiFunctionCall); |
+ static Register registers[] = { x0, // callee |
+ x4, // call_data |
+ x2, // holder |
+ x1, // api_function_address |
+ cp, // context |
+ }; |
+ static Representation representations[] = { |
+ Representation::Tagged(), // callee |
+ Representation::Tagged(), // call_data |
+ Representation::Tagged(), // holder |
+ Representation::External(), // api_function_address |
+ Representation::Tagged(), // context |
+ }; |
+ descriptor->register_param_count_ = 5; |
+ descriptor->register_params_ = registers; |
+ descriptor->param_representations_ = representations; |
+ descriptor->platform_specific_descriptor_ = &default_descriptor; |
+ } |
+} |
+ |
+ |
+#define __ ACCESS_MASM(masm) |
+ |
+ |
+void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { |
+ // Update the static counter each time a new code stub is generated. |
+ Isolate* isolate = masm->isolate(); |
+ isolate->counters()->code_stubs()->Increment(); |
+ |
+ CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate); |
+ int param_count = descriptor->register_param_count_; |
+ { |
+ // Call the runtime system in a fresh internal frame. |
+ FrameScope scope(masm, StackFrame::INTERNAL); |
+ ASSERT((descriptor->register_param_count_ == 0) || |
+ x0.Is(descriptor->register_params_[param_count - 1])); |
+ // Push arguments |
+ // TODO(jbramley): Try to push these in blocks. |
+ for (int i = 0; i < param_count; ++i) { |
+ __ Push(descriptor->register_params_[i]); |
+ } |
+ ExternalReference miss = descriptor->miss_handler(); |
+ __ CallExternalReference(miss, descriptor->register_param_count_); |
+ } |
+ |
+ __ Ret(); |
+} |
+ |
+ |
+// See call site for description. |
+static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register scratch, |
+ FPRegister double_scratch, |
+ Label* slow, |
+ Condition cond) { |
+ ASSERT(!AreAliased(left, right, scratch)); |
+ Label not_identical, return_equal, heap_number; |
+ Register result = x0; |
+ |
+ __ Cmp(right, left); |
+ __ B(ne, ¬_identical); |
+ |
+ // Test for NaN. Sadly, we can't just compare to factory::nan_value(), |
+ // so we do the second best thing - test it ourselves. |
+ // They are both equal and they are not both Smis so both of them are not |
+ // Smis. If it's not a heap number, then return equal. |
+ if ((cond == lt) || (cond == gt)) { |
+ __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow, |
+ ge); |
+ } else { |
+ Register right_type = scratch; |
+ __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE, |
+ &heap_number); |
+ // Comparing JS objects with <=, >= is complicated. |
+ if (cond != eq) { |
+ __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
+ __ B(ge, slow); |
+ // Normally here we fall through to return_equal, but undefined is |
+ // special: (undefined == undefined) == true, but |
+ // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
+ if ((cond == le) || (cond == ge)) { |
+ __ Cmp(right_type, ODDBALL_TYPE); |
+ __ B(ne, &return_equal); |
+ __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal); |
+ if (cond == le) { |
+ // undefined <= undefined should fail. |
+ __ Mov(result, GREATER); |
+ } else { |
+ // undefined >= undefined should fail. |
+ __ Mov(result, LESS); |
+ } |
+ __ Ret(); |
+ } |
+ } |
+ } |
+ |
+ __ Bind(&return_equal); |
+ if (cond == lt) { |
+ __ Mov(result, GREATER); // Things aren't less than themselves. |
+ } else if (cond == gt) { |
+ __ Mov(result, LESS); // Things aren't greater than themselves. |
+ } else { |
+ __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves. |
+ } |
+ __ Ret(); |
+ |
+ // Cases lt and gt have been handled earlier, and case ne is never seen, as |
+ // it is handled in the parser (see Parser::ParseBinaryExpression). We are |
+ // only concerned with cases ge, le and eq here. |
+ if ((cond != lt) && (cond != gt)) { |
+ ASSERT((cond == ge) || (cond == le) || (cond == eq)); |
+ __ Bind(&heap_number); |
+ // Left and right are identical pointers to a heap number object. Return |
+ // non-equal if the heap number is a NaN, and equal otherwise. Comparing |
+ // the number to itself will set the overflow flag iff the number is NaN. |
+ __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset)); |
+ __ Fcmp(double_scratch, double_scratch); |
+ __ B(vc, &return_equal); // Not NaN, so treat as normal heap number. |
+ |
+ if (cond == le) { |
+ __ Mov(result, GREATER); |
+ } else { |
+ __ Mov(result, LESS); |
+ } |
+ __ Ret(); |
+ } |
+ |
+ // No fall through here. |
+ if (FLAG_debug_code) { |
+ __ Unreachable(); |
+ } |
+ |
+ __ Bind(¬_identical); |
+} |
+ |
+ |
+// See call site for description. |
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register left_type, |
+ Register right_type, |
+ Register scratch) { |
+ ASSERT(!AreAliased(left, right, left_type, right_type, scratch)); |
+ |
+ if (masm->emit_debug_code()) { |
+ // We assume that the arguments are not identical. |
+ __ Cmp(left, right); |
+ __ Assert(ne, kExpectedNonIdenticalObjects); |
+ } |
+ |
+ // If either operand is a JS object or an oddball value, then they are not |
+ // equal since their pointers are different. |
+ // There is no test for undetectability in strict equality. |
+ STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); |
+ Label right_non_object; |
+ |
+ __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
+ __ B(lt, &right_non_object); |
+ |
+ // Return non-zero - x0 already contains a non-zero pointer. |
+ ASSERT(left.is(x0) || right.is(x0)); |
+ Label return_not_equal; |
+ __ Bind(&return_not_equal); |
+ __ Ret(); |
+ |
+ __ Bind(&right_non_object); |
+ |
+ // Check for oddballs: true, false, null, undefined. |
+ __ Cmp(right_type, ODDBALL_TYPE); |
+ |
+ // If right is not ODDBALL, test left. Otherwise, set eq condition. |
+ __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne); |
+ |
+ // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE. |
+ // Otherwise, right or left is ODDBALL, so set a ge condition. |
+ __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne); |
+ |
+ __ B(ge, &return_not_equal); |
+ |
+ // Internalized strings are unique, so they can only be equal if they are the |
+ // same object. We have already tested that case, so if left and right are |
+ // both internalized strings, they cannot be equal. |
+ STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
+ __ Orr(scratch, left_type, right_type); |
+ __ TestAndBranchIfAllClear( |
+ scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal); |
+} |
+ |
+ |
+// See call site for description. |
+static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ FPRegister left_d, |
+ FPRegister right_d, |
+ Register scratch, |
+ Label* slow, |
+ bool strict) { |
+ ASSERT(!AreAliased(left, right, scratch)); |
+ ASSERT(!AreAliased(left_d, right_d)); |
+ ASSERT((left.is(x0) && right.is(x1)) || |
+ (right.is(x0) && left.is(x1))); |
+ Register result = x0; |
+ |
+ Label right_is_smi, done; |
+ __ JumpIfSmi(right, &right_is_smi); |
+ |
+ // Left is the smi. Check whether right is a heap number. |
+ if (strict) { |
+ // If right is not a number and left is a smi, then strict equality cannot |
+ // succeed. Return non-equal. |
+ Label is_heap_number; |
+ __ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, |
+ &is_heap_number); |
+ // Register right is a non-zero pointer, which is a valid NOT_EQUAL result. |
+ if (!right.is(result)) { |
+ __ Mov(result, NOT_EQUAL); |
+ } |
+ __ Ret(); |
+ __ Bind(&is_heap_number); |
+ } else { |
+ // Smi compared non-strictly with a non-smi, non-heap-number. Call the |
+ // runtime. |
+ __ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow); |
+ } |
+ |
+ // Left is the smi. Right is a heap number. Load right value into right_d, and |
+ // convert left smi into double in left_d. |
+ __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset)); |
+ __ SmiUntagToDouble(left_d, left); |
+ __ B(&done); |
+ |
+ __ Bind(&right_is_smi); |
+ // Right is a smi. Check whether the non-smi left is a heap number. |
+ if (strict) { |
+ // If left is not a number and right is a smi then strict equality cannot |
+ // succeed. Return non-equal. |
+ Label is_heap_number; |
+ __ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, |
+ &is_heap_number); |
+ // Register left is a non-zero pointer, which is a valid NOT_EQUAL result. |
+ if (!left.is(result)) { |
+ __ Mov(result, NOT_EQUAL); |
+ } |
+ __ Ret(); |
+ __ Bind(&is_heap_number); |
+ } else { |
+ // Smi compared non-strictly with a non-smi, non-heap-number. Call the |
+ // runtime. |
+ __ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow); |
+ } |
+ |
+ // Right is the smi. Left is a heap number. Load left value into left_d, and |
+ // convert right smi into double in right_d. |
+ __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset)); |
+ __ SmiUntagToDouble(right_d, right); |
+ |
+ // Fall through to both_loaded_as_doubles. |
+ __ Bind(&done); |
+} |
+ |
+ |
+// Fast negative check for internalized-to-internalized equality. |
+// See call site for description. |
+static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register left_map, |
+ Register right_map, |
+ Register left_type, |
+ Register right_type, |
+ Label* possible_strings, |
+ Label* not_both_strings) { |
+ ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type)); |
+ Register result = x0; |
+ |
+ Label object_test; |
+ STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
+ // TODO(all): reexamine this branch sequence for optimisation wrt branch |
+ // prediction. |
+ __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test); |
+ __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings); |
+ __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings); |
+ __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings); |
+ |
+ // Both are internalized. We already checked that they weren't the same |
+ // pointer, so they are not equal. |
+ __ Mov(result, NOT_EQUAL); |
+ __ Ret(); |
+ |
+ __ Bind(&object_test); |
+ |
+ __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
+ |
+ // If right >= FIRST_SPEC_OBJECT_TYPE, test left. |
+ // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition. |
+ __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge); |
+ |
+ __ B(lt, not_both_strings); |
+ |
+ // If both objects are undetectable, they are equal. Otherwise, they are not |
+ // equal, since they are different objects and an object is not equal to |
+ // undefined. |
+ |
+ // Returning here, so we can corrupt right_type and left_type. |
+ Register right_bitfield = right_type; |
+ Register left_bitfield = left_type; |
+ __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset)); |
+ __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset)); |
+ __ And(result, right_bitfield, left_bitfield); |
+ __ And(result, result, 1 << Map::kIsUndetectable); |
+ __ Eor(result, result, 1 << Map::kIsUndetectable); |
+ __ Ret(); |
+} |
+ |
+ |
+static void ICCompareStub_CheckInputType(MacroAssembler* masm, |
+ Register input, |
+ Register scratch, |
+ CompareIC::State expected, |
+ Label* fail) { |
+ Label ok; |
+ if (expected == CompareIC::SMI) { |
+ __ JumpIfNotSmi(input, fail); |
+ } else if (expected == CompareIC::NUMBER) { |
+ __ JumpIfSmi(input, &ok); |
+ __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, |
+ DONT_DO_SMI_CHECK); |
+ } |
+ // We could be strict about internalized/non-internalized here, but as long as |
+ // hydrogen doesn't care, the stub doesn't have to care either. |
+ __ Bind(&ok); |
+} |
+ |
+ |
+void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { |
+ Register lhs = x1; |
+ Register rhs = x0; |
+ Register result = x0; |
+ Condition cond = GetCondition(); |
+ |
+ Label miss; |
+ ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss); |
+ ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss); |
+ |
+ Label slow; // Call builtin. |
+ Label not_smis, both_loaded_as_doubles; |
+ Label not_two_smis, smi_done; |
+ __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis); |
+ __ SmiUntag(lhs); |
+ __ Sub(result, lhs, Operand::UntagSmi(rhs)); |
+ __ Ret(); |
+ |
+ __ Bind(¬_two_smis); |
+ |
+ // NOTICE! This code is only reached after a smi-fast-case check, so it is |
+ // certain that at least one operand isn't a smi. |
+ |
+ // Handle the case where the objects are identical. Either returns the answer |
+ // or goes to slow. Only falls through if the objects were not identical. |
+ EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond); |
+ |
+ // If either is a smi (we know that at least one is not a smi), then they can |
+ // only be strictly equal if the other is a HeapNumber. |
+ __ JumpIfBothNotSmi(lhs, rhs, ¬_smis); |
+ |
+ // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that |
+ // can: |
+ // 1) Return the answer. |
+ // 2) Branch to the slow case. |
+ // 3) Fall through to both_loaded_as_doubles. |
+ // In case 3, we have found out that we were dealing with a number-number |
+ // comparison. The double values of the numbers have been loaded, right into |
+ // rhs_d, left into lhs_d. |
+ FPRegister rhs_d = d0; |
+ FPRegister lhs_d = d1; |
+ EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict()); |
+ |
+ __ Bind(&both_loaded_as_doubles); |
+ // The arguments have been converted to doubles and stored in rhs_d and |
+ // lhs_d. |
+ Label nan; |
+ __ Fcmp(lhs_d, rhs_d); |
+ __ B(vs, &nan); // Overflow flag set if either is NaN. |
+ STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); |
+ __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). |
+ __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. |
+ __ Ret(); |
+ |
+ __ Bind(&nan); |
+ // Left and/or right is a NaN. Load the result register with whatever makes |
+ // the comparison fail, since comparisons with NaN always fail (except ne, |
+ // which is filtered out at a higher level.) |
+ ASSERT(cond != ne); |
+ if ((cond == lt) || (cond == le)) { |
+ __ Mov(result, GREATER); |
+ } else { |
+ __ Mov(result, LESS); |
+ } |
+ __ Ret(); |
+ |
+ __ Bind(¬_smis); |
+ // At this point we know we are dealing with two different objects, and |
+ // neither of them is a smi. The objects are in rhs_ and lhs_. |
+ |
+ // Load the maps and types of the objects. |
+ Register rhs_map = x10; |
+ Register rhs_type = x11; |
+ Register lhs_map = x12; |
+ Register lhs_type = x13; |
+ __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
+ __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
+ __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
+ __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
+ |
+ if (strict()) { |
+ // This emits a non-equal return sequence for some object types, or falls |
+ // through if it was not lucky. |
+ EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14); |
+ } |
+ |
+ Label check_for_internalized_strings; |
+ Label flat_string_check; |
+ // Check for heap number comparison. Branch to earlier double comparison code |
+ // if they are heap numbers, otherwise, branch to internalized string check. |
+ __ Cmp(rhs_type, HEAP_NUMBER_TYPE); |
+ __ B(ne, &check_for_internalized_strings); |
+ __ Cmp(lhs_map, rhs_map); |
+ |
+ // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat |
+ // string check. |
+ __ B(ne, &flat_string_check); |
+ |
+ // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double |
+ // comparison code. |
+ __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
+ __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ __ B(&both_loaded_as_doubles); |
+ |
+ __ Bind(&check_for_internalized_strings); |
+ // In the strict case, the EmitStrictTwoHeapObjectCompare already took care |
+ // of internalized strings. |
+ if ((cond == eq) && !strict()) { |
+ // Returns an answer for two internalized strings or two detectable objects. |
+ // Otherwise branches to the string case or not both strings case. |
+ EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map, |
+ lhs_type, rhs_type, |
+ &flat_string_check, &slow); |
+ } |
+ |
+ // Check for both being sequential ASCII strings, and inline if that is the |
+ // case. |
+ __ Bind(&flat_string_check); |
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14, |
+ x15, &slow); |
+ |
+ Isolate* isolate = masm->isolate(); |
+ __ IncrementCounter(isolate->counters()->string_compare_native(), 1, x10, |
+ x11); |
+ if (cond == eq) { |
+ StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, |
+ x10, x11, x12); |
+ } else { |
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, |
+ x10, x11, x12, x13); |
+ } |
+ |
+ // Never fall through to here. |
+ if (FLAG_debug_code) { |
+ __ Unreachable(); |
+ } |
+ |
+ __ Bind(&slow); |
+ |
+ __ Push(lhs, rhs); |
+ // Figure out which native to call and setup the arguments. |
+ Builtins::JavaScript native; |
+ if (cond == eq) { |
+ native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
+ } else { |
+ native = Builtins::COMPARE; |
+ int ncr; // NaN compare result |
+ if ((cond == lt) || (cond == le)) { |
+ ncr = GREATER; |
+ } else { |
+ ASSERT((cond == gt) || (cond == ge)); // remaining cases |
+ ncr = LESS; |
+ } |
+ __ Mov(x10, Operand(Smi::FromInt(ncr))); |
+ __ Push(x10); |
+ } |
+ |
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
+ // tagged as a small integer. |
+ __ InvokeBuiltin(native, JUMP_FUNCTION); |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { |
+ // Preserve caller-saved registers x0-x7 and x10-x15. We don't care if x8, x9, |
+ // ip0 and ip1 are corrupted by the call into C. |
+ CPURegList saved_regs = kCallerSaved; |
+ saved_regs.Remove(ip0); |
+ saved_regs.Remove(ip1); |
+ saved_regs.Remove(x8); |
+ saved_regs.Remove(x9); |
+ |
+ // We don't allow a GC during a store buffer overflow so there is no need to |
+ // store the registers in any particular way, but we do have to store and |
+ // restore them. |
+ __ PushCPURegList(saved_regs); |
+ if (save_doubles_ == kSaveFPRegs) { |
+ __ PushCPURegList(kCallerSavedFP); |
+ } |
+ |
+ AllowExternalCallThatCantCauseGC scope(masm); |
+ __ Mov(x0, Operand(ExternalReference::isolate_address(masm->isolate()))); |
+ __ CallCFunction( |
+ ExternalReference::store_buffer_overflow_function(masm->isolate()), |
+ 1, 0); |
+ |
+ if (save_doubles_ == kSaveFPRegs) { |
+ __ PopCPURegList(kCallerSavedFP); |
+ } |
+ __ PopCPURegList(saved_regs); |
+ __ Ret(); |
+} |
+ |
+ |
+void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( |
+ Isolate* isolate) { |
+ StoreBufferOverflowStub stub1(kDontSaveFPRegs); |
+ stub1.GetCode(isolate); |
+ StoreBufferOverflowStub stub2(kSaveFPRegs); |
+ stub2.GetCode(isolate); |
+} |
+ |
+ |
+void MathPowStub::Generate(MacroAssembler* masm) { |
+ // Stack on entry: |
+ // jssp[0]: Exponent (as a tagged value). |
+ // jssp[1]: Base (as a tagged value). |
+ // |
+ // The (tagged) result will be returned in x0, as a heap number. |
+ |
+ Register result_tagged = x0; |
+ Register base_tagged = x10; |
+ Register exponent_tagged = x11; |
+ Register exponent_integer = x12; |
+ Register scratch1 = x14; |
+ Register scratch0 = x15; |
+ Register saved_lr = x19; |
+ FPRegister result_double = d0; |
+ FPRegister base_double = d0; |
+ FPRegister exponent_double = d1; |
+ FPRegister base_double_copy = d2; |
+ FPRegister scratch1_double = d6; |
+ FPRegister scratch0_double = d7; |
+ |
+ // A fast-path for integer exponents. |
+ Label exponent_is_smi, exponent_is_integer; |
+ // Bail out to runtime. |
+ Label call_runtime; |
+ // Allocate a heap number for the result, and return it. |
+ Label done; |
+ |
+ // Unpack the inputs. |
+ if (exponent_type_ == ON_STACK) { |
+ Label base_is_smi; |
+ Label unpack_exponent; |
+ |
+ __ Pop(exponent_tagged, base_tagged); |
+ |
+ __ JumpIfSmi(base_tagged, &base_is_smi); |
+ __ JumpIfNotHeapNumber(base_tagged, &call_runtime); |
+ // base_tagged is a heap number, so load its double value. |
+ __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset)); |
+ __ B(&unpack_exponent); |
+ __ Bind(&base_is_smi); |
+ // base_tagged is a SMI, so untag it and convert it to a double. |
+ __ SmiUntagToDouble(base_double, base_tagged); |
+ |
+ __ Bind(&unpack_exponent); |
+ // x10 base_tagged The tagged base (input). |
+ // x11 exponent_tagged The tagged exponent (input). |
+ // d1 base_double The base as a double. |
+ __ JumpIfSmi(exponent_tagged, &exponent_is_smi); |
+ __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime); |
+ // exponent_tagged is a heap number, so load its double value. |
+ __ Ldr(exponent_double, |
+ FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); |
+ } else if (exponent_type_ == TAGGED) { |
+ __ JumpIfSmi(exponent_tagged, &exponent_is_smi); |
+ __ Ldr(exponent_double, |
+ FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); |
+ } |
+ |
+ // Handle double (heap number) exponents. |
+ if (exponent_type_ != INTEGER) { |
+ // Detect integer exponents stored as doubles and handle those in the |
+ // integer fast-path. |
+ __ TryConvertDoubleToInt64(exponent_integer, exponent_double, |
+ scratch0_double, &exponent_is_integer); |
+ |
+ if (exponent_type_ == ON_STACK) { |
+ FPRegister half_double = d3; |
+ FPRegister minus_half_double = d4; |
+ FPRegister zero_double = d5; |
+ // Detect square root case. Crankshaft detects constant +/-0.5 at compile |
+ // time and uses DoMathPowHalf instead. We then skip this check for |
+ // non-constant cases of +/-0.5 as these hardly occur. |
+ |
+ __ Fmov(minus_half_double, -0.5); |
+ __ Fmov(half_double, 0.5); |
+ __ Fcmp(minus_half_double, exponent_double); |
+ __ Fccmp(half_double, exponent_double, NZFlag, ne); |
+ // Condition flags at this point: |
+ // 0.5; nZCv // Identified by eq && pl |
+ // -0.5: NZcv // Identified by eq && mi |
+ // other: ?z?? // Identified by ne |
+ __ B(ne, &call_runtime); |
+ |
+ // The exponent is 0.5 or -0.5. |
+ |
+ // Given that exponent is known to be either 0.5 or -0.5, the following |
+ // special cases could apply (according to ECMA-262 15.8.2.13): |
+ // |
+ // base.isNaN(): The result is NaN. |
+ // (base == +INFINITY) || (base == -INFINITY) |
+ // exponent == 0.5: The result is +INFINITY. |
+ // exponent == -0.5: The result is +0. |
+ // (base == +0) || (base == -0) |
+ // exponent == 0.5: The result is +0. |
+ // exponent == -0.5: The result is +INFINITY. |
+ // (base < 0) && base.isFinite(): The result is NaN. |
+ // |
+ // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except |
+ // where base is -INFINITY or -0. |
+ |
+ // Add +0 to base. This has no effect other than turning -0 into +0. |
+ __ Fmov(zero_double, 0.0); |
+ __ Fadd(base_double, base_double, zero_double); |
+ // The operation -0+0 results in +0 in all cases except where the |
+ // FPCR rounding mode is 'round towards minus infinity' (RM). The |
+ // A64 simulator does not currently simulate FPCR (where the rounding |
+ // mode is set), so test the operation with some debug code. |
+ if (masm->emit_debug_code()) { |
+ Register temp = masm->Tmp1(); |
+ // d5 zero_double The value +0.0 as a double. |
+ __ Fneg(scratch0_double, zero_double); |
+ // Verify that we correctly generated +0.0 and -0.0. |
+ // bits(+0.0) = 0x0000000000000000 |
+ // bits(-0.0) = 0x8000000000000000 |
+ __ Fmov(temp, zero_double); |
+ __ CheckRegisterIsClear(temp, kCouldNotGenerateZero); |
+ __ Fmov(temp, scratch0_double); |
+ __ Eor(temp, temp, kDSignMask); |
+ __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero); |
+ // Check that -0.0 + 0.0 == +0.0. |
+ __ Fadd(scratch0_double, scratch0_double, zero_double); |
+ __ Fmov(temp, scratch0_double); |
+ __ CheckRegisterIsClear(temp, kExpectedPositiveZero); |
+ } |
+ |
+ // If base is -INFINITY, make it +INFINITY. |
+ // * Calculate base - base: All infinities will become NaNs since both |
+ // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in A64. |
+ // * If the result is NaN, calculate abs(base). |
+ __ Fsub(scratch0_double, base_double, base_double); |
+ __ Fcmp(scratch0_double, 0.0); |
+ __ Fabs(scratch1_double, base_double); |
+ __ Fcsel(base_double, scratch1_double, base_double, vs); |
+ |
+ // Calculate the square root of base. |
+ __ Fsqrt(result_double, base_double); |
+ __ Fcmp(exponent_double, 0.0); |
+ __ B(ge, &done); // Finish now for exponents of 0.5. |
+ // Find the inverse for exponents of -0.5. |
+ __ Fmov(scratch0_double, 1.0); |
+ __ Fdiv(result_double, scratch0_double, result_double); |
+ __ B(&done); |
+ } |
+ |
+ { |
+ AllowExternalCallThatCantCauseGC scope(masm); |
+ __ Mov(saved_lr, lr); |
+ __ CallCFunction( |
+ ExternalReference::power_double_double_function(masm->isolate()), |
+ 0, 2); |
+ __ Mov(lr, saved_lr); |
+ __ B(&done); |
+ } |
+ |
+ // Handle SMI exponents. |
+ __ Bind(&exponent_is_smi); |
+ // x10 base_tagged The tagged base (input). |
+ // x11 exponent_tagged The tagged exponent (input). |
+ // d1 base_double The base as a double. |
+ __ SmiUntag(exponent_integer, exponent_tagged); |
+ } |
+ |
+ __ Bind(&exponent_is_integer); |
+ // x10 base_tagged The tagged base (input). |
+ // x11 exponent_tagged The tagged exponent (input). |
+ // x12 exponent_integer The exponent as an integer. |
+ // d1 base_double The base as a double. |
+ |
+ // Find abs(exponent). For negative exponents, we can find the inverse later. |
+ Register exponent_abs = x13; |
+ __ Cmp(exponent_integer, 0); |
+ __ Cneg(exponent_abs, exponent_integer, mi); |
+ // x13 exponent_abs The value of abs(exponent_integer). |
+ |
+ // Repeatedly multiply to calculate the power. |
+ // result = 1.0; |
+ // For each bit n (exponent_integer{n}) { |
+ // if (exponent_integer{n}) { |
+ // result *= base; |
+ // } |
+ // base *= base; |
+ // if (remaining bits in exponent_integer are all zero) { |
+ // break; |
+ // } |
+ // } |
+ Label power_loop, power_loop_entry, power_loop_exit; |
+ __ Fmov(scratch1_double, base_double); |
+ __ Fmov(base_double_copy, base_double); |
+ __ Fmov(result_double, 1.0); |
+ __ B(&power_loop_entry); |
+ |
+ __ Bind(&power_loop); |
+ __ Fmul(scratch1_double, scratch1_double, scratch1_double); |
+ __ Lsr(exponent_abs, exponent_abs, 1); |
+ __ Cbz(exponent_abs, &power_loop_exit); |
+ |
+ __ Bind(&power_loop_entry); |
+ __ Tbz(exponent_abs, 0, &power_loop); |
+ __ Fmul(result_double, result_double, scratch1_double); |
+ __ B(&power_loop); |
+ |
+ __ Bind(&power_loop_exit); |
+ |
+ // If the exponent was positive, result_double holds the result. |
+ __ Tbz(exponent_integer, kXSignBit, &done); |
+ |
+ // The exponent was negative, so find the inverse. |
+ __ Fmov(scratch0_double, 1.0); |
+ __ Fdiv(result_double, scratch0_double, result_double); |
+ // ECMA-262 only requires Math.pow to return an 'implementation-dependent |
+ // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow |
+ // to calculate the subnormal value 2^-1074. This method of calculating |
+ // negative powers doesn't work because 2^1074 overflows to infinity. To |
+ // catch this corner-case, we bail out if the result was 0. (This can only |
+ // occur if the divisor is infinity or the base is zero.) |
+ __ Fcmp(result_double, 0.0); |
+ __ B(&done, ne); |
+ |
+ if (exponent_type_ == ON_STACK) { |
+ // Bail out to runtime code. |
+ __ Bind(&call_runtime); |
+ // Put the arguments back on the stack. |
+ __ Push(base_tagged, exponent_tagged); |
+ __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
+ |
+ // Return. |
+ __ Bind(&done); |
+ __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1); |
+ __ Str(result_double, |
+ FieldMemOperand(result_tagged, HeapNumber::kValueOffset)); |
+ ASSERT(result_tagged.is(x0)); |
+ __ IncrementCounter( |
+ masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); |
+ __ Ret(); |
+ } else { |
+ AllowExternalCallThatCantCauseGC scope(masm); |
+ __ Mov(saved_lr, lr); |
+ __ Fmov(base_double, base_double_copy); |
+ __ Scvtf(exponent_double, exponent_integer); |
+ __ CallCFunction( |
+ ExternalReference::power_double_double_function(masm->isolate()), |
+ 0, 2); |
+ __ Mov(lr, saved_lr); |
+ __ Bind(&done); |
+ __ IncrementCounter( |
+ masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); |
+ __ Ret(); |
+ } |
+} |
+ |
+ |
+void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
+ // It is important that the following stubs are generated in this order |
+ // because pregenerated stubs can only call other pregenerated stubs. |
+ // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses |
+ // CEntryStub. |
+ CEntryStub::GenerateAheadOfTime(isolate); |
+ StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); |
+ StubFailureTrampolineStub::GenerateAheadOfTime(isolate); |
+ ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); |
+ CreateAllocationSiteStub::GenerateAheadOfTime(isolate); |
+ BinaryOpICStub::GenerateAheadOfTime(isolate); |
+ BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); |
+} |
+ |
+ |
+void CodeStub::GenerateFPStubs(Isolate* isolate) { |
+ // Floating-point code doesn't get special handling in A64, so there's |
+ // nothing to do here. |
+ USE(isolate); |
+} |
+ |
+ |
+static void JumpIfOOM(MacroAssembler* masm, |
+ Register value, |
+ Register scratch, |
+ Label* oom_label) { |
+ STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3); |
+ STATIC_ASSERT(kFailureTag == 3); |
+ __ And(scratch, value, 0xf); |
+ __ Cmp(scratch, 0xf); |
+ __ B(eq, oom_label); |
+} |
+ |
+ |
+bool CEntryStub::NeedsImmovableCode() { |
+ // CEntryStub stores the return address on the stack before calling into |
+ // C++ code. In some cases, the VM accesses this address, but it is not used |
+ // when the C++ code returns to the stub because LR holds the return address |
+ // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up |
+ // returning to dead code. |
+ // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't |
+ // find any comment to confirm this, and I don't hit any crashes whatever |
+ // this function returns. The anaylsis should be properly confirmed. |
+ return true; |
+} |
+ |
+ |
+void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
+ CEntryStub stub(1, kDontSaveFPRegs); |
+ stub.GetCode(isolate); |
+ CEntryStub stub_fp(1, kSaveFPRegs); |
+ stub_fp.GetCode(isolate); |
+} |
+ |
+ |
+void CEntryStub::GenerateCore(MacroAssembler* masm, |
+ Label* throw_normal, |
+ Label* throw_termination, |
+ Label* throw_out_of_memory, |
+ bool do_gc, |
+ bool always_allocate) { |
+ // x0 : Result parameter for PerformGC, if do_gc is true. |
+ // x21 : argv |
+ // x22 : argc |
+ // x23 : target |
+ // |
+ // The stack (on entry) holds the arguments and the receiver, with the |
+ // receiver at the highest address: |
+ // |
+ // argv[8]: receiver |
+ // argv -> argv[0]: arg[argc-2] |
+ // ... ... |
+ // argv[...]: arg[1] |
+ // argv[...]: arg[0] |
+ // |
+ // Immediately below (after) this is the exit frame, as constructed by |
+ // EnterExitFrame: |
+ // fp[8]: CallerPC (lr) |
+ // fp -> fp[0]: CallerFP (old fp) |
+ // fp[-8]: Space reserved for SPOffset. |
+ // fp[-16]: CodeObject() |
+ // csp[...]: Saved doubles, if saved_doubles is true. |
+ // csp[32]: Alignment padding, if necessary. |
+ // csp[24]: Preserved x23 (used for target). |
+ // csp[16]: Preserved x22 (used for argc). |
+ // csp[8]: Preserved x21 (used for argv). |
+ // csp -> csp[0]: Space reserved for the return address. |
+ // |
+ // After a successful call, the exit frame, preserved registers (x21-x23) and |
+ // the arguments (including the receiver) are dropped or popped as |
+ // appropriate. The stub then returns. |
+ // |
+ // After an unsuccessful call, the exit frame and suchlike are left |
+ // untouched, and the stub either throws an exception by jumping to one of |
+ // the provided throw_ labels, or it falls through. The failure details are |
+ // passed through in x0. |
+ ASSERT(csp.Is(__ StackPointer())); |
+ |
+ Isolate* isolate = masm->isolate(); |
+ |
+ const Register& argv = x21; |
+ const Register& argc = x22; |
+ const Register& target = x23; |
+ |
+ if (do_gc) { |
+ // Call Runtime::PerformGC, passing x0 (the result parameter for |
+ // PerformGC) and x1 (the isolate). |
+ __ Mov(x1, Operand(ExternalReference::isolate_address(masm->isolate()))); |
+ __ CallCFunction( |
+ ExternalReference::perform_gc_function(isolate), 2, 0); |
+ } |
+ |
+ ExternalReference scope_depth = |
+ ExternalReference::heap_always_allocate_scope_depth(isolate); |
+ if (always_allocate) { |
+ __ Mov(x10, Operand(scope_depth)); |
+ __ Ldr(x11, MemOperand(x10)); |
+ __ Add(x11, x11, 1); |
+ __ Str(x11, MemOperand(x10)); |
+ } |
+ |
+ // Prepare AAPCS64 arguments to pass to the builtin. |
+ __ Mov(x0, argc); |
+ __ Mov(x1, argv); |
+ __ Mov(x2, Operand(ExternalReference::isolate_address(isolate))); |
+ |
+ // Store the return address on the stack, in the space previously allocated |
+ // by EnterExitFrame. The return address is queried by |
+ // ExitFrame::GetStateForFramePointer. |
+ Label return_location; |
+ __ Adr(x12, &return_location); |
+ __ Poke(x12, 0); |
+ if (__ emit_debug_code()) { |
+ // Verify that the slot below fp[kSPOffset]-8 points to the return location |
+ // (currently in x12). |
+ Register temp = masm->Tmp1(); |
+ __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
+ __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSizeInBytes))); |
+ __ Cmp(temp, x12); |
+ __ Check(eq, kReturnAddressNotFoundInFrame); |
+ } |
+ |
+ // Call the builtin. |
+ __ Blr(target); |
+ __ Bind(&return_location); |
+ const Register& result = x0; |
+ |
+ if (always_allocate) { |
+ __ Mov(x10, Operand(scope_depth)); |
+ __ Ldr(x11, MemOperand(x10)); |
+ __ Sub(x11, x11, 1); |
+ __ Str(x11, MemOperand(x10)); |
+ } |
+ |
+ // x0 result The return code from the call. |
+ // x21 argv |
+ // x22 argc |
+ // x23 target |
+ // |
+ // If all of the result bits matching kFailureTagMask are '1', the result is |
+ // a failure. Otherwise, it's an ordinary tagged object and the call was a |
+ // success. |
+ Label failure; |
+ __ And(x10, result, kFailureTagMask); |
+ __ Cmp(x10, kFailureTagMask); |
+ __ B(&failure, eq); |
+ |
+ // The call succeeded, so unwind the stack and return. |
+ |
+ // Restore callee-saved registers x21-x23. |
+ __ Mov(x11, argc); |
+ |
+ __ Peek(argv, 1 * kPointerSize); |
+ __ Peek(argc, 2 * kPointerSize); |
+ __ Peek(target, 3 * kPointerSize); |
+ |
+ __ LeaveExitFrame(save_doubles_, x10, true); |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ // Pop or drop the remaining stack slots and return from the stub. |
+ // jssp[24]: Arguments array (of size argc), including receiver. |
+ // jssp[16]: Preserved x23 (used for target). |
+ // jssp[8]: Preserved x22 (used for argc). |
+ // jssp[0]: Preserved x21 (used for argv). |
+ __ Drop(x11); |
+ __ Ret(); |
+ |
+ // The stack pointer is still csp if we aren't returning, and the frame |
+ // hasn't changed (except for the return address). |
+ __ SetStackPointer(csp); |
+ |
+ __ Bind(&failure); |
+ // The call failed, so check if we need to throw an exception, and fall |
+ // through (to retry) otherwise. |
+ |
+ Label retry; |
+ // x0 result The return code from the call, including the failure |
+ // code and details. |
+ // x21 argv |
+ // x22 argc |
+ // x23 target |
+ // Refer to the Failure class for details of the bit layout. |
+ STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
+ __ Tst(result, kFailureTypeTagMask << kFailureTagSize); |
+ __ B(eq, &retry); // RETRY_AFTER_GC |
+ |
+ // Special handling of out-of-memory exceptions: Pass the failure result, |
+ // rather than the exception descriptor. |
+ JumpIfOOM(masm, result, x10, throw_out_of_memory); |
+ |
+ // Retrieve the pending exception. |
+ const Register& exception = result; |
+ const Register& exception_address = x11; |
+ __ Mov(exception_address, |
+ Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
+ isolate))); |
+ __ Ldr(exception, MemOperand(exception_address)); |
+ |
+ // See if we just retrieved an OOM exception. |
+ JumpIfOOM(masm, exception, x10, throw_out_of_memory); |
+ |
+ // Clear the pending exception. |
+ __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
+ __ Str(x10, MemOperand(exception_address)); |
+ |
+ // x0 exception The exception descriptor. |
+ // x21 argv |
+ // x22 argc |
+ // x23 target |
+ |
+ // Special handling of termination exceptions, which are uncatchable by |
+ // JavaScript code. |
+ __ Cmp(exception, Operand(isolate->factory()->termination_exception())); |
+ __ B(eq, throw_termination); |
+ |
+ // Handle normal exception. |
+ __ B(throw_normal); |
+ |
+ __ Bind(&retry); |
+ // The result (x0) is passed through as the next PerformGC parameter. |
+} |
+ |
+ |
+void CEntryStub::Generate(MacroAssembler* masm) { |
+ // The Abort mechanism relies on CallRuntime, which in turn relies on |
+ // CEntryStub, so until this stub has been generated, we have to use a |
+ // fall-back Abort mechanism. |
+ // |
+ // Note that this stub must be generated before any use of Abort. |
+ MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
+ |
+ ASM_LOCATION("CEntryStub::Generate entry"); |
+ ProfileEntryHookStub::MaybeCallEntryHook(masm); |
+ |
+ // Register parameters: |
+ // x0: argc (including receiver, untagged) |
+ // x1: target |
+ // |
+ // The stack on entry holds the arguments and the receiver, with the receiver |
+ // at the highest address: |
+ // |
+ // jssp]argc-1]: receiver |
+ // jssp[argc-2]: arg[argc-2] |
+ // ... ... |
+ // jssp[1]: arg[1] |
+ // jssp[0]: arg[0] |
+ // |
+ // The arguments are in reverse order, so that arg[argc-2] is actually the |
+ // first argument to the target function and arg[0] is the last. |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ const Register& argc_input = x0; |
+ const Register& target_input = x1; |
+ |
+ // Calculate argv, argc and the target address, and store them in |
+ // callee-saved registers so we can retry the call without having to reload |
+ // these arguments. |
+ // TODO(jbramley): If the first call attempt succeeds in the common case (as |
+ // it should), then we might be better off putting these parameters directly |
+ // into their argument registers, rather than using callee-saved registers and |
+ // preserving them on the stack. |
+ const Register& argv = x21; |
+ const Register& argc = x22; |
+ const Register& target = x23; |
+ |
+ // Derive argv from the stack pointer so that it points to the first argument |
+ // (arg[argc-2]), or just below the receiver in case there are no arguments. |
+ // - Adjust for the arg[] array. |
+ Register temp_argv = x11; |
+ __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2)); |
+ // - Adjust for the receiver. |
+ __ Sub(temp_argv, temp_argv, 1 * kPointerSize); |
+ |
+ // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved |
+ // registers. |
+ FrameScope scope(masm, StackFrame::MANUAL); |
+ __ EnterExitFrame(save_doubles_, x10, 3); |
+ ASSERT(csp.Is(__ StackPointer())); |
+ |
+ // Poke callee-saved registers into reserved space. |
+ __ Poke(argv, 1 * kPointerSize); |
+ __ Poke(argc, 2 * kPointerSize); |
+ __ Poke(target, 3 * kPointerSize); |
+ |
+ // We normally only keep tagged values in callee-saved registers, as they |
+ // could be pushed onto the stack by called stubs and functions, and on the |
+ // stack they can confuse the GC. However, we're only calling C functions |
+ // which can push arbitrary data onto the stack anyway, and so the GC won't |
+ // examine that part of the stack. |
+ __ Mov(argc, argc_input); |
+ __ Mov(target, target_input); |
+ __ Mov(argv, temp_argv); |
+ |
+ Label throw_normal; |
+ Label throw_termination; |
+ Label throw_out_of_memory; |
+ |
+ // Call the runtime function. |
+ GenerateCore(masm, |
+ &throw_normal, |
+ &throw_termination, |
+ &throw_out_of_memory, |
+ false, |
+ false); |
+ |
+ // If successful, the previous GenerateCore will have returned to the |
+ // calling code. Otherwise, we fall through into the following. |
+ |
+ // Do space-specific GC and retry runtime call. |
+ GenerateCore(masm, |
+ &throw_normal, |
+ &throw_termination, |
+ &throw_out_of_memory, |
+ true, |
+ false); |
+ |
+ // Do full GC and retry runtime call one final time. |
+ __ Mov(x0, reinterpret_cast<uint64_t>(Failure::InternalError())); |
+ GenerateCore(masm, |
+ &throw_normal, |
+ &throw_termination, |
+ &throw_out_of_memory, |
+ true, |
+ true); |
+ |
+ // We didn't execute a return case, so the stack frame hasn't been updated |
+ // (except for the return address slot). However, we don't need to initialize |
+ // jssp because the throw method will immediately overwrite it when it |
+ // unwinds the stack. |
+ if (__ emit_debug_code()) { |
+ __ Mov(jssp, kDebugZapValue); |
+ } |
+ __ SetStackPointer(jssp); |
+ |
+ // Throw exceptions. |
+ // If we throw an exception, we can end up re-entering CEntryStub before we |
+ // pop the exit frame, so need to ensure that x21-x23 contain GC-safe values |
+ // here. |
+ __ Bind(&throw_out_of_memory); |
+ ASM_LOCATION("Throw out of memory"); |
+ __ Mov(argv, 0); |
+ __ Mov(argc, 0); |
+ __ Mov(target, 0); |
+ // Set external caught exception to false. |
+ Isolate* isolate = masm->isolate(); |
+ __ Mov(x2, Operand(ExternalReference(Isolate::kExternalCaughtExceptionAddress, |
+ isolate))); |
+ __ Str(xzr, MemOperand(x2)); |
+ |
+ // Set pending exception and x0 to out of memory exception. |
+ Label already_have_failure; |
+ JumpIfOOM(masm, x0, x10, &already_have_failure); |
+ Failure* out_of_memory = Failure::OutOfMemoryException(0x1); |
+ __ Mov(x0, Operand(reinterpret_cast<uint64_t>(out_of_memory))); |
+ __ Bind(&already_have_failure); |
+ __ Mov(x2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
+ isolate))); |
+ __ Str(x0, MemOperand(x2)); |
+ // Fall through to the next label. |
+ |
+ __ Bind(&throw_termination); |
+ ASM_LOCATION("Throw termination"); |
+ __ Mov(argv, 0); |
+ __ Mov(argc, 0); |
+ __ Mov(target, 0); |
+ __ ThrowUncatchable(x0, x10, x11, x12, x13); |
+ |
+ __ Bind(&throw_normal); |
+ ASM_LOCATION("Throw normal"); |
+ __ Mov(argv, 0); |
+ __ Mov(argc, 0); |
+ __ Mov(target, 0); |
+ __ Throw(x0, x10, x11, x12, x13); |
+} |
+ |
+ |
+// This is the entry point from C++. 5 arguments are provided in x0-x4. |
+// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc. |
+// Input: |
+// x0: code entry. |
+// x1: function. |
+// x2: receiver. |
+// x3: argc. |
+// x4: argv. |
+// Output: |
+// x0: result. |
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ Register code_entry = x0; |
+ |
+ // Enable instruction instrumentation. This only works on the simulator, and |
+ // will have no effect on the model or real hardware. |
+ __ EnableInstrumentation(); |
+ |
+ Label invoke, handler_entry, exit; |
+ |
+ // Push callee-saved registers and synchronize the system stack pointer (csp) |
+ // and the JavaScript stack pointer (jssp). |
+ // |
+ // We must not write to jssp until after the PushCalleeSavedRegisters() |
+ // call, since jssp is itself a callee-saved register. |
+ __ SetStackPointer(csp); |
+ __ PushCalleeSavedRegisters(); |
+ __ Mov(jssp, csp); |
+ __ SetStackPointer(jssp); |
+ |
+ ProfileEntryHookStub::MaybeCallEntryHook(masm); |
+ |
+ // Build an entry frame (see layout below). |
+ Isolate* isolate = masm->isolate(); |
+ |
+ // Build an entry frame. |
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
+ int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. |
+ __ Mov(x13, bad_frame_pointer); |
+ __ Mov(x12, Operand(Smi::FromInt(marker))); |
+ __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); |
+ __ Ldr(x10, MemOperand(x11)); |
+ |
+ // TODO(all): Pushing the marker twice seems unnecessary. |
+ // In this case perhaps we could push xzr in the slot for the context |
+ // (see MAsm::EnterFrame). |
+ __ Push(x13, x12, x12, x10); |
+ // Set up fp. |
+ __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset); |
+ |
+ // Push the JS entry frame marker. Also set js_entry_sp if this is the |
+ // outermost JS call. |
+ Label non_outermost_js, done; |
+ ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); |
+ __ Mov(x10, Operand(ExternalReference(js_entry_sp))); |
+ __ Ldr(x11, MemOperand(x10)); |
+ __ Cbnz(x11, &non_outermost_js); |
+ __ Str(fp, MemOperand(x10)); |
+ __ Mov(x12, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
+ __ Push(x12); |
+ __ B(&done); |
+ __ Bind(&non_outermost_js); |
+ // We spare one instruction by pushing xzr since the marker is 0. |
+ ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL); |
+ __ Push(xzr); |
+ __ Bind(&done); |
+ |
+ // The frame set up looks like this: |
+ // jssp[0] : JS entry frame marker. |
+ // jssp[1] : C entry FP. |
+ // jssp[2] : stack frame marker. |
+ // jssp[3] : stack frmae marker. |
+ // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. |
+ |
+ |
+ // Jump to a faked try block that does the invoke, with a faked catch |
+ // block that sets the pending exception. |
+ __ B(&invoke); |
+ |
+ // Prevent the constant pool from being emitted between the record of the |
+ // handler_entry position and the first instruction of the sequence here. |
+ // There is no risk because Assembler::Emit() emits the instruction before |
+ // checking for constant pool emission, but we do not want to depend on |
+ // that. |
+ { |
+ Assembler::BlockConstPoolScope block_const_pool(masm); |
+ __ bind(&handler_entry); |
+ handler_offset_ = handler_entry.pos(); |
+ // Caught exception: Store result (exception) in the pending exception |
+ // field in the JSEnv and return a failure sentinel. Coming in here the |
+ // fp will be invalid because the PushTryHandler below sets it to 0 to |
+ // signal the existence of the JSEntry frame. |
+ // TODO(jbramley): Do this in the Assembler. |
+ __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
+ isolate))); |
+ } |
+ __ Str(code_entry, MemOperand(x10)); |
+ __ Mov(x0, Operand(reinterpret_cast<int64_t>(Failure::Exception()))); |
+ __ B(&exit); |
+ |
+ // Invoke: Link this frame into the handler chain. There's only one |
+ // handler block in this code object, so its index is 0. |
+ __ Bind(&invoke); |
+ __ PushTryHandler(StackHandler::JS_ENTRY, 0); |
+ // If an exception not caught by another handler occurs, this handler |
+ // returns control to the code after the B(&invoke) above, which |
+ // restores all callee-saved registers (including cp and fp) to their |
+ // saved values before returning a failure to C. |
+ |
+ // Clear any pending exceptions. |
+ __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
+ __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
+ isolate))); |
+ __ Str(x10, MemOperand(x11)); |
+ |
+ // Invoke the function by calling through the JS entry trampoline builtin. |
+ // Notice that we cannot store a reference to the trampoline code directly in |
+ // this stub, because runtime stubs are not traversed when doing GC. |
+ |
+ // Expected registers by Builtins::JSEntryTrampoline |
+ // x0: code entry. |
+ // x1: function. |
+ // x2: receiver. |
+ // x3: argc. |
+ // x4: argv. |
+ // TODO(jbramley): The latest ARM code checks is_construct and conditionally |
+ // uses construct_entry. We probably need to do the same here. |
+ ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline |
+ : Builtins::kJSEntryTrampoline, |
+ isolate); |
+ __ Mov(x10, Operand(entry)); |
+ |
+ // Call the JSEntryTrampoline. |
+ __ Ldr(x11, MemOperand(x10)); // Dereference the address. |
+ __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); |
+ __ Blr(x12); |
+ |
+ // Unlink this frame from the handler chain. |
+ __ PopTryHandler(); |
+ |
+ |
+ __ Bind(&exit); |
+ // x0 holds the result. |
+ // The stack pointer points to the top of the entry frame pushed on entry from |
+ // C++ (at the beginning of this stub): |
+ // jssp[0] : JS entry frame marker. |
+ // jssp[1] : C entry FP. |
+ // jssp[2] : stack frame marker. |
+ // jssp[3] : stack frmae marker. |
+ // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. |
+ |
+ // Check if the current stack frame is marked as the outermost JS frame. |
+ Label non_outermost_js_2; |
+ __ Pop(x10); |
+ __ Cmp(x10, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
+ __ B(ne, &non_outermost_js_2); |
+ __ Mov(x11, Operand(ExternalReference(js_entry_sp))); |
+ __ Str(xzr, MemOperand(x11)); |
+ __ Bind(&non_outermost_js_2); |
+ |
+ // Restore the top frame descriptors from the stack. |
+ __ Pop(x10); |
+ __ Mov(x11, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); |
+ __ Str(x10, MemOperand(x11)); |
+ |
+ // Reset the stack to the callee saved registers. |
+ __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes); |
+ // Restore the callee-saved registers and return. |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ __ Mov(csp, jssp); |
+ __ SetStackPointer(csp); |
+ __ PopCalleeSavedRegisters(); |
+ // After this point, we must not modify jssp because it is a callee-saved |
+ // register which we have just restored. |
+ __ Ret(); |
+} |
+ |
+ |
+void FunctionPrototypeStub::Generate(MacroAssembler* masm) { |
+ Label miss; |
+ Register receiver; |
+ if (kind() == Code::KEYED_LOAD_IC) { |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- x1 : receiver |
+ // -- x0 : key |
+ // ----------------------------------- |
+ Register key = x0; |
+ receiver = x1; |
+ __ Cmp(key, Operand(masm->isolate()->factory()->prototype_string())); |
+ __ B(ne, &miss); |
+ } else { |
+ ASSERT(kind() == Code::LOAD_IC); |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- x2 : name |
+ // -- x0 : receiver |
+ // -- sp[0] : receiver |
+ // ----------------------------------- |
+ receiver = x0; |
+ } |
+ |
+ StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss); |
+ |
+ __ Bind(&miss); |
+ StubCompiler::TailCallBuiltin(masm, |
+ BaseLoadStoreStubCompiler::MissBuiltin(kind())); |
+} |
+ |
+ |
+void StringLengthStub::Generate(MacroAssembler* masm) { |
+ Label miss; |
+ Register receiver; |
+ if (kind() == Code::KEYED_LOAD_IC) { |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- x1 : receiver |
+ // -- x0 : key |
+ // ----------------------------------- |
+ Register key = x0; |
+ receiver = x1; |
+ __ Cmp(key, Operand(masm->isolate()->factory()->length_string())); |
+ __ B(ne, &miss); |
+ } else { |
+ ASSERT(kind() == Code::LOAD_IC); |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- x2 : name |
+ // -- x0 : receiver |
+ // -- sp[0] : receiver |
+ // ----------------------------------- |
+ receiver = x0; |
+ } |
+ |
+ StubCompiler::GenerateLoadStringLength(masm, receiver, x10, x11, &miss); |
+ |
+ __ Bind(&miss); |
+ StubCompiler::TailCallBuiltin(masm, |
+ BaseLoadStoreStubCompiler::MissBuiltin(kind())); |
+} |
+ |
+ |
+void StoreArrayLengthStub::Generate(MacroAssembler* masm) { |
+ ASM_LOCATION("StoreArrayLengthStub::Generate"); |
+ // This accepts as a receiver anything JSArray::SetElementsLength accepts |
+ // (currently anything except for external arrays which means anything with |
+ // elements of FixedArray type). Value must be a number, but only smis are |
+ // accepted as the most common case. |
+ Label miss; |
+ |
+ Register receiver; |
+ Register value; |
+ if (kind() == Code::KEYED_STORE_IC) { |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- x2 : receiver |
+ // -- x1 : key |
+ // -- x0 : value |
+ // ----------------------------------- |
+ Register key = x1; |
+ receiver = x2; |
+ value = x0; |
+ __ Cmp(key, Operand(masm->isolate()->factory()->length_string())); |
+ __ B(ne, &miss); |
+ } else { |
+ ASSERT(kind() == Code::STORE_IC); |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- x2 : key |
+ // -- x1 : receiver |
+ // -- x0 : value |
+ // ----------------------------------- |
+ receiver = x1; |
+ value = x0; |
+ } |
+ |
+ // Check that the receiver isn't a smi. |
+ __ JumpIfSmi(receiver, &miss); |
+ |
+ // Check that the object is a JS array. |
+ __ CompareObjectType(receiver, x10, x11, JS_ARRAY_TYPE); |
+ __ B(ne, &miss); |
+ |
+ // Check that elements are FixedArray. |
+ // We rely on StoreIC_ArrayLength below to deal with all types of |
+ // fast elements (including COW). |
+ __ Ldr(x10, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
+ __ CompareObjectType(x10, x11, x12, FIXED_ARRAY_TYPE); |
+ __ B(ne, &miss); |
+ |
+ // Check that the array has fast properties, otherwise the length |
+ // property might have been redefined. |
+ __ Ldr(x10, FieldMemOperand(receiver, JSArray::kPropertiesOffset)); |
+ __ Ldr(x10, FieldMemOperand(x10, FixedArray::kMapOffset)); |
+ __ CompareRoot(x10, Heap::kHashTableMapRootIndex); |
+ __ B(eq, &miss); |
+ |
+ // Check that value is a smi. |
+ __ JumpIfNotSmi(value, &miss); |
+ |
+ // Prepare tail call to StoreIC_ArrayLength. |
+ __ Push(receiver, value); |
+ |
+ ExternalReference ref = |
+ ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate()); |
+ __ TailCallExternalReference(ref, 2, 1); |
+ |
+ __ Bind(&miss); |
+ StubCompiler::TailCallBuiltin(masm, |
+ BaseLoadStoreStubCompiler::MissBuiltin(kind())); |
+} |
+ |
+ |
+void InstanceofStub::Generate(MacroAssembler* masm) { |
+ // Stack on entry: |
+ // jssp[0]: function. |
+ // jssp[8]: object. |
+ // |
+ // Returns result in x0. Zero indicates instanceof, smi 1 indicates not |
+ // instanceof. |
+ |
+ Register result = x0; |
+ Register function = right(); |
+ Register object = left(); |
+ Register scratch1 = x6; |
+ Register scratch2 = x7; |
+ Register res_true = x8; |
+ Register res_false = x9; |
+ // Only used if there was an inline map check site. (See |
+ // LCodeGen::DoInstanceOfKnownGlobal().) |
+ Register map_check_site = x4; |
+ // Delta for the instructions generated between the inline map check and the |
+ // instruction setting the result. |
+ const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize; |
+ |
+ Label not_js_object, slow; |
+ |
+ if (!HasArgsInRegisters()) { |
+ __ Pop(function, object); |
+ } |
+ |
+ if (ReturnTrueFalseObject()) { |
+ __ LoadTrueFalseRoots(res_true, res_false); |
+ } else { |
+ // This is counter-intuitive, but correct. |
+ __ Mov(res_true, Operand(Smi::FromInt(0))); |
+ __ Mov(res_false, Operand(Smi::FromInt(1))); |
+ } |
+ |
+ // Check that the left hand side is a JS object and load its map as a side |
+ // effect. |
+ Register map = x12; |
+ __ JumpIfSmi(object, ¬_js_object); |
+ __ IsObjectJSObjectType(object, map, scratch2, ¬_js_object); |
+ |
+ // If there is a call site cache, don't look in the global cache, but do the |
+ // real lookup and update the call site cache. |
+ if (!HasCallSiteInlineCheck()) { |
+ Label miss; |
+ __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss); |
+ __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss); |
+ __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ Ret(); |
+ __ Bind(&miss); |
+ } |
+ |
+ // Get the prototype of the function. |
+ Register prototype = x13; |
+ __ TryGetFunctionPrototype(function, prototype, scratch2, &slow, |
+ MacroAssembler::kMissOnBoundFunction); |
+ |
+ // Check that the function prototype is a JS object. |
+ __ JumpIfSmi(prototype, &slow); |
+ __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow); |
+ |
+ // Update the global instanceof or call site inlined cache with the current |
+ // map and function. The cached answer will be set when it is known below. |
+ if (HasCallSiteInlineCheck()) { |
+ // Patch the (relocated) inlined map check. |
+ __ GetRelocatedValueLocation(map_check_site, scratch1); |
+ // We have a cell, so need another level of dereferencing. |
+ __ Ldr(scratch1, MemOperand(scratch1)); |
+ __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset)); |
+ } else { |
+ __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
+ __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
+ } |
+ |
+ Label return_true, return_result; |
+ { |
+ // Loop through the prototype chain looking for the function prototype. |
+ Register chain_map = x1; |
+ Register chain_prototype = x14; |
+ Register null_value = x15; |
+ Label loop; |
+ __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset)); |
+ __ LoadRoot(null_value, Heap::kNullValueRootIndex); |
+ // Speculatively set a result. |
+ __ Mov(result, res_false); |
+ |
+ __ Bind(&loop); |
+ |
+ // If the chain prototype is the object prototype, return true. |
+ __ Cmp(chain_prototype, prototype); |
+ __ B(eq, &return_true); |
+ |
+ // If the chain prototype is null, we've reached the end of the chain, so |
+ // return false. |
+ __ Cmp(chain_prototype, null_value); |
+ __ B(eq, &return_result); |
+ |
+ // Otherwise, load the next prototype in the chain, and loop. |
+ __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset)); |
+ __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset)); |
+ __ B(&loop); |
+ } |
+ |
+ // Return sequence when no arguments are on the stack. |
+ // We cannot fall through to here. |
+ __ Bind(&return_true); |
+ __ Mov(result, res_true); |
+ __ Bind(&return_result); |
+ if (HasCallSiteInlineCheck()) { |
+ ASSERT(ReturnTrueFalseObject()); |
+ __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult); |
+ __ GetRelocatedValueLocation(map_check_site, scratch2); |
+ __ Str(result, MemOperand(scratch2)); |
+ } else { |
+ __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex); |
+ } |
+ __ Ret(); |
+ |
+ Label object_not_null, object_not_null_or_smi; |
+ |
+ __ Bind(¬_js_object); |
+ Register object_type = x14; |
+ // x0 result result return register (uninit) |
+ // x10 function pointer to function |
+ // x11 object pointer to object |
+ // x14 object_type type of object (uninit) |
+ |
+ // Before null, smi and string checks, check that the rhs is a function. |
+ // For a non-function rhs, an exception must be thrown. |
+ __ JumpIfSmi(function, &slow); |
+ __ JumpIfNotObjectType( |
+ function, scratch1, object_type, JS_FUNCTION_TYPE, &slow); |
+ |
+ __ Mov(result, res_false); |
+ |
+ // Null is not instance of anything. |
+ __ Cmp(object_type, Operand(masm->isolate()->factory()->null_value())); |
+ __ B(ne, &object_not_null); |
+ __ Ret(); |
+ |
+ __ Bind(&object_not_null); |
+ // Smi values are not instances of anything. |
+ __ JumpIfNotSmi(object, &object_not_null_or_smi); |
+ __ Ret(); |
+ |
+ __ Bind(&object_not_null_or_smi); |
+ // String values are not instances of anything. |
+ __ IsObjectJSStringType(object, scratch2, &slow); |
+ __ Ret(); |
+ |
+ // Slow-case. Tail call builtin. |
+ __ Bind(&slow); |
+ { |
+ FrameScope scope(masm, StackFrame::INTERNAL); |
+ // Arguments have either been passed into registers or have been previously |
+ // popped. We need to push them before calling builtin. |
+ __ Push(object, function); |
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
+ } |
+ if (ReturnTrueFalseObject()) { |
+ // Reload true/false because they were clobbered in the builtin call. |
+ __ LoadTrueFalseRoots(res_true, res_false); |
+ __ Cmp(result, 0); |
+ __ Csel(result, res_true, res_false, eq); |
+ } |
+ __ Ret(); |
+} |
+ |
+ |
+Register InstanceofStub::left() { |
+ // Object to check (instanceof lhs). |
+ return x11; |
+} |
+ |
+ |
+Register InstanceofStub::right() { |
+ // Constructor function (instanceof rhs). |
+ return x10; |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
+ Register arg_count = x0; |
+ Register key = x1; |
+ |
+ // The displacement is the offset of the last parameter (if any) relative |
+ // to the frame pointer. |
+ static const int kDisplacement = |
+ StandardFrameConstants::kCallerSPOffset - kPointerSize; |
+ |
+ // Check that the key is a smi. |
+ Label slow; |
+ __ JumpIfNotSmi(key, &slow); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Register local_fp = x11; |
+ Register caller_fp = x11; |
+ Register caller_ctx = x12; |
+ Label skip_adaptor; |
+ __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ Ldr(caller_ctx, MemOperand(caller_fp, |
+ StandardFrameConstants::kContextOffset)); |
+ __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ Csel(local_fp, fp, caller_fp, ne); |
+ __ B(ne, &skip_adaptor); |
+ |
+ // Load the actual arguments limit found in the arguments adaptor frame. |
+ __ Ldr(arg_count, MemOperand(caller_fp, |
+ ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ Bind(&skip_adaptor); |
+ |
+ // Check index against formal parameters count limit. Use unsigned comparison |
+ // to get negative check for free: branch if key < 0 or key >= arg_count. |
+ __ Cmp(key, arg_count); |
+ __ B(hs, &slow); |
+ |
+ // Read the argument from the stack and return it. |
+ __ Sub(x10, arg_count, key); |
+ __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2)); |
+ __ Ldr(x0, MemOperand(x10, kDisplacement)); |
+ __ Ret(); |
+ |
+ // Slow case: handle non-smi or out-of-bounds access to arguments by calling |
+ // the runtime system. |
+ __ Bind(&slow); |
+ __ Push(key); |
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { |
+ // Stack layout on entry. |
+ // jssp[0]: number of parameters (tagged) |
+ // jssp[8]: address of receiver argument |
+ // jssp[16]: function |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label runtime; |
+ Register caller_fp = x10; |
+ __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ // Load and untag the context. |
+ STATIC_ASSERT((kSmiShift / kBitsPerByte) == 4); |
+ __ Ldr(w11, MemOperand(caller_fp, StandardFrameConstants::kContextOffset + |
+ (kSmiShift / kBitsPerByte))); |
+ __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR); |
+ __ B(ne, &runtime); |
+ |
+ // Patch the arguments.length and parameters pointer in the current frame. |
+ __ Ldr(x11, MemOperand(caller_fp, |
+ ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ Poke(x11, 0 * kXRegSizeInBytes); |
+ __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2)); |
+ __ Add(x10, x10, Operand(StandardFrameConstants::kCallerSPOffset)); |
+ __ Poke(x10, 1 * kXRegSizeInBytes); |
+ |
+ __ Bind(&runtime); |
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { |
+ // Stack layout on entry. |
+ // jssp[0]: number of parameters (tagged) |
+ // jssp[8]: address of receiver argument |
+ // jssp[16]: function |
+ // |
+ // Returns pointer to result object in x0. |
+ |
+ // Note: arg_count_smi is an alias of param_count_smi. |
+ Register arg_count_smi = x3; |
+ Register param_count_smi = x3; |
+ Register param_count = x7; |
+ Register recv_arg = x14; |
+ Register function = x4; |
+ __ Pop(param_count_smi, recv_arg, function); |
+ __ SmiUntag(param_count, param_count_smi); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Register caller_fp = x11; |
+ Register caller_ctx = x12; |
+ Label runtime; |
+ Label adaptor_frame, try_allocate; |
+ __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ Ldr(caller_ctx, MemOperand(caller_fp, |
+ StandardFrameConstants::kContextOffset)); |
+ __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ B(eq, &adaptor_frame); |
+ |
+ // No adaptor, parameter count = argument count. |
+ |
+ // x1 mapped_params number of mapped params, min(params, args) (uninit) |
+ // x2 arg_count number of function arguments (uninit) |
+ // x3 arg_count_smi number of function arguments (smi) |
+ // x4 function function pointer |
+ // x7 param_count number of function parameters |
+ // x11 caller_fp caller's frame pointer |
+ // x14 recv_arg pointer to receiver arguments |
+ |
+ Register arg_count = x2; |
+ __ Mov(arg_count, param_count); |
+ __ B(&try_allocate); |
+ |
+ // We have an adaptor frame. Patch the parameters pointer. |
+ __ Bind(&adaptor_frame); |
+ __ Ldr(arg_count_smi, |
+ MemOperand(caller_fp, |
+ ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ SmiUntag(arg_count, arg_count_smi); |
+ __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2)); |
+ __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset); |
+ |
+ // Compute the mapped parameter count = min(param_count, arg_count) |
+ Register mapped_params = x1; |
+ __ Cmp(param_count, arg_count); |
+ __ Csel(mapped_params, param_count, arg_count, lt); |
+ |
+ __ Bind(&try_allocate); |
+ |
+ // x0 alloc_obj pointer to allocated objects: param map, backing |
+ // store, arguments (uninit) |
+ // x1 mapped_params number of mapped parameters, min(params, args) |
+ // x2 arg_count number of function arguments |
+ // x3 arg_count_smi number of function arguments (smi) |
+ // x4 function function pointer |
+ // x7 param_count number of function parameters |
+ // x10 size size of objects to allocate (uninit) |
+ // x14 recv_arg pointer to receiver arguments |
+ |
+ // Compute the size of backing store, parameter map, and arguments object. |
+ // 1. Parameter map, has two extra words containing context and backing |
+ // store. |
+ const int kParameterMapHeaderSize = |
+ FixedArray::kHeaderSize + 2 * kPointerSize; |
+ |
+ // Calculate the parameter map size, assuming it exists. |
+ Register size = x10; |
+ __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2)); |
+ __ Add(size, size, kParameterMapHeaderSize); |
+ |
+ // If there are no mapped parameters, set the running size total to zero. |
+ // Otherwise, use the parameter map size calculated earlier. |
+ __ Cmp(mapped_params, 0); |
+ __ CzeroX(size, eq); |
+ |
+ // 2. Add the size of the backing store and arguments object. |
+ __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2)); |
+ __ Add(size, size, FixedArray::kHeaderSize + Heap::kArgumentsObjectSize); |
+ |
+ // Do the allocation of all three objects in one go. Assign this to x0, as it |
+ // will be returned to the caller. |
+ Register alloc_obj = x0; |
+ __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT); |
+ |
+ // Get the arguments boilerplate from the current (global) context. |
+ |
+ // x0 alloc_obj pointer to allocated objects (param map, backing |
+ // store, arguments) |
+ // x1 mapped_params number of mapped parameters, min(params, args) |
+ // x2 arg_count number of function arguments |
+ // x3 arg_count_smi number of function arguments (smi) |
+ // x4 function function pointer |
+ // x7 param_count number of function parameters |
+ // x11 args_offset offset to args (or aliased args) boilerplate (uninit) |
+ // x14 recv_arg pointer to receiver arguments |
+ |
+ Register global_object = x10; |
+ Register global_ctx = x10; |
+ Register args_offset = x11; |
+ Register aliased_args_offset = x10; |
+ __ Ldr(global_object, GlobalObjectMemOperand()); |
+ __ Ldr(global_ctx, FieldMemOperand(global_object, |
+ GlobalObject::kNativeContextOffset)); |
+ |
+ __ Ldr(args_offset, ContextMemOperand(global_ctx, |
+ Context::ARGUMENTS_BOILERPLATE_INDEX)); |
+ __ Ldr(aliased_args_offset, |
+ ContextMemOperand(global_ctx, |
+ Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)); |
+ __ Cmp(mapped_params, 0); |
+ __ CmovX(args_offset, aliased_args_offset, ne); |
+ |
+ // Copy the JS object part. |
+ __ CopyFields(alloc_obj, args_offset, CPURegList(x10, x12, x13), |
+ JSObject::kHeaderSize / kPointerSize); |
+ |
+ // Set up the callee in-object property. |
+ STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
+ const int kCalleeOffset = JSObject::kHeaderSize + |
+ Heap::kArgumentsCalleeIndex * kPointerSize; |
+ __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset)); |
+ |
+ // Use the length and set that as an in-object property. |
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
+ const int kLengthOffset = JSObject::kHeaderSize + |
+ Heap::kArgumentsLengthIndex * kPointerSize; |
+ __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); |
+ |
+ // Set up the elements pointer in the allocated arguments object. |
+ // If we allocated a parameter map, "elements" will point there, otherwise |
+ // it will point to the backing store. |
+ |
+ // x0 alloc_obj pointer to allocated objects (param map, backing |
+ // store, arguments) |
+ // x1 mapped_params number of mapped parameters, min(params, args) |
+ // x2 arg_count number of function arguments |
+ // x3 arg_count_smi number of function arguments (smi) |
+ // x4 function function pointer |
+ // x5 elements pointer to parameter map or backing store (uninit) |
+ // x6 backing_store pointer to backing store (uninit) |
+ // x7 param_count number of function parameters |
+ // x14 recv_arg pointer to receiver arguments |
+ |
+ Register elements = x5; |
+ __ Add(elements, alloc_obj, Heap::kArgumentsObjectSize); |
+ __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); |
+ |
+ // Initialize parameter map. If there are no mapped arguments, we're done. |
+ Label skip_parameter_map; |
+ __ Cmp(mapped_params, 0); |
+ // Set up backing store address, because it is needed later for filling in |
+ // the unmapped arguments. |
+ Register backing_store = x6; |
+ __ CmovX(backing_store, elements, eq); |
+ __ B(eq, &skip_parameter_map); |
+ |
+ __ LoadRoot(x10, Heap::kNonStrictArgumentsElementsMapRootIndex); |
+ __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); |
+ __ Add(x10, mapped_params, 2); |
+ __ SmiTag(x10); |
+ __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
+ __ Str(cp, FieldMemOperand(elements, |
+ FixedArray::kHeaderSize + 0 * kPointerSize)); |
+ __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2)); |
+ __ Add(x10, x10, kParameterMapHeaderSize); |
+ __ Str(x10, FieldMemOperand(elements, |
+ FixedArray::kHeaderSize + 1 * kPointerSize)); |
+ |
+ // Copy the parameter slots and the holes in the arguments. |
+ // We need to fill in mapped_parameter_count slots. Then index the context, |
+ // where parameters are stored in reverse order, at: |
+ // |
+ // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1 |
+ // |
+ // The mapped parameter thus needs to get indices: |
+ // |
+ // MIN_CONTEXT_SLOTS + parameter_count - 1 .. |
+ // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count |
+ // |
+ // We loop from right to left. |
+ |
+ // x0 alloc_obj pointer to allocated objects (param map, backing |
+ // store, arguments) |
+ // x1 mapped_params number of mapped parameters, min(params, args) |
+ // x2 arg_count number of function arguments |
+ // x3 arg_count_smi number of function arguments (smi) |
+ // x4 function function pointer |
+ // x5 elements pointer to parameter map or backing store (uninit) |
+ // x6 backing_store pointer to backing store (uninit) |
+ // x7 param_count number of function parameters |
+ // x11 loop_count parameter loop counter (uninit) |
+ // x12 index parameter index (smi, uninit) |
+ // x13 the_hole hole value (uninit) |
+ // x14 recv_arg pointer to receiver arguments |
+ |
+ Register loop_count = x11; |
+ Register index = x12; |
+ Register the_hole = x13; |
+ Label parameters_loop, parameters_test; |
+ __ Mov(loop_count, mapped_params); |
+ __ Add(index, param_count, Context::MIN_CONTEXT_SLOTS); |
+ __ Sub(index, index, mapped_params); |
+ __ SmiTag(index); |
+ __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex); |
+ __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2)); |
+ __ Add(backing_store, backing_store, kParameterMapHeaderSize); |
+ |
+ __ B(¶meters_test); |
+ |
+ __ Bind(¶meters_loop); |
+ __ Sub(loop_count, loop_count, 1); |
+ __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2)); |
+ __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag); |
+ __ Str(index, MemOperand(elements, x10)); |
+ __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize); |
+ __ Str(the_hole, MemOperand(backing_store, x10)); |
+ __ Add(index, index, Operand(Smi::FromInt(1))); |
+ __ Bind(¶meters_test); |
+ __ Cbnz(loop_count, ¶meters_loop); |
+ |
+ __ Bind(&skip_parameter_map); |
+ // Copy arguments header and remaining slots (if there are any.) |
+ __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); |
+ __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset)); |
+ __ Str(arg_count_smi, FieldMemOperand(backing_store, |
+ FixedArray::kLengthOffset)); |
+ |
+ // x0 alloc_obj pointer to allocated objects (param map, backing |
+ // store, arguments) |
+ // x1 mapped_params number of mapped parameters, min(params, args) |
+ // x2 arg_count number of function arguments |
+ // x4 function function pointer |
+ // x3 arg_count_smi number of function arguments (smi) |
+ // x6 backing_store pointer to backing store (uninit) |
+ // x14 recv_arg pointer to receiver arguments |
+ |
+ Label arguments_loop, arguments_test; |
+ __ Mov(x10, mapped_params); |
+ __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2)); |
+ __ B(&arguments_test); |
+ |
+ __ Bind(&arguments_loop); |
+ __ Sub(recv_arg, recv_arg, kPointerSize); |
+ __ Ldr(x11, MemOperand(recv_arg)); |
+ __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2)); |
+ __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); |
+ __ Add(x10, x10, 1); |
+ |
+ __ Bind(&arguments_test); |
+ __ Cmp(x10, arg_count); |
+ __ B(lt, &arguments_loop); |
+ |
+ __ Ret(); |
+ |
+ // Do the runtime call to allocate the arguments object. |
+ __ Bind(&runtime); |
+ __ Push(function, recv_arg, arg_count_smi); |
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { |
+ // Stack layout on entry. |
+ // jssp[0]: number of parameters (tagged) |
+ // jssp[8]: address of receiver argument |
+ // jssp[16]: function |
+ // |
+ // Returns pointer to result object in x0. |
+ |
+ // Get the stub arguments from the frame, and make an untagged copy of the |
+ // parameter count. |
+ Register param_count_smi = x1; |
+ Register params = x2; |
+ Register function = x3; |
+ Register param_count = x13; |
+ __ Pop(param_count_smi, params, function); |
+ __ SmiUntag(param_count, param_count_smi); |
+ |
+ // Test if arguments adaptor needed. |
+ Register caller_fp = x11; |
+ Register caller_ctx = x12; |
+ Label try_allocate, runtime; |
+ __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ Ldr(caller_ctx, MemOperand(caller_fp, |
+ StandardFrameConstants::kContextOffset)); |
+ __ Cmp(caller_ctx, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ B(ne, &try_allocate); |
+ |
+ // x1 param_count_smi number of parameters passed to function (smi) |
+ // x2 params pointer to parameters |
+ // x3 function function pointer |
+ // x11 caller_fp caller's frame pointer |
+ // x13 param_count number of parameters passed to function |
+ |
+ // Patch the argument length and parameters pointer. |
+ __ Ldr(param_count_smi, |
+ MemOperand(caller_fp, |
+ ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ SmiUntag(param_count, param_count_smi); |
+ __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2)); |
+ __ Add(params, x10, StandardFrameConstants::kCallerSPOffset); |
+ |
+ // Try the new space allocation. Start out with computing the size of the |
+ // arguments object and the elements array in words. |
+ Register size = x10; |
+ __ Bind(&try_allocate); |
+ __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize); |
+ __ Cmp(param_count, 0); |
+ __ CzeroX(size, eq); |
+ __ Add(size, size, Heap::kArgumentsObjectSizeStrict / kPointerSize); |
+ |
+ // Do the allocation of both objects in one go. Assign this to x0, as it will |
+ // be returned to the caller. |
+ Register alloc_obj = x0; |
+ __ Allocate(size, alloc_obj, x11, x12, &runtime, |
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
+ |
+ // Get the arguments boilerplate from the current (native) context. |
+ Register global_object = x10; |
+ Register global_ctx = x10; |
+ Register args_offset = x4; |
+ __ Ldr(global_object, GlobalObjectMemOperand()); |
+ __ Ldr(global_ctx, FieldMemOperand(global_object, |
+ GlobalObject::kNativeContextOffset)); |
+ __ Ldr(args_offset, |
+ ContextMemOperand(global_ctx, |
+ Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)); |
+ |
+ // x0 alloc_obj pointer to allocated objects: parameter array and |
+ // arguments object |
+ // x1 param_count_smi number of parameters passed to function (smi) |
+ // x2 params pointer to parameters |
+ // x3 function function pointer |
+ // x4 args_offset offset to arguments boilerplate |
+ // x13 param_count number of parameters passed to function |
+ |
+ // Copy the JS object part. |
+ __ CopyFields(alloc_obj, args_offset, CPURegList(x5, x6, x7), |
+ JSObject::kHeaderSize / kPointerSize); |
+ |
+ // Set the smi-tagged length as an in-object property. |
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
+ const int kLengthOffset = JSObject::kHeaderSize + |
+ Heap::kArgumentsLengthIndex * kPointerSize; |
+ __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); |
+ |
+ // If there are no actual arguments, we're done. |
+ Label done; |
+ __ Cbz(param_count, &done); |
+ |
+ // Set up the elements pointer in the allocated arguments object and |
+ // initialize the header in the elements fixed array. |
+ Register elements = x5; |
+ __ Add(elements, alloc_obj, Heap::kArgumentsObjectSizeStrict); |
+ __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); |
+ __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); |
+ __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); |
+ __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
+ |
+ // x0 alloc_obj pointer to allocated objects: parameter array and |
+ // arguments object |
+ // x1 param_count_smi number of parameters passed to function (smi) |
+ // x2 params pointer to parameters |
+ // x3 function function pointer |
+ // x4 array pointer to array slot (uninit) |
+ // x5 elements pointer to elements array of alloc_obj |
+ // x13 param_count number of parameters passed to function |
+ |
+ // Copy the fixed array slots. |
+ Label loop; |
+ Register array = x4; |
+ // Set up pointer to first array slot. |
+ __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag); |
+ |
+ __ Bind(&loop); |
+ // Pre-decrement the parameters pointer by kPointerSize on each iteration. |
+ // Pre-decrement in order to skip receiver. |
+ __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex)); |
+ // Post-increment elements by kPointerSize on each iteration. |
+ __ Str(x10, MemOperand(array, kPointerSize, PostIndex)); |
+ __ Sub(param_count, param_count, 1); |
+ __ Cbnz(param_count, &loop); |
+ |
+ // Return from stub. |
+ __ Bind(&done); |
+ __ Ret(); |
+ |
+ // Do the runtime call to allocate the arguments object. |
+ __ Bind(&runtime); |
+ __ Push(function, params, param_count_smi); |
+ __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); |
+} |
+ |
+ |
+void RegExpExecStub::Generate(MacroAssembler* masm) { |
+#ifdef V8_INTERPRETED_REGEXP |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+#else // V8_INTERPRETED_REGEXP |
+ |
+ // Stack frame on entry. |
+ // jssp[0]: last_match_info (expected JSArray) |
+ // jssp[8]: previous index |
+ // jssp[16]: subject string |
+ // jssp[24]: JSRegExp object |
+ Label runtime; |
+ |
+ // Use of registers for this function. |
+ |
+ // Variable registers: |
+ // x10-x13 used as scratch registers |
+ // w0 string_type type of subject string |
+ // x2 jsstring_length subject string length |
+ // x3 jsregexp_object JSRegExp object |
+ // w4 string_encoding ASCII or UC16 |
+ // w5 sliced_string_offset if the string is a SlicedString |
+ // offset to the underlying string |
+ // w6 string_representation groups attributes of the string: |
+ // - is a string |
+ // - type of the string |
+ // - is a short external string |
+ Register string_type = w0; |
+ Register jsstring_length = x2; |
+ Register jsregexp_object = x3; |
+ Register string_encoding = w4; |
+ Register sliced_string_offset = w5; |
+ Register string_representation = w6; |
+ |
+ // These are in callee save registers and will be preserved by the call |
+ // to the native RegExp code, as this code is called using the normal |
+ // C calling convention. When calling directly from generated code the |
+ // native RegExp code will not do a GC and therefore the content of |
+ // these registers are safe to use after the call. |
+ |
+ // x19 subject subject string |
+ // x20 regexp_data RegExp data (FixedArray) |
+ // x21 last_match_info_elements info relative to the last match |
+ // (FixedArray) |
+ // x22 code_object generated regexp code |
+ Register subject = x19; |
+ Register regexp_data = x20; |
+ Register last_match_info_elements = x21; |
+ Register code_object = x22; |
+ |
+ // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does. |
+ CPURegList used_callee_saved_registers(subject, |
+ regexp_data, |
+ last_match_info_elements, |
+ code_object); |
+ __ PushCPURegList(used_callee_saved_registers); |
+ |
+ // Stack frame. |
+ // jssp[0] : x19 |
+ // jssp[8] : x20 |
+ // jssp[16]: x21 |
+ // jssp[24]: x22 |
+ // jssp[32]: last_match_info (JSArray) |
+ // jssp[40]: previous index |
+ // jssp[48]: subject string |
+ // jssp[56]: JSRegExp object |
+ |
+ const int kLastMatchInfoOffset = 4 * kPointerSize; |
+ const int kPreviousIndexOffset = 5 * kPointerSize; |
+ const int kSubjectOffset = 6 * kPointerSize; |
+ const int kJSRegExpOffset = 7 * kPointerSize; |
+ |
+ // Ensure that a RegExp stack is allocated. |
+ Isolate* isolate = masm->isolate(); |
+ ExternalReference address_of_regexp_stack_memory_address = |
+ ExternalReference::address_of_regexp_stack_memory_address(isolate); |
+ ExternalReference address_of_regexp_stack_memory_size = |
+ ExternalReference::address_of_regexp_stack_memory_size(isolate); |
+ __ Mov(x10, Operand(address_of_regexp_stack_memory_size)); |
+ __ Ldr(x10, MemOperand(x10)); |
+ __ Cbz(x10, &runtime); |
+ |
+ // Check that the first argument is a JSRegExp object. |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ __ Peek(jsregexp_object, kJSRegExpOffset); |
+ __ JumpIfSmi(jsregexp_object, &runtime); |
+ __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime); |
+ |
+ // Check that the RegExp has been compiled (data contains a fixed array). |
+ __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset)); |
+ if (FLAG_debug_code) { |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Tst(regexp_data, kSmiTagMask); |
+ __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
+ __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE); |
+ __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
+ } |
+ |
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
+ __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
+ __ Cmp(x10, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
+ __ B(ne, &runtime); |
+ |
+ // Check that the number of captures fit in the static offsets vector buffer. |
+ // We have always at least one capture for the whole match, plus additional |
+ // ones due to capturing parentheses. A capture takes 2 registers. |
+ // The number of capture registers then is (number_of_captures + 1) * 2. |
+ __ Ldrsw(x10, |
+ UntagSmiFieldMemOperand(regexp_data, |
+ JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Check (number_of_captures + 1) * 2 <= offsets vector size |
+ // number_of_captures * 2 <= offsets vector size - 2 |
+ STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); |
+ __ Add(x10, x10, x10); |
+ __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); |
+ __ B(hi, &runtime); |
+ |
+ // Initialize offset for possibly sliced string. |
+ __ Mov(sliced_string_offset, 0); |
+ |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ __ Peek(subject, kSubjectOffset); |
+ __ JumpIfSmi(subject, &runtime); |
+ |
+ __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
+ __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
+ |
+ __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset)); |
+ |
+ // Handle subject string according to its encoding and representation: |
+ // (1) Sequential string? If yes, go to (5). |
+ // (2) Anything but sequential or cons? If yes, go to (6). |
+ // (3) Cons string. If the string is flat, replace subject with first string. |
+ // Otherwise bailout. |
+ // (4) Is subject external? If yes, go to (7). |
+ // (5) Sequential string. Load regexp code according to encoding. |
+ // (E) Carry on. |
+ /// [...] |
+ |
+ // Deferred code at the end of the stub: |
+ // (6) Not a long external string? If yes, go to (8). |
+ // (7) External string. Make it, offset-wise, look like a sequential string. |
+ // Go to (5). |
+ // (8) Short external string or not a string? If yes, bail out to runtime. |
+ // (9) Sliced string. Replace subject with parent. Go to (4). |
+ |
+ Label check_underlying; // (4) |
+ Label seq_string; // (5) |
+ Label not_seq_nor_cons; // (6) |
+ Label external_string; // (7) |
+ Label not_long_external; // (8) |
+ |
+ // (1) Sequential string? If yes, go to (5). |
+ __ And(string_representation, |
+ string_type, |
+ kIsNotStringMask | |
+ kStringRepresentationMask | |
+ kShortExternalStringMask); |
+ // We depend on the fact that Strings of type |
+ // SeqString and not ShortExternalString are defined |
+ // by the following pattern: |
+ // string_type: 0XX0 XX00 |
+ // ^ ^ ^^ |
+ // | | || |
+ // | | is a SeqString |
+ // | is not a short external String |
+ // is a String |
+ STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
+ STATIC_ASSERT(kShortExternalStringTag != 0); |
+ __ Cbz(string_representation, &seq_string); // Go to (5). |
+ |
+ // (2) Anything but sequential or cons? If yes, go to (6). |
+ STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
+ STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
+ STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); |
+ STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); |
+ __ Cmp(string_representation, kExternalStringTag); |
+ __ B(ge, ¬_seq_nor_cons); // Go to (6). |
+ |
+ // (3) Cons string. Check that it's flat. |
+ __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset)); |
+ __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime); |
+ // Replace subject with first string. |
+ __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
+ |
+ // (4) Is subject external? If yes, go to (7). |
+ __ Bind(&check_underlying); |
+ // Reload the string type. |
+ __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
+ __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ // The underlying external string is never a short external string. |
+ STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength); |
+ STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength); |
+ __ TestAndBranchIfAnySet(string_type.X(), |
+ kStringRepresentationMask, |
+ &external_string); // Go to (7). |
+ |
+ // (5) Sequential string. Load regexp code according to encoding. |
+ __ Bind(&seq_string); |
+ |
+ // Check that the third argument is a positive smi less than the subject |
+ // string length. A negative value will be greater (unsigned comparison). |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ __ Peek(x10, kPreviousIndexOffset); |
+ __ JumpIfNotSmi(x10, &runtime); |
+ __ Cmp(jsstring_length, x10); |
+ __ B(ls, &runtime); |
+ |
+ // Argument 2 (x1): We need to load argument 2 (the previous index) into x1 |
+ // before entering the exit frame. |
+ __ SmiUntag(x1, x10); |
+ |
+ // The third bit determines the string encoding in string_type. |
+ STATIC_ASSERT(kOneByteStringTag == 0x04); |
+ STATIC_ASSERT(kTwoByteStringTag == 0x00); |
+ STATIC_ASSERT(kStringEncodingMask == 0x04); |
+ |
+ // Find the code object based on the assumptions above. |
+ // kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset |
+ // of kPointerSize to reach the latter. |
+ ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize, |
+ JSRegExp::kDataUC16CodeOffset); |
+ __ Mov(x10, kPointerSize); |
+ // We will need the encoding later: ASCII = 0x04 |
+ // UC16 = 0x00 |
+ __ Ands(string_encoding, string_type, kStringEncodingMask); |
+ __ CzeroX(x10, ne); |
+ __ Add(x10, regexp_data, x10); |
+ __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset)); |
+ |
+ // (E) Carry on. String handling is done. |
+ |
+ // Check that the irregexp code has been generated for the actual string |
+ // encoding. If it has, the field contains a code object otherwise it contains |
+ // a smi (code flushing support). |
+ __ JumpIfSmi(code_object, &runtime); |
+ |
+ // All checks done. Now push arguments for native regexp code. |
+ __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, |
+ x10, |
+ x11); |
+ |
+ // Isolates: note we add an additional parameter here (isolate pointer). |
+ __ EnterExitFrame(false, x10, 1); |
+ ASSERT(csp.Is(__ StackPointer())); |
+ |
+ // We have 9 arguments to pass to the regexp code, therefore we have to pass |
+ // one on the stack and the rest as registers. |
+ |
+ // Note that the placement of the argument on the stack isn't standard |
+ // AAPCS64: |
+ // csp[0]: Space for the return address placed by DirectCEntryStub. |
+ // csp[8]: Argument 9, the current isolate address. |
+ |
+ __ Mov(x10, Operand(ExternalReference::isolate_address(isolate))); |
+ __ Poke(x10, kPointerSize); |
+ |
+ Register length = w11; |
+ Register previous_index_in_bytes = w12; |
+ Register start = x13; |
+ |
+ // Load start of the subject string. |
+ __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag); |
+ // Load the length from the original subject string from the previous stack |
+ // frame. Therefore we have to use fp, which points exactly to two pointer |
+ // sizes below the previous sp. (Because creating a new stack frame pushes |
+ // the previous fp onto the stack and decrements sp by 2 * kPointerSize.) |
+ __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); |
+ __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset)); |
+ |
+ // Handle UC16 encoding, two bytes make one character. |
+ // string_encoding: if ASCII: 0x04 |
+ // if UC16: 0x00 |
+ STATIC_ASSERT(kStringEncodingMask == 0x04); |
+ __ Ubfx(string_encoding, string_encoding, 2, 1); |
+ __ Eor(string_encoding, string_encoding, 1); |
+ // string_encoding: if ASCII: 0 |
+ // if UC16: 1 |
+ |
+ // Convert string positions from characters to bytes. |
+ // Previous index is in x1. |
+ __ Lsl(previous_index_in_bytes, w1, string_encoding); |
+ __ Lsl(length, length, string_encoding); |
+ __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding); |
+ |
+ // Argument 1 (x0): Subject string. |
+ __ Mov(x0, subject); |
+ |
+ // Argument 2 (x1): Previous index, already there. |
+ |
+ // Argument 3 (x2): Get the start of input. |
+ // Start of input = start of string + previous index + substring offset |
+ // (0 if the string |
+ // is not sliced). |
+ __ Add(w10, previous_index_in_bytes, sliced_string_offset); |
+ __ Add(x2, start, Operand(w10, UXTW)); |
+ |
+ // Argument 4 (x3): |
+ // End of input = start of input + (length of input - previous index) |
+ __ Sub(w10, length, previous_index_in_bytes); |
+ __ Add(x3, x2, Operand(w10, UXTW)); |
+ |
+ // Argument 5 (x4): static offsets vector buffer. |
+ __ Mov(x4, |
+ Operand(ExternalReference::address_of_static_offsets_vector(isolate))); |
+ |
+ // Argument 6 (x5): Set the number of capture registers to zero to force |
+ // global regexps to behave as non-global. This stub is not used for global |
+ // regexps. |
+ __ Mov(x5, 0); |
+ |
+ // Argument 7 (x6): Start (high end) of backtracking stack memory area. |
+ __ Mov(x10, Operand(address_of_regexp_stack_memory_address)); |
+ __ Ldr(x10, MemOperand(x10)); |
+ __ Mov(x11, Operand(address_of_regexp_stack_memory_size)); |
+ __ Ldr(x11, MemOperand(x11)); |
+ __ Add(x6, x10, x11); |
+ |
+ // Argument 8 (x7): Indicate that this is a direct call from JavaScript. |
+ __ Mov(x7, 1); |
+ |
+ // Locate the code entry and call it. |
+ __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag); |
+ DirectCEntryStub stub; |
+ stub.GenerateCall(masm, code_object); |
+ |
+ __ LeaveExitFrame(false, x10, true); |
+ |
+ // The generated regexp code returns an int32 in w0. |
+ Label failure, exception; |
+ __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure); |
+ __ CompareAndBranch(w0, |
+ NativeRegExpMacroAssembler::EXCEPTION, |
+ eq, |
+ &exception); |
+ __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime); |
+ |
+ // Success: process the result from the native regexp code. |
+ Register number_of_capture_registers = x12; |
+ |
+ // Calculate number of capture registers (number_of_captures + 1) * 2 |
+ // and store it in the last match info. |
+ __ Ldrsw(x10, |
+ UntagSmiFieldMemOperand(regexp_data, |
+ JSRegExp::kIrregexpCaptureCountOffset)); |
+ __ Add(x10, x10, x10); |
+ __ Add(number_of_capture_registers, x10, 2); |
+ |
+ // Check that the fourth object is a JSArray object. |
+ ASSERT(jssp.Is(__ StackPointer())); |
+ __ Peek(x10, kLastMatchInfoOffset); |
+ __ JumpIfSmi(x10, &runtime); |
+ __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime); |
+ |
+ // Check that the JSArray is the fast case. |
+ __ Ldr(last_match_info_elements, |
+ FieldMemOperand(x10, JSArray::kElementsOffset)); |
+ __ Ldr(x10, |
+ FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
+ __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime); |
+ |
+ // Check that the last match info has space for the capture registers and the |
+ // additional information (overhead). |
+ // (number_of_captures + 1) * 2 + overhead <= last match info size |
+ // (number_of_captures * 2) + 2 + overhead <= last match info size |
+ // number_of_capture_registers + overhead <= last match info size |
+ __ Ldrsw(x10, |
+ UntagSmiFieldMemOperand(last_match_info_elements, |
+ FixedArray::kLengthOffset)); |
+ __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead); |
+ __ Cmp(x11, x10); |
+ __ B(gt, &runtime); |
+ |
+ // Store the capture count. |
+ __ SmiTag(x10, number_of_capture_registers); |
+ __ Str(x10, |
+ FieldMemOperand(last_match_info_elements, |
+ RegExpImpl::kLastCaptureCountOffset)); |
+ // Store last subject and last input. |
+ __ Str(subject, |
+ FieldMemOperand(last_match_info_elements, |
+ RegExpImpl::kLastSubjectOffset)); |
+ // Use x10 as the subject string in order to only need |
+ // one RecordWriteStub. |
+ __ Mov(x10, subject); |
+ __ RecordWriteField(last_match_info_elements, |
+ RegExpImpl::kLastSubjectOffset, |
+ x10, |
+ x11, |
+ kLRHasNotBeenSaved, |
+ kDontSaveFPRegs); |
+ __ Str(subject, |
+ FieldMemOperand(last_match_info_elements, |
+ RegExpImpl::kLastInputOffset)); |
+ __ Mov(x10, subject); |
+ __ RecordWriteField(last_match_info_elements, |
+ RegExpImpl::kLastInputOffset, |
+ x10, |
+ x11, |
+ kLRHasNotBeenSaved, |
+ kDontSaveFPRegs); |
+ |
+ Register last_match_offsets = x13; |
+ Register offsets_vector_index = x14; |
+ Register current_offset = x15; |
+ |
+ // Get the static offsets vector filled by the native regexp code |
+ // and fill the last match info. |
+ ExternalReference address_of_static_offsets_vector = |
+ ExternalReference::address_of_static_offsets_vector(isolate); |
+ __ Mov(offsets_vector_index, Operand(address_of_static_offsets_vector)); |
+ |
+ Label next_capture, done; |
+ // Capture register counter starts from number of capture registers and |
+ // iterates down to zero (inclusive). |
+ __ Add(last_match_offsets, |
+ last_match_info_elements, |
+ RegExpImpl::kFirstCaptureOffset - kHeapObjectTag); |
+ __ Bind(&next_capture); |
+ __ Subs(number_of_capture_registers, number_of_capture_registers, 2); |
+ __ B(mi, &done); |
+ // Read two 32 bit values from the static offsets vector buffer into |
+ // an X register |
+ __ Ldr(current_offset, |
+ MemOperand(offsets_vector_index, kWRegSizeInBytes * 2, PostIndex)); |
+ // Store the smi values in the last match info. |
+ __ SmiTag(x10, current_offset); |
+ // Clearing the 32 bottom bits gives us a Smi. |
+ STATIC_ASSERT(kSmiShift == 32); |
+ __ And(x11, current_offset, ~kWRegMask); |
+ __ Stp(x10, |
+ x11, |
+ MemOperand(last_match_offsets, kXRegSizeInBytes * 2, PostIndex)); |
+ __ B(&next_capture); |
+ __ Bind(&done); |
+ |
+ // Return last match info. |
+ __ Peek(x0, kLastMatchInfoOffset); |
+ __ PopCPURegList(used_callee_saved_registers); |
+ // Drop the 4 arguments of the stub from the stack. |
+ __ Drop(4); |
+ __ Ret(); |
+ |
+ __ Bind(&exception); |
+ Register exception_value = x0; |
+ // A stack overflow (on the backtrack stack) may have occured |
+ // in the RegExp code but no exception has been created yet. |
+ // If there is no pending exception, handle that in the runtime system. |
+ __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
+ __ Mov(x11, |
+ Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
+ isolate))); |
+ __ Ldr(exception_value, MemOperand(x11)); |
+ __ Cmp(x10, exception_value); |
+ __ B(eq, &runtime); |
+ |
+ __ Str(x10, MemOperand(x11)); // Clear pending exception. |
+ |
+ // Check if the exception is a termination. If so, throw as uncatchable. |
+ Label termination_exception; |
+ __ JumpIfRoot(exception_value, |
+ Heap::kTerminationExceptionRootIndex, |
+ &termination_exception); |
+ |
+ __ Throw(exception_value, x10, x11, x12, x13); |
+ |
+ __ Bind(&termination_exception); |
+ __ ThrowUncatchable(exception_value, x10, x11, x12, x13); |
+ |
+ __ Bind(&failure); |
+ __ Mov(x0, Operand(masm->isolate()->factory()->null_value())); |
+ __ PopCPURegList(used_callee_saved_registers); |
+ // Drop the 4 arguments of the stub from the stack. |
+ __ Drop(4); |
+ __ Ret(); |
+ |
+ __ Bind(&runtime); |
+ __ PopCPURegList(used_callee_saved_registers); |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+ |
+ // Deferred code for string handling. |
+ // (6) Not a long external string? If yes, go to (8). |
+ __ Bind(¬_seq_nor_cons); |
+ // Compare flags are still set. |
+ __ B(ne, ¬_long_external); // Go to (8). |
+ |
+ // (7) External string. Make it, offset-wise, look like a sequential string. |
+ __ Bind(&external_string); |
+ if (masm->emit_debug_code()) { |
+ // Assert that we do not have a cons or slice (indirect strings) here. |
+ // Sequential strings have already been ruled out. |
+ __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
+ __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
+ __ Tst(x10, kIsIndirectStringMask); |
+ __ Check(eq, kExternalStringExpectedButNotFound); |
+ __ And(x10, x10, kStringRepresentationMask); |
+ __ Cmp(x10, 0); |
+ __ Check(ne, kExternalStringExpectedButNotFound); |
+ } |
+ __ Ldr(subject, |
+ FieldMemOperand(subject, ExternalString::kResourceDataOffset)); |
+ // Move the pointer so that offset-wise, it looks like a sequential string. |
+ STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
+ __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); |
+ __ B(&seq_string); // Go to (5). |
+ |
+ // (8) If this is a short external string or not a string, bail out to |
+ // runtime. |
+ __ Bind(¬_long_external); |
+ STATIC_ASSERT(kShortExternalStringTag != 0); |
+ __ TestAndBranchIfAnySet(string_representation, |
+ kShortExternalStringMask | kIsNotStringMask, |
+ &runtime); |
+ |
+ // (9) Sliced string. Replace subject with parent. |
+ __ Ldr(sliced_string_offset, |
+ UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset)); |
+ __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); |
+ __ B(&check_underlying); // Go to (4). |
+#endif |
+} |
+ |
+ |
+// TODO(jbramley): Don't use static registers here, but take them as arguments. |
+static void GenerateRecordCallTarget(MacroAssembler* masm) { |
+ ASM_LOCATION("GenerateRecordCallTarget"); |
+ // Cache the called function in a feedback vector slot. Cache states are |
+ // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic. |
+ // x0 : number of arguments to the construct function |
+ // x1 : the function to call |
+ // x2 : feedback vector |
+ // x3 : slot in feedback vector (smi) |
+ Label initialize, done, miss, megamorphic, not_array_function; |
+ |
+ ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), |
+ masm->isolate()->heap()->undefined_value()); |
+ ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), |
+ masm->isolate()->heap()->the_hole_value()); |
+ |
+ // Load the cache state. |
+ __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); |
+ __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize)); |
+ |
+ // A monomorphic cache hit or an already megamorphic state: invoke the |
+ // function without changing the state. |
+ __ Cmp(x4, x1); |
+ __ B(eq, &done); |
+ |
+ // If we came here, we need to see if we are the array function. |
+ // If we didn't have a matching function, and we didn't find the megamorph |
+ // sentinel, then we have in the slot either some other function or an |
+ // AllocationSite. Do a map check on the object in ecx. |
+ __ Ldr(x5, FieldMemOperand(x4, AllocationSite::kMapOffset)); |
+ __ JumpIfNotRoot(x5, Heap::kAllocationSiteMapRootIndex, &miss); |
+ |
+ // Make sure the function is the Array() function |
+ __ LoadArrayFunction(x4); |
+ __ Cmp(x1, x4); |
+ __ B(ne, &megamorphic); |
+ __ B(&done); |
+ |
+ __ Bind(&miss); |
+ |
+ // A monomorphic miss (i.e, here the cache is not uninitialized) goes |
+ // megamorphic. |
+ __ JumpIfRoot(x4, Heap::kTheHoleValueRootIndex, &initialize); |
+ // MegamorphicSentinel is an immortal immovable object (undefined) so no |
+ // write-barrier is needed. |
+ __ Bind(&megamorphic); |
+ __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); |
+ __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); |
+ __ Str(x10, FieldMemOperand(x4, FixedArray::kHeaderSize)); |
+ __ B(&done); |
+ |
+ // An uninitialized cache is patched with the function or sentinel to |
+ // indicate the ElementsKind if function is the Array constructor. |
+ __ Bind(&initialize); |
+ // Make sure the function is the Array() function |
+ __ LoadArrayFunction(x4); |
+ __ Cmp(x1, x4); |
+ __ B(ne, ¬_array_function); |
+ |
+ // The target function is the Array constructor, |
+ // Create an AllocationSite if we don't already have it, store it in the slot. |
+ { |
+ FrameScope scope(masm, StackFrame::INTERNAL); |
+ CreateAllocationSiteStub create_stub; |
+ |
+ // Arguments register must be smi-tagged to call out. |
+ __ SmiTag(x0); |
+ __ Push(x0, x1, x2, x3); |
+ |
+ __ CallStub(&create_stub); |
+ |
+ __ Pop(x3, x2, x1, x0); |
+ __ SmiUntag(x0); |
+ } |
+ __ B(&done); |
+ |
+ __ Bind(¬_array_function); |
+ // An uninitialized cache is patched with the function. |
+ |
+ __ Add(x4, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); |
+ // TODO(all): Does the value need to be left in x4? If not, FieldMemOperand |
+ // could be used to avoid this add. |
+ __ Add(x4, x4, FixedArray::kHeaderSize - kHeapObjectTag); |
+ __ Str(x1, MemOperand(x4, 0)); |
+ |
+ __ Push(x4, x2, x1); |
+ __ RecordWrite(x2, x4, x1, kLRHasNotBeenSaved, kDontSaveFPRegs, |
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
+ __ Pop(x1, x2, x4); |
+ |
+ // TODO(all): Are x4, x2 and x1 outputs? This isn't clear. |
+ |
+ __ Bind(&done); |
+} |
+ |
+ |
+void CallFunctionStub::Generate(MacroAssembler* masm) { |
+ ASM_LOCATION("CallFunctionStub::Generate"); |
+ // x1 function the function to call |
+ // x2 : feedback vector |
+ // x3 : slot in feedback vector (smi) (if x2 is not undefined) |
+ Register function = x1; |
+ Register cache_cell = x2; |
+ Register slot = x3; |
+ Register type = x4; |
+ Label slow, non_function, wrap, cont; |
+ |
+ // TODO(jbramley): This function has a lot of unnamed registers. Name them, |
+ // and tidy things up a bit. |
+ |
+ if (NeedsChecks()) { |
+ // Check that the function is really a JavaScript function. |
+ __ JumpIfSmi(function, &non_function); |
+ |
+ // Goto slow case if we do not have a function. |
+ __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow); |
+ |
+ if (RecordCallTarget()) { |
+ GenerateRecordCallTarget(masm); |
+ } |
+ } |
+ |
+ // Fast-case: Invoke the function now. |
+ // x1 function pushed function |
+ ParameterCount actual(argc_); |
+ |
+ if (CallAsMethod()) { |
+ if (NeedsChecks()) { |
+ // Do not transform the receiver for strict mode functions. |
+ __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
+ __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset)); |
+ __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, &cont); |
+ |
+ // Do not transform the receiver for native (Compilerhints already in x3). |
+ __ Tbnz(w4, SharedFunctionInfo::kNative, &cont); |
+ } |
+ |
+ // Compute the receiver in non-strict mode. |
+ __ Peek(x3, argc_ * kPointerSize); |
+ |
+ if (NeedsChecks()) { |
+ __ JumpIfSmi(x3, &wrap); |
+ __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt); |
+ } else { |
+ __ B(&wrap); |
+ } |
+ |
+ __ Bind(&cont); |
+ } |
+ __ InvokeFunction(function, |
+ actual, |
+ JUMP_FUNCTION, |
+ NullCallWrapper()); |
+ |
+ if (NeedsChecks()) { |
+ // Slow-case: Non-function called. |
+ __ Bind(&slow); |
+ if (RecordCallTarget()) { |
+ // If there is a call target cache, mark it megamorphic in the |
+ // non-function case. MegamorphicSentinel is an immortal immovable object |
+ // (undefined) so no write barrier is needed. |
+ ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), |
+ masm->isolate()->heap()->undefined_value()); |
+ __ Add(x12, cache_cell, Operand::UntagSmiAndScale(slot, |
+ kPointerSizeLog2)); |
+ __ LoadRoot(x11, Heap::kUndefinedValueRootIndex); |
+ __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); |
+ } |
+ // Check for function proxy. |
+ // x10 : function type. |
+ __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, &non_function); |
+ __ Push(function); // put proxy as additional argument |
+ __ Mov(x0, argc_ + 1); |
+ __ Mov(x2, 0); |
+ __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY); |
+ { |
+ Handle<Code> adaptor = |
+ masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
+ __ Jump(adaptor, RelocInfo::CODE_TARGET); |
+ } |
+ |
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
+ // of the original receiver from the call site). |
+ __ Bind(&non_function); |
+ __ Poke(function, argc_ * kXRegSizeInBytes); |
+ __ Mov(x0, argc_); // Set up the number of arguments. |
+ __ Mov(x2, 0); |
+ __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION); |
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
+ RelocInfo::CODE_TARGET); |
+ } |
+ |
+ if (CallAsMethod()) { |
+ __ Bind(&wrap); |
+ // Wrap the receiver and patch it back onto the stack. |
+ { FrameScope frame_scope(masm, StackFrame::INTERNAL); |
+ __ Push(x1, x3); |
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
+ __ Pop(x1); |
+ } |
+ __ Poke(x0, argc_ * kPointerSize); |
+ __ B(&cont); |
+ } |
+} |
+ |
+ |
+void CallConstructStub::Generate(MacroAssembler* masm) { |
+ ASM_LOCATION("CallConstructStub::Generate"); |
+ // x0 : number of arguments |
+ // x1 : the function to call |
+ // x2 : feedback vector |
+ // x3 : slot in feedback vector (smi) (if r2 is not undefined) |
+ Register function = x1; |
+ Label slow, non_function_call; |
+ |
+ // Check that the function is not a smi. |
+ __ JumpIfSmi(function, &non_function_call); |
+ // Check that the function is a JSFunction. |
+ Register object_type = x10; |
+ __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE, |
+ &slow); |
+ |
+ if (RecordCallTarget()) { |
+ GenerateRecordCallTarget(masm); |
+ } |
+ |
+ // Jump to the function-specific construct stub. |
+ Register jump_reg = x4; |
+ Register shared_func_info = jump_reg; |
+ Register cons_stub = jump_reg; |
+ Register cons_stub_code = jump_reg; |
+ __ Ldr(shared_func_info, |
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
+ __ Ldr(cons_stub, |
+ FieldMemOperand(shared_func_info, |
+ SharedFunctionInfo::kConstructStubOffset)); |
+ __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag); |
+ __ Br(cons_stub_code); |
+ |
+ Label do_call; |
+ __ Bind(&slow); |
+ __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE); |
+ __ B(ne, &non_function_call); |
+ __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); |
+ __ B(&do_call); |
+ |
+ __ Bind(&non_function_call); |
+ __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
+ |
+ __ Bind(&do_call); |
+ // Set expected number of arguments to zero (not changing x0). |
+ __ Mov(x2, 0); |
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
+ RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
+ // If the receiver is a smi trigger the non-string case. |
+ __ JumpIfSmi(object_, receiver_not_string_); |
+ |
+ // Fetch the instance type of the receiver into result register. |
+ __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
+ __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
+ |
+ // If the receiver is not a string trigger the non-string case. |
+ __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_); |
+ |
+ // If the index is non-smi trigger the non-smi case. |
+ __ JumpIfNotSmi(index_, &index_not_smi_); |
+ |
+ __ Bind(&got_smi_index_); |
+ // Check for index out of range. |
+ __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset)); |
+ __ Cmp(result_, Operand::UntagSmi(index_)); |
+ __ B(ls, index_out_of_range_); |
+ |
+ __ SmiUntag(index_); |
+ |
+ StringCharLoadGenerator::Generate(masm, |
+ object_, |
+ index_, |
+ result_, |
+ &call_runtime_); |
+ __ SmiTag(result_); |
+ __ Bind(&exit_); |
+} |
+ |
+ |
+void StringCharCodeAtGenerator::GenerateSlow( |
+ MacroAssembler* masm, |
+ const RuntimeCallHelper& call_helper) { |
+ __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); |
+ |
+ __ Bind(&index_not_smi_); |
+ // If index is a heap number, try converting it to an integer. |
+ __ CheckMap(index_, |
+ result_, |
+ Heap::kHeapNumberMapRootIndex, |
+ index_not_number_, |
+ DONT_DO_SMI_CHECK); |
+ call_helper.BeforeCall(masm); |
+ // Save object_ on the stack and pass index_ as argument for runtime call. |
+ __ Push(object_, index_); |
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
+ } else { |
+ ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
+ // NumberToSmi discards numbers that are not exact integers. |
+ __ CallRuntime(Runtime::kNumberToSmi, 1); |
+ } |
+ // Save the conversion result before the pop instructions below |
+ // have a chance to overwrite it. |
+ __ Mov(index_, x0); |
+ __ Pop(object_); |
+ // Reload the instance type. |
+ __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
+ __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
+ call_helper.AfterCall(masm); |
+ |
+ // If index is still not a smi, it must be out of range. |
+ __ JumpIfNotSmi(index_, index_out_of_range_); |
+ // Otherwise, return to the fast path. |
+ __ B(&got_smi_index_); |
+ |
+ // Call runtime. We get here when the receiver is a string and the |
+ // index is a number, but the code of getting the actual character |
+ // is too complex (e.g., when the string needs to be flattened). |
+ __ Bind(&call_runtime_); |
+ call_helper.BeforeCall(masm); |
+ __ SmiTag(index_); |
+ __ Push(object_, index_); |
+ __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
+ __ Mov(result_, x0); |
+ call_helper.AfterCall(masm); |
+ __ B(&exit_); |
+ |
+ __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); |
+} |
+ |
+ |
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
+ __ JumpIfNotSmi(code_, &slow_case_); |
+ __ Cmp(code_, Operand(Smi::FromInt(String::kMaxOneByteCharCode))); |
+ __ B(hi, &slow_case_); |
+ |
+ __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
+ // At this point code register contains smi tagged ASCII char code. |
+ STATIC_ASSERT(kSmiShift > kPointerSizeLog2); |
+ __ Add(result_, result_, Operand(code_, LSR, kSmiShift - kPointerSizeLog2)); |
+ __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
+ __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_); |
+ __ Bind(&exit_); |
+} |
+ |
+ |
+void StringCharFromCodeGenerator::GenerateSlow( |
+ MacroAssembler* masm, |
+ const RuntimeCallHelper& call_helper) { |
+ __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); |
+ |
+ __ Bind(&slow_case_); |
+ call_helper.BeforeCall(masm); |
+ __ Push(code_); |
+ __ CallRuntime(Runtime::kCharFromCode, 1); |
+ __ Mov(result_, x0); |
+ call_helper.AfterCall(masm); |
+ __ B(&exit_); |
+ |
+ __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); |
+} |
+ |
+ |
+void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
+ // Inputs are in x0 (lhs) and x1 (rhs). |
+ ASSERT(state_ == CompareIC::SMI); |
+ ASM_LOCATION("ICCompareStub[Smis]"); |
+ Label miss; |
+ // Bail out (to 'miss') unless both x0 and x1 are smis. |
+ __ JumpIfEitherNotSmi(x0, x1, &miss); |
+ |
+ // TODO(jbramley): Why do we only set the flags for EQ? |
+ if (GetCondition() == eq) { |
+ // For equality we do not care about the sign of the result. |
+ __ Subs(x0, x0, x1); |
+ } else { |
+ // Untag before subtracting to avoid handling overflow. |
+ __ SmiUntag(x1); |
+ __ Sub(x0, x1, Operand::UntagSmi(x0)); |
+ } |
+ __ Ret(); |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { |
+ ASSERT(state_ == CompareIC::NUMBER); |
+ ASM_LOCATION("ICCompareStub[HeapNumbers]"); |
+ |
+ Label unordered, maybe_undefined1, maybe_undefined2; |
+ Label miss, handle_lhs, values_in_d_regs; |
+ Label untag_rhs, untag_lhs; |
+ |
+ Register result = x0; |
+ Register rhs = x0; |
+ Register lhs = x1; |
+ FPRegister rhs_d = d0; |
+ FPRegister lhs_d = d1; |
+ |
+ if (left_ == CompareIC::SMI) { |
+ __ JumpIfNotSmi(lhs, &miss); |
+ } |
+ if (right_ == CompareIC::SMI) { |
+ __ JumpIfNotSmi(rhs, &miss); |
+ } |
+ |
+ __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag); |
+ __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag); |
+ |
+ // Load rhs if it's a heap number. |
+ __ JumpIfSmi(rhs, &handle_lhs); |
+ __ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, |
+ DONT_DO_SMI_CHECK); |
+ __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ |
+ // Load lhs if it's a heap number. |
+ __ Bind(&handle_lhs); |
+ __ JumpIfSmi(lhs, &values_in_d_regs); |
+ __ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, |
+ DONT_DO_SMI_CHECK); |
+ __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
+ |
+ __ Bind(&values_in_d_regs); |
+ __ Fcmp(lhs_d, rhs_d); |
+ __ B(vs, &unordered); // Overflow flag set if either is NaN. |
+ STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); |
+ __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). |
+ __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. |
+ __ Ret(); |
+ |
+ __ Bind(&unordered); |
+ ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC, |
+ CompareIC::GENERIC); |
+ __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); |
+ |
+ __ Bind(&maybe_undefined1); |
+ if (Token::IsOrderedRelationalCompareOp(op_)) { |
+ __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss); |
+ __ JumpIfSmi(lhs, &unordered); |
+ __ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2); |
+ __ B(&unordered); |
+ } |
+ |
+ __ Bind(&maybe_undefined2); |
+ if (Token::IsOrderedRelationalCompareOp(op_)) { |
+ __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered); |
+ } |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { |
+ ASSERT(state_ == CompareIC::INTERNALIZED_STRING); |
+ ASM_LOCATION("ICCompareStub[InternalizedStrings]"); |
+ Label miss; |
+ |
+ Register result = x0; |
+ Register rhs = x0; |
+ Register lhs = x1; |
+ |
+ // Check that both operands are heap objects. |
+ __ JumpIfEitherSmi(lhs, rhs, &miss); |
+ |
+ // Check that both operands are internalized strings. |
+ Register rhs_map = x10; |
+ Register lhs_map = x11; |
+ Register rhs_type = x10; |
+ Register lhs_type = x11; |
+ __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
+ __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
+ __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
+ __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
+ |
+ STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
+ __ Orr(x12, lhs_type, rhs_type); |
+ __ TestAndBranchIfAnySet( |
+ x12, kIsNotStringMask | kIsNotInternalizedMask, &miss); |
+ |
+ // Internalized strings are compared by identity. |
+ STATIC_ASSERT(EQUAL == 0); |
+ __ Cmp(lhs, rhs); |
+ __ Cset(result, ne); |
+ __ Ret(); |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { |
+ ASSERT(state_ == CompareIC::UNIQUE_NAME); |
+ ASM_LOCATION("ICCompareStub[UniqueNames]"); |
+ ASSERT(GetCondition() == eq); |
+ Label miss; |
+ |
+ Register result = x0; |
+ Register rhs = x0; |
+ Register lhs = x1; |
+ |
+ Register lhs_instance_type = w2; |
+ Register rhs_instance_type = w3; |
+ |
+ // Check that both operands are heap objects. |
+ __ JumpIfEitherSmi(lhs, rhs, &miss); |
+ |
+ // Check that both operands are unique names. This leaves the instance |
+ // types loaded in tmp1 and tmp2. |
+ __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
+ __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
+ __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
+ __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset)); |
+ |
+ // To avoid a miss, each instance type should be either SYMBOL_TYPE or it |
+ // should have kInternalizedTag set. |
+ __ JumpIfNotUniqueName(lhs_instance_type, &miss); |
+ __ JumpIfNotUniqueName(rhs_instance_type, &miss); |
+ |
+ // Unique names are compared by identity. |
+ STATIC_ASSERT(EQUAL == 0); |
+ __ Cmp(lhs, rhs); |
+ __ Cset(result, ne); |
+ __ Ret(); |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
+ ASSERT(state_ == CompareIC::STRING); |
+ ASM_LOCATION("ICCompareStub[Strings]"); |
+ |
+ Label miss; |
+ |
+ bool equality = Token::IsEqualityOp(op_); |
+ |
+ Register result = x0; |
+ Register rhs = x0; |
+ Register lhs = x1; |
+ |
+ // Check that both operands are heap objects. |
+ __ JumpIfEitherSmi(rhs, lhs, &miss); |
+ |
+ // Check that both operands are strings. |
+ Register rhs_map = x10; |
+ Register lhs_map = x11; |
+ Register rhs_type = x10; |
+ Register lhs_type = x11; |
+ __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
+ __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
+ __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
+ __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
+ STATIC_ASSERT(kNotStringTag != 0); |
+ __ Orr(x12, lhs_type, rhs_type); |
+ __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss); |
+ |
+ // Fast check for identical strings. |
+ Label not_equal; |
+ __ Cmp(lhs, rhs); |
+ __ B(ne, ¬_equal); |
+ __ Mov(result, EQUAL); |
+ __ Ret(); |
+ |
+ __ Bind(¬_equal); |
+ // Handle not identical strings |
+ |
+ // Check that both strings are internalized strings. If they are, we're done |
+ // because we already know they are not identical. We know they are both |
+ // strings. |
+ if (equality) { |
+ ASSERT(GetCondition() == eq); |
+ STATIC_ASSERT(kInternalizedTag == 0); |
+ Label not_internalized_strings; |
+ __ Orr(x12, lhs_type, rhs_type); |
+ __ TestAndBranchIfAnySet( |
+ x12, kIsNotInternalizedMask, ¬_internalized_strings); |
+ // Result is in rhs (x0), and not EQUAL, as rhs is not a smi. |
+ __ Ret(); |
+ __ Bind(¬_internalized_strings); |
+ } |
+ |
+ // Check that both strings are sequential ASCII. |
+ Label runtime; |
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii( |
+ lhs_type, rhs_type, x12, x13, &runtime); |
+ |
+ // Compare flat ASCII strings. Returns when done. |
+ if (equality) { |
+ StringCompareStub::GenerateFlatAsciiStringEquals( |
+ masm, lhs, rhs, x10, x11, x12); |
+ } else { |
+ StringCompareStub::GenerateCompareFlatAsciiStrings( |
+ masm, lhs, rhs, x10, x11, x12, x13); |
+ } |
+ |
+ // Handle more complex cases in runtime. |
+ __ Bind(&runtime); |
+ __ Push(lhs, rhs); |
+ if (equality) { |
+ __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
+ } else { |
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
+ } |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
+ ASSERT(state_ == CompareIC::OBJECT); |
+ ASM_LOCATION("ICCompareStub[Objects]"); |
+ |
+ Label miss; |
+ |
+ Register result = x0; |
+ Register rhs = x0; |
+ Register lhs = x1; |
+ |
+ __ JumpIfEitherSmi(rhs, lhs, &miss); |
+ |
+ __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss); |
+ __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss); |
+ |
+ ASSERT(GetCondition() == eq); |
+ __ Sub(result, rhs, lhs); |
+ __ Ret(); |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { |
+ ASM_LOCATION("ICCompareStub[KnownObjects]"); |
+ |
+ Label miss; |
+ |
+ Register result = x0; |
+ Register rhs = x0; |
+ Register lhs = x1; |
+ |
+ __ JumpIfEitherSmi(rhs, lhs, &miss); |
+ |
+ Register rhs_map = x10; |
+ Register lhs_map = x11; |
+ __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
+ __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
+ __ Cmp(rhs_map, Operand(known_map_)); |
+ __ B(ne, &miss); |
+ __ Cmp(lhs_map, Operand(known_map_)); |
+ __ B(ne, &miss); |
+ |
+ __ Sub(result, rhs, lhs); |
+ __ Ret(); |
+ |
+ __ Bind(&miss); |
+ GenerateMiss(masm); |
+} |
+ |
+ |
+// This method handles the case where a compare stub had the wrong |
+// implementation. It calls a miss handler, which re-writes the stub. All other |
+// ICCompareStub::Generate* methods should fall back into this one if their |
+// operands were not the expected types. |
+void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
+ ASM_LOCATION("ICCompareStub[Miss]"); |
+ |
+ Register stub_entry = x11; |
+ { |
+ ExternalReference miss = |
+ ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); |
+ |
+ FrameScope scope(masm, StackFrame::INTERNAL); |
+ Register op = x10; |
+ Register left = x1; |
+ Register right = x0; |
+ // Preserve some caller-saved registers. |
+ __ Push(x1, x0, lr); |
+ // Push the arguments. |
+ __ Mov(op, Operand(Smi::FromInt(op_))); |
+ __ Push(left, right, op); |
+ |
+ // Call the miss handler. This also pops the arguments. |
+ __ CallExternalReference(miss, 3); |
+ |
+ // Compute the entry point of the rewritten stub. |
+ __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag); |
+ // Restore caller-saved registers. |
+ __ Pop(lr, x0, x1); |
+ } |
+ |
+ // Tail-call to the new stub. |
+ __ Jump(stub_entry); |
+} |
+ |
+ |
+void StringHelper::GenerateHashInit(MacroAssembler* masm, |
+ Register hash, |
+ Register character) { |
+ ASSERT(!AreAliased(hash, character)); |
+ |
+ // hash = character + (character << 10); |
+ __ LoadRoot(hash, Heap::kHashSeedRootIndex); |
+ // Untag smi seed and add the character. |
+ __ Add(hash, character, Operand(hash, LSR, kSmiShift)); |
+ |
+ // Compute hashes modulo 2^32 using a 32-bit W register. |
+ Register hash_w = hash.W(); |
+ |
+ // hash += hash << 10; |
+ __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); |
+ // hash ^= hash >> 6; |
+ __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); |
+} |
+ |
+ |
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
+ Register hash, |
+ Register character) { |
+ ASSERT(!AreAliased(hash, character)); |
+ |
+ // hash += character; |
+ __ Add(hash, hash, character); |
+ |
+ // Compute hashes modulo 2^32 using a 32-bit W register. |
+ Register hash_w = hash.W(); |
+ |
+ // hash += hash << 10; |
+ __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); |
+ // hash ^= hash >> 6; |
+ __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); |
+} |
+ |
+ |
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
+ Register hash, |
+ Register scratch) { |
+ // Compute hashes modulo 2^32 using a 32-bit W register. |
+ Register hash_w = hash.W(); |
+ Register scratch_w = scratch.W(); |
+ ASSERT(!AreAliased(hash_w, scratch_w)); |
+ |
+ // hash += hash << 3; |
+ __ Add(hash_w, hash_w, Operand(hash_w, LSL, 3)); |
+ // hash ^= hash >> 11; |
+ __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11)); |
+ // hash += hash << 15; |
+ __ Add(hash_w, hash_w, Operand(hash_w, LSL, 15)); |
+ |
+ __ Ands(hash_w, hash_w, String::kHashBitMask); |
+ |
+ // if (hash == 0) hash = 27; |
+ __ Mov(scratch_w, StringHasher::kZeroHash); |
+ __ Csel(hash_w, scratch_w, hash_w, eq); |
+} |
+ |
+ |
+void SubStringStub::Generate(MacroAssembler* masm) { |
+ ASM_LOCATION("SubStringStub::Generate"); |
+ Label runtime; |
+ |
+ // Stack frame on entry. |
+ // lr: return address |
+ // jssp[0]: substring "to" offset |
+ // jssp[8]: substring "from" offset |
+ // jssp[16]: pointer to string object |
+ |
+ // This stub is called from the native-call %_SubString(...), so |
+ // nothing can be assumed about the arguments. It is tested that: |
+ // "string" is a sequential string, |
+ // both "from" and "to" are smis, and |
+ // 0 <= from <= to <= string.length (in debug mode.) |
+ // If any of these assumptions fail, we call the runtime system. |
+ |
+ static const int kToOffset = 0 * kPointerSize; |
+ static const int kFromOffset = 1 * kPointerSize; |
+ static const int kStringOffset = 2 * kPointerSize; |
+ |
+ Register to = x0; |
+ Register from = x15; |
+ Register input_string = x10; |
+ Register input_length = x11; |
+ Register input_type = x12; |
+ Register result_string = x0; |
+ Register result_length = x1; |
+ Register temp = x3; |
+ |
+ __ Peek(to, kToOffset); |
+ __ Peek(from, kFromOffset); |
+ |
+ // Check that both from and to are smis. If not, jump to runtime. |
+ __ JumpIfEitherNotSmi(from, to, &runtime); |
+ __ SmiUntag(from); |
+ __ SmiUntag(to); |
+ |
+ // Calculate difference between from and to. If to < from, branch to runtime. |
+ __ Subs(result_length, to, from); |
+ __ B(mi, &runtime); |
+ |
+ // Check from is positive. |
+ __ Tbnz(from, kWSignBit, &runtime); |
+ |
+ // Make sure first argument is a string. |
+ __ Peek(input_string, kStringOffset); |
+ __ JumpIfSmi(input_string, &runtime); |
+ __ IsObjectJSStringType(input_string, input_type, &runtime); |
+ |
+ Label single_char; |
+ __ Cmp(result_length, 1); |
+ __ B(eq, &single_char); |
+ |
+ // Short-cut for the case of trivial substring. |
+ Label return_x0; |
+ __ Ldrsw(input_length, |
+ UntagSmiFieldMemOperand(input_string, String::kLengthOffset)); |
+ |
+ __ Cmp(result_length, input_length); |
+ __ CmovX(x0, input_string, eq); |
+ // Return original string. |
+ __ B(eq, &return_x0); |
+ |
+ // Longer than original string's length or negative: unsafe arguments. |
+ __ B(hi, &runtime); |
+ |
+ // Shorter than original string's length: an actual substring. |
+ |
+ // x0 to substring end character offset |
+ // x1 result_length length of substring result |
+ // x10 input_string pointer to input string object |
+ // x10 unpacked_string pointer to unpacked string object |
+ // x11 input_length length of input string |
+ // x12 input_type instance type of input string |
+ // x15 from substring start character offset |
+ |
+ // Deal with different string types: update the index if necessary and put |
+ // the underlying string into register unpacked_string. |
+ Label underlying_unpacked, sliced_string, seq_or_external_string; |
+ Label update_instance_type; |
+ // If the string is not indirect, it can only be sequential or external. |
+ STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
+ STATIC_ASSERT(kIsIndirectStringMask != 0); |
+ |
+ // Test for string types, and branch/fall through to appropriate unpacking |
+ // code. |
+ __ Tst(input_type, kIsIndirectStringMask); |
+ __ B(eq, &seq_or_external_string); |
+ __ Tst(input_type, kSlicedNotConsMask); |
+ __ B(ne, &sliced_string); |
+ |
+ Register unpacked_string = input_string; |
+ |
+ // Cons string. Check whether it is flat, then fetch first part. |
+ __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset)); |
+ __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime); |
+ __ Ldr(unpacked_string, |
+ FieldMemOperand(input_string, ConsString::kFirstOffset)); |
+ __ B(&update_instance_type); |
+ |
+ __ Bind(&sliced_string); |
+ // Sliced string. Fetch parent and correct start index by offset. |
+ __ Ldrsw(temp, |
+ UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset)); |
+ __ Add(from, from, temp); |
+ __ Ldr(unpacked_string, |
+ FieldMemOperand(input_string, SlicedString::kParentOffset)); |
+ |
+ __ Bind(&update_instance_type); |
+ __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset)); |
+ __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset)); |
+ // TODO(all): This generates "b #+0x4". Can these be optimised out? |
+ __ B(&underlying_unpacked); |
+ |
+ __ Bind(&seq_or_external_string); |
+ // Sequential or external string. Registers unpacked_string and input_string |
+ // alias, so there's nothing to do here. |
+ |
+ // x0 result_string pointer to result string object (uninit) |
+ // x1 result_length length of substring result |
+ // x10 unpacked_string pointer to unpacked string object |
+ // x11 input_length length of input string |
+ // x12 input_type instance type of input string |
+ // x15 from substring start character offset |
+ __ Bind(&underlying_unpacked); |
+ |
+ if (FLAG_string_slices) { |
+ Label copy_routine; |
+ __ Cmp(result_length, SlicedString::kMinLength); |
+ // Short slice. Copy instead of slicing. |
+ __ B(lt, ©_routine); |
+ // Allocate new sliced string. At this point we do not reload the instance |
+ // type including the string encoding because we simply rely on the info |
+ // provided by the original string. It does not matter if the original |
+ // string's encoding is wrong because we always have to recheck encoding of |
+ // the newly created string's parent anyway due to externalized strings. |
+ Label two_byte_slice, set_slice_header; |
+ STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); |
+ STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
+ __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice); |
+ __ AllocateAsciiSlicedString(result_string, result_length, x3, x4, |
+ &runtime); |
+ __ B(&set_slice_header); |
+ |
+ __ Bind(&two_byte_slice); |
+ __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4, |
+ &runtime); |
+ |
+ __ Bind(&set_slice_header); |
+ __ SmiTag(from); |
+ __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset)); |
+ __ Str(unpacked_string, |
+ FieldMemOperand(result_string, SlicedString::kParentOffset)); |
+ __ B(&return_x0); |
+ |
+ __ Bind(©_routine); |
+ } |
+ |
+ // x0 result_string pointer to result string object (uninit) |
+ // x1 result_length length of substring result |
+ // x10 unpacked_string pointer to unpacked string object |
+ // x11 input_length length of input string |
+ // x12 input_type instance type of input string |
+ // x13 unpacked_char0 pointer to first char of unpacked string (uninit) |
+ // x13 substring_char0 pointer to first char of substring (uninit) |
+ // x14 result_char0 pointer to first char of result (uninit) |
+ // x15 from substring start character offset |
+ Register unpacked_char0 = x13; |
+ Register substring_char0 = x13; |
+ Register result_char0 = x14; |
+ Label two_byte_sequential, sequential_string, allocate_result; |
+ STATIC_ASSERT(kExternalStringTag != 0); |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ |
+ __ Tst(input_type, kExternalStringTag); |
+ __ B(eq, &sequential_string); |
+ |
+ __ Tst(input_type, kShortExternalStringTag); |
+ __ B(ne, &runtime); |
+ __ Ldr(unpacked_char0, |
+ FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset)); |
+ // unpacked_char0 points to the first character of the underlying string. |
+ __ B(&allocate_result); |
+ |
+ __ Bind(&sequential_string); |
+ // Locate first character of underlying subject string. |
+ STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
+ __ Add(unpacked_char0, unpacked_string, |
+ SeqOneByteString::kHeaderSize - kHeapObjectTag); |
+ |
+ __ Bind(&allocate_result); |
+ // Sequential ASCII string. Allocate the result. |
+ STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); |
+ __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential); |
+ |
+ // Allocate and copy the resulting ASCII string. |
+ __ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime); |
+ |
+ // Locate first character of substring to copy. |
+ __ Add(substring_char0, unpacked_char0, from); |
+ |
+ // Locate first character of result. |
+ __ Add(result_char0, result_string, |
+ SeqOneByteString::kHeaderSize - kHeapObjectTag); |
+ |
+ STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
+ __ B(&return_x0); |
+ |
+ // Allocate and copy the resulting two-byte string. |
+ __ Bind(&two_byte_sequential); |
+ __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime); |
+ |
+ // Locate first character of substring to copy. |
+ __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1)); |
+ |
+ // Locate first character of result. |
+ __ Add(result_char0, result_string, |
+ SeqTwoByteString::kHeaderSize - kHeapObjectTag); |
+ |
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ __ Add(result_length, result_length, result_length); |
+ __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
+ |
+ __ Bind(&return_x0); |
+ Counters* counters = masm->isolate()->counters(); |
+ __ IncrementCounter(counters->sub_string_native(), 1, x3, x4); |
+ __ Drop(3); |
+ __ Ret(); |
+ |
+ __ Bind(&runtime); |
+ __ TailCallRuntime(Runtime::kSubString, 3, 1); |
+ |
+ __ bind(&single_char); |
+ // x1: result_length |
+ // x10: input_string |
+ // x12: input_type |
+ // x15: from (untagged) |
+ __ SmiTag(from); |
+ StringCharAtGenerator generator( |
+ input_string, from, result_length, x0, |
+ &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); |
+ generator.GenerateFast(masm); |
+ // TODO(jbramley): Why doesn't this jump to return_x0? |
+ __ Drop(3); |
+ __ Ret(); |
+ generator.SkipSlow(masm, &runtime); |
+} |
+ |
+ |
+void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3) { |
+ ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3)); |
+ Register result = x0; |
+ Register left_length = scratch1; |
+ Register right_length = scratch2; |
+ |
+ // Compare lengths. If lengths differ, strings can't be equal. Lengths are |
+ // smis, and don't need to be untagged. |
+ Label strings_not_equal, check_zero_length; |
+ __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset)); |
+ __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset)); |
+ __ Cmp(left_length, right_length); |
+ __ B(eq, &check_zero_length); |
+ |
+ __ Bind(&strings_not_equal); |
+ __ Mov(result, Operand(Smi::FromInt(NOT_EQUAL))); |
+ __ Ret(); |
+ |
+ // Check if the length is zero. If so, the strings must be equal (and empty.) |
+ Label compare_chars; |
+ __ Bind(&check_zero_length); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Cbnz(left_length, &compare_chars); |
+ __ Mov(result, Operand(Smi::FromInt(EQUAL))); |
+ __ Ret(); |
+ |
+ // Compare characters. Falls through if all characters are equal. |
+ __ Bind(&compare_chars); |
+ GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2, |
+ scratch3, &strings_not_equal); |
+ |
+ // Characters in strings are equal. |
+ __ Mov(result, Operand(Smi::FromInt(EQUAL))); |
+ __ Ret(); |
+} |
+ |
+ |
+void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4) { |
+ ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4)); |
+ Label result_not_equal, compare_lengths; |
+ |
+ // Find minimum length and length difference. |
+ Register length_delta = scratch3; |
+ __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
+ __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
+ __ Subs(length_delta, scratch1, scratch2); |
+ |
+ Register min_length = scratch1; |
+ __ Csel(min_length, scratch2, scratch1, gt); |
+ __ Cbz(min_length, &compare_lengths); |
+ |
+ // Compare loop. |
+ GenerateAsciiCharsCompareLoop(masm, |
+ left, right, min_length, scratch2, scratch4, |
+ &result_not_equal); |
+ |
+ // Compare lengths - strings up to min-length are equal. |
+ __ Bind(&compare_lengths); |
+ |
+ ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
+ |
+ // Use length_delta as result if it's zero. |
+ Register result = x0; |
+ __ Subs(result, length_delta, 0); |
+ |
+ __ Bind(&result_not_equal); |
+ Register greater = x10; |
+ Register less = x11; |
+ __ Mov(greater, Operand(Smi::FromInt(GREATER))); |
+ __ Mov(less, Operand(Smi::FromInt(LESS))); |
+ __ CmovX(result, greater, gt); |
+ __ CmovX(result, less, lt); |
+ __ Ret(); |
+} |
+ |
+ |
+void StringCompareStub::GenerateAsciiCharsCompareLoop( |
+ MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* chars_not_equal) { |
+ ASSERT(!AreAliased(left, right, length, scratch1, scratch2)); |
+ |
+ // Change index to run from -length to -1 by adding length to string |
+ // start. This means that loop ends when index reaches zero, which |
+ // doesn't need an additional compare. |
+ __ SmiUntag(length); |
+ __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag); |
+ __ Add(left, left, scratch1); |
+ __ Add(right, right, scratch1); |
+ |
+ Register index = length; |
+ __ Neg(index, length); // index = -length; |
+ |
+ // Compare loop |
+ Label loop; |
+ __ Bind(&loop); |
+ __ Ldrb(scratch1, MemOperand(left, index)); |
+ __ Ldrb(scratch2, MemOperand(right, index)); |
+ __ Cmp(scratch1, scratch2); |
+ __ B(ne, chars_not_equal); |
+ __ Add(index, index, 1); |
+ __ Cbnz(index, &loop); |
+} |
+ |
+ |
+void StringCompareStub::Generate(MacroAssembler* masm) { |
+ Label runtime; |
+ |
+ Counters* counters = masm->isolate()->counters(); |
+ |
+ // Stack frame on entry. |
+ // sp[0]: right string |
+ // sp[8]: left string |
+ Register right = x10; |
+ Register left = x11; |
+ Register result = x0; |
+ __ Pop(right, left); |
+ |
+ Label not_same; |
+ __ Subs(result, right, left); |
+ __ B(ne, ¬_same); |
+ STATIC_ASSERT(EQUAL == 0); |
+ __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); |
+ __ Ret(); |
+ |
+ __ Bind(¬_same); |
+ |
+ // Check that both objects are sequential ASCII strings. |
+ __ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime); |
+ |
+ // Compare flat ASCII strings natively. Remove arguments from stack first, |
+ // as this function will generate a return. |
+ __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); |
+ GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15); |
+ |
+ __ Bind(&runtime); |
+ |
+ // Push arguments back on to the stack. |
+ // sp[0] = right string |
+ // sp[8] = left string. |
+ __ Push(left, right); |
+ |
+ // Call the runtime. |
+ // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer. |
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
+} |
+ |
+ |
+void ArrayPushStub::Generate(MacroAssembler* masm) { |
+ Register receiver = x0; |
+ |
+ int argc = arguments_count(); |
+ |
+ if (argc == 0) { |
+ // Nothing to do, just return the length. |
+ __ Ldr(x0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
+ __ Drop(argc + 1); |
+ __ Ret(); |
+ return; |
+ } |
+ |
+ Isolate* isolate = masm->isolate(); |
+ |
+ if (argc != 1) { |
+ __ TailCallExternalReference( |
+ ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
+ return; |
+ } |
+ |
+ Label call_builtin, attempt_to_grow_elements, with_write_barrier; |
+ |
+ Register elements_length = x8; |
+ Register length = x7; |
+ Register elements = x6; |
+ Register end_elements = x5; |
+ Register value = x4; |
+ // Get the elements array of the object. |
+ __ Ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
+ |
+ if (IsFastSmiOrObjectElementsKind(elements_kind())) { |
+ // Check that the elements are in fast mode and writable. |
+ __ CheckMap(elements, |
+ x10, |
+ Heap::kFixedArrayMapRootIndex, |
+ &call_builtin, |
+ DONT_DO_SMI_CHECK); |
+ } |
+ |
+ // Get the array's length and calculate new length. |
+ __ Ldr(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Add(length, length, Operand(Smi::FromInt(argc))); |
+ |
+ // Check if we could survive without allocation. |
+ __ Ldr(elements_length, |
+ FieldMemOperand(elements, FixedArray::kLengthOffset)); |
+ __ Cmp(length, elements_length); |
+ |
+ const int kEndElementsOffset = |
+ FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize; |
+ |
+ if (IsFastSmiOrObjectElementsKind(elements_kind())) { |
+ __ B(gt, &attempt_to_grow_elements); |
+ |
+ // Check if value is a smi. |
+ __ Peek(value, (argc - 1) * kPointerSize); |
+ __ JumpIfNotSmi(value, &with_write_barrier); |
+ |
+ // Store the value. |
+ // We may need a register containing the address end_elements below, |
+ // so write back the value in end_elements. |
+ __ Add(end_elements, elements, |
+ Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
+ __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); |
+ } else { |
+ // TODO(all): ARM has a redundant cmp here. |
+ __ B(gt, &call_builtin); |
+ |
+ __ Peek(value, (argc - 1) * kPointerSize); |
+ __ StoreNumberToDoubleElements(value, length, elements, x10, d0, d1, |
+ &call_builtin, argc * kDoubleSize); |
+ } |
+ |
+ // Save new length. |
+ __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
+ |
+ // Return length. |
+ __ Drop(argc + 1); |
+ __ Mov(x0, length); |
+ __ Ret(); |
+ |
+ if (IsFastDoubleElementsKind(elements_kind())) { |
+ __ Bind(&call_builtin); |
+ __ TailCallExternalReference( |
+ ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
+ return; |
+ } |
+ |
+ __ Bind(&with_write_barrier); |
+ |
+ if (IsFastSmiElementsKind(elements_kind())) { |
+ if (FLAG_trace_elements_transitions) { |
+ __ B(&call_builtin); |
+ } |
+ |
+ __ Ldr(x10, FieldMemOperand(value, HeapObject::kMapOffset)); |
+ __ JumpIfHeapNumber(x10, &call_builtin); |
+ |
+ ElementsKind target_kind = IsHoleyElementsKind(elements_kind()) |
+ ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; |
+ __ Ldr(x10, GlobalObjectMemOperand()); |
+ __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kNativeContextOffset)); |
+ __ Ldr(x10, ContextMemOperand(x10, Context::JS_ARRAY_MAPS_INDEX)); |
+ const int header_size = FixedArrayBase::kHeaderSize; |
+ // Verify that the object can be transitioned in place. |
+ const int origin_offset = header_size + elements_kind() * kPointerSize; |
+ __ ldr(x11, FieldMemOperand(receiver, origin_offset)); |
+ __ ldr(x12, FieldMemOperand(x10, HeapObject::kMapOffset)); |
+ __ cmp(x11, x12); |
+ __ B(ne, &call_builtin); |
+ |
+ const int target_offset = header_size + target_kind * kPointerSize; |
+ __ Ldr(x10, FieldMemOperand(x10, target_offset)); |
+ __ Mov(x11, receiver); |
+ ElementsTransitionGenerator::GenerateMapChangeElementsTransition( |
+ masm, DONT_TRACK_ALLOCATION_SITE, NULL); |
+ } |
+ |
+ // Save new length. |
+ __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
+ |
+ // Store the value. |
+ // We may need a register containing the address end_elements below, |
+ // so write back the value in end_elements. |
+ __ Add(end_elements, elements, |
+ Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
+ __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); |
+ |
+ __ RecordWrite(elements, |
+ end_elements, |
+ value, |
+ kLRHasNotBeenSaved, |
+ kDontSaveFPRegs, |
+ EMIT_REMEMBERED_SET, |
+ OMIT_SMI_CHECK); |
+ __ Drop(argc + 1); |
+ __ Mov(x0, length); |
+ __ Ret(); |
+ |
+ __ Bind(&attempt_to_grow_elements); |
+ |
+ if (!FLAG_inline_new) { |
+ __ B(&call_builtin); |
+ } |
+ |
+ Register argument = x2; |
+ __ Peek(argument, (argc - 1) * kPointerSize); |
+ // Growing elements that are SMI-only requires special handling in case |
+ // the new element is non-Smi. For now, delegate to the builtin. |
+ if (IsFastSmiElementsKind(elements_kind())) { |
+ __ JumpIfNotSmi(argument, &call_builtin); |
+ } |
+ |
+ // We could be lucky and the elements array could be at the top of new-space. |
+ // In this case we can just grow it in place by moving the allocation pointer |
+ // up. |
+ ExternalReference new_space_allocation_top = |
+ ExternalReference::new_space_allocation_top_address(isolate); |
+ ExternalReference new_space_allocation_limit = |
+ ExternalReference::new_space_allocation_limit_address(isolate); |
+ |
+ const int kAllocationDelta = 4; |
+ ASSERT(kAllocationDelta >= argc); |
+ Register allocation_top_addr = x5; |
+ Register allocation_top = x9; |
+ // Load top and check if it is the end of elements. |
+ __ Add(end_elements, elements, |
+ Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
+ __ Add(end_elements, end_elements, kEndElementsOffset); |
+ __ Mov(allocation_top_addr, Operand(new_space_allocation_top)); |
+ __ Ldr(allocation_top, MemOperand(allocation_top_addr)); |
+ __ Cmp(end_elements, allocation_top); |
+ __ B(ne, &call_builtin); |
+ |
+ __ Mov(x10, Operand(new_space_allocation_limit)); |
+ __ Ldr(x10, MemOperand(x10)); |
+ __ Add(allocation_top, allocation_top, kAllocationDelta * kPointerSize); |
+ __ Cmp(allocation_top, x10); |
+ __ B(hi, &call_builtin); |
+ |
+ // We fit and could grow elements. |
+ // Update new_space_allocation_top. |
+ __ Str(allocation_top, MemOperand(allocation_top_addr)); |
+ // Push the argument. |
+ __ Str(argument, MemOperand(end_elements)); |
+ // Fill the rest with holes. |
+ __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); |
+ for (int i = 1; i < kAllocationDelta; i++) { |
+ // TODO(all): Try to use stp here. |
+ __ Str(x10, MemOperand(end_elements, i * kPointerSize)); |
+ } |
+ |
+ // Update elements' and array's sizes. |
+ __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
+ __ Add(elements_length, |
+ elements_length, |
+ Operand(Smi::FromInt(kAllocationDelta))); |
+ __ Str(elements_length, |
+ FieldMemOperand(elements, FixedArray::kLengthOffset)); |
+ |
+ // Elements are in new space, so write barrier is not required. |
+ __ Drop(argc + 1); |
+ __ Mov(x0, length); |
+ __ Ret(); |
+ |
+ __ Bind(&call_builtin); |
+ __ TailCallExternalReference( |
+ ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
+} |
+ |
+ |
+void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { |
+ // ----------- S t a t e ------------- |
+ // -- x1 : left |
+ // -- x0 : right |
+ // -- lr : return address |
+ // ----------------------------------- |
+ Isolate* isolate = masm->isolate(); |
+ |
+ // Load x2 with the allocation site. We stick an undefined dummy value here |
+ // and replace it with the real allocation site later when we instantiate this |
+ // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). |
+ __ LoadObject(x2, handle(isolate->heap()->undefined_value())); |
+ |
+ // Make sure that we actually patched the allocation site. |
+ if (FLAG_debug_code) { |
+ __ AssertNotSmi(x2, kExpectedAllocationSite); |
+ __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset)); |
+ __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex, |
+ kExpectedAllocationSite); |
+ } |
+ |
+ // Tail call into the stub that handles binary operations with allocation |
+ // sites. |
+ BinaryOpWithAllocationSiteStub stub(state_); |
+ __ TailCallStub(&stub); |
+} |
+ |
+ |
+bool CodeStub::CanUseFPRegisters() { |
+ // FP registers always available on A64. |
+ return true; |
+} |
+ |
+ |
+void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { |
+ // We need some extra registers for this stub, they have been allocated |
+ // but we need to save them before using them. |
+ regs_.Save(masm); |
+ |
+ if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
+ Label dont_need_remembered_set; |
+ |
+ Register value = regs_.scratch0(); |
+ __ Ldr(value, MemOperand(regs_.address())); |
+ __ JumpIfNotInNewSpace(value, &dont_need_remembered_set); |
+ |
+ __ CheckPageFlagSet(regs_.object(), |
+ value, |
+ 1 << MemoryChunk::SCAN_ON_SCAVENGE, |
+ &dont_need_remembered_set); |
+ |
+ // First notify the incremental marker if necessary, then update the |
+ // remembered set. |
+ CheckNeedsToInformIncrementalMarker( |
+ masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); |
+ InformIncrementalMarker(masm, mode); |
+ regs_.Restore(masm); // Restore the extra scratch registers we used. |
+ __ RememberedSetHelper(object_, |
+ address_, |
+ value_, |
+ save_fp_regs_mode_, |
+ MacroAssembler::kReturnAtEnd); |
+ |
+ __ Bind(&dont_need_remembered_set); |
+ } |
+ |
+ CheckNeedsToInformIncrementalMarker( |
+ masm, kReturnOnNoNeedToInformIncrementalMarker, mode); |
+ InformIncrementalMarker(masm, mode); |
+ regs_.Restore(masm); // Restore the extra scratch registers we used. |
+ __ Ret(); |
+} |
+ |
+ |
+void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { |
+ regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); |
+ Register address = |
+ x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address(); |
+ ASSERT(!address.Is(regs_.object())); |
+ ASSERT(!address.Is(x0)); |
+ __ Mov(address, regs_.address()); |
+ __ Mov(x0, regs_.object()); |
+ __ Mov(x1, address); |
+ __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate()))); |
+ |
+ AllowExternalCallThatCantCauseGC scope(masm); |
+ ExternalReference function = (mode == INCREMENTAL_COMPACTION) |
+ ? ExternalReference::incremental_evacuation_record_write_function( |
+ masm->isolate()) |
+ : ExternalReference::incremental_marking_record_write_function( |
+ masm->isolate()); |
+ __ CallCFunction(function, 3, 0); |
+ |
+ regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); |
+} |
+ |
+ |
+void RecordWriteStub::CheckNeedsToInformIncrementalMarker( |
+ MacroAssembler* masm, |
+ OnNoNeedToInformIncrementalMarker on_no_need, |
+ Mode mode) { |
+ Label on_black; |
+ Label need_incremental; |
+ Label need_incremental_pop_scratch; |
+ |
+ Register mem_chunk = regs_.scratch0(); |
+ Register counter = regs_.scratch1(); |
+ __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask); |
+ __ Ldr(counter, |
+ MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); |
+ __ Subs(counter, counter, 1); |
+ __ Str(counter, |
+ MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); |
+ __ B(mi, &need_incremental); |
+ |
+ // If the object is not black we don't have to inform the incremental marker. |
+ __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); |
+ |
+ regs_.Restore(masm); // Restore the extra scratch registers we used. |
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
+ __ RememberedSetHelper(object_, |
+ address_, |
+ value_, |
+ save_fp_regs_mode_, |
+ MacroAssembler::kReturnAtEnd); |
+ } else { |
+ __ Ret(); |
+ } |
+ |
+ __ Bind(&on_black); |
+ // Get the value from the slot. |
+ Register value = regs_.scratch0(); |
+ __ Ldr(value, MemOperand(regs_.address())); |
+ |
+ if (mode == INCREMENTAL_COMPACTION) { |
+ Label ensure_not_white; |
+ |
+ __ CheckPageFlagClear(value, |
+ regs_.scratch1(), |
+ MemoryChunk::kEvacuationCandidateMask, |
+ &ensure_not_white); |
+ |
+ __ CheckPageFlagClear(regs_.object(), |
+ regs_.scratch1(), |
+ MemoryChunk::kSkipEvacuationSlotsRecordingMask, |
+ &need_incremental); |
+ |
+ __ Bind(&ensure_not_white); |
+ } |
+ |
+ // We need extra registers for this, so we push the object and the address |
+ // register temporarily. |
+ __ Push(regs_.address(), regs_.object()); |
+ __ EnsureNotWhite(value, |
+ regs_.scratch1(), // Scratch. |
+ regs_.object(), // Scratch. |
+ regs_.address(), // Scratch. |
+ regs_.scratch2(), // Scratch. |
+ &need_incremental_pop_scratch); |
+ __ Pop(regs_.object(), regs_.address()); |
+ |
+ regs_.Restore(masm); // Restore the extra scratch registers we used. |
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
+ __ RememberedSetHelper(object_, |
+ address_, |
+ value_, |
+ save_fp_regs_mode_, |
+ MacroAssembler::kReturnAtEnd); |
+ } else { |
+ __ Ret(); |
+ } |
+ |
+ __ Bind(&need_incremental_pop_scratch); |
+ __ Pop(regs_.object(), regs_.address()); |
+ |
+ __ Bind(&need_incremental); |
+ // Fall through when we need to inform the incremental marker. |
+} |
+ |
+ |
+void RecordWriteStub::Generate(MacroAssembler* masm) { |
+ Label skip_to_incremental_noncompacting; |
+ Label skip_to_incremental_compacting; |
+ |
+ // We patch these two first instructions back and forth between a nop and |
+ // real branch when we start and stop incremental heap marking. |
+ // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops |
+ // are generated. |
+ // See RecordWriteStub::Patch for details. |
+ { |
+ InstructionAccurateScope scope(masm, 2); |
+ __ adr(xzr, &skip_to_incremental_noncompacting); |
+ __ adr(xzr, &skip_to_incremental_compacting); |
+ } |
+ |
+ if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
+ __ RememberedSetHelper(object_, |
+ address_, |
+ value_, |
+ save_fp_regs_mode_, |
+ MacroAssembler::kReturnAtEnd); |
+ } |
+ __ Ret(); |
+ |
+ __ Bind(&skip_to_incremental_noncompacting); |
+ GenerateIncremental(masm, INCREMENTAL); |
+ |
+ __ Bind(&skip_to_incremental_compacting); |
+ GenerateIncremental(masm, INCREMENTAL_COMPACTION); |
+} |
+ |
+ |
+void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { |
+ // TODO(all): Possible optimisations in this function: |
+ // 1. Merge CheckFastElements and CheckFastSmiElements, so that the map |
+ // bitfield is loaded only once. |
+ // 2. Refactor the Ldr/Add sequence at the start of fast_elements and |
+ // smi_element. |
+ |
+ // x0 value element value to store |
+ // x3 index_smi element index as smi |
+ // sp[0] array_index_smi array literal index in function as smi |
+ // sp[1] array array literal |
+ |
+ Register value = x0; |
+ Register index_smi = x3; |
+ |
+ Register array = x1; |
+ Register array_map = x2; |
+ Register array_index_smi = x4; |
+ __ PeekPair(array_index_smi, array, 0); |
+ __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset)); |
+ |
+ Label double_elements, smi_element, fast_elements, slow_elements; |
+ __ CheckFastElements(array_map, x10, &double_elements); |
+ __ JumpIfSmi(value, &smi_element); |
+ __ CheckFastSmiElements(array_map, x10, &fast_elements); |
+ |
+ // Store into the array literal requires an elements transition. Call into |
+ // the runtime. |
+ __ Bind(&slow_elements); |
+ __ Push(array, index_smi, value); |
+ __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
+ __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset)); |
+ __ Push(x11, array_index_smi); |
+ __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); |
+ |
+ // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. |
+ __ Bind(&fast_elements); |
+ __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
+ __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); |
+ __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag); |
+ __ Str(value, MemOperand(x11)); |
+ // Update the write barrier for the array store. |
+ __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs, |
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
+ __ Ret(); |
+ |
+ // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, |
+ // and value is Smi. |
+ __ Bind(&smi_element); |
+ __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
+ __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); |
+ __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize)); |
+ __ Ret(); |
+ |
+ __ Bind(&double_elements); |
+ __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
+ __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0, d1, |
+ &slow_elements); |
+ __ Ret(); |
+} |
+ |
+ |
+void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { |
+ // TODO(jbramley): The ARM code leaves the (shifted) offset in r1. Why? |
+ CEntryStub ces(1, kSaveFPRegs); |
+ __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); |
+ int parameter_count_offset = |
+ StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; |
+ __ Ldr(x1, MemOperand(fp, parameter_count_offset)); |
+ if (function_mode_ == JS_FUNCTION_STUB_MODE) { |
+ __ Add(x1, x1, 1); |
+ } |
+ masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); |
+ __ Drop(x1); |
+ // Return to IC Miss stub, continuation still on stack. |
+ __ Ret(); |
+} |
+ |
+ |
+void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
+ if (masm->isolate()->function_entry_hook() != NULL) { |
+ // TODO(all): This needs to be reliably consistent with |
+ // kReturnAddressDistanceFromFunctionStart in ::Generate. |
+ Assembler::BlockConstPoolScope no_const_pools(masm); |
+ ProfileEntryHookStub stub; |
+ __ Push(lr); |
+ __ CallStub(&stub); |
+ __ Pop(lr); |
+ } |
+} |
+ |
+ |
+void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
+ MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
+ // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by |
+ // a "Push lr" instruction, followed by a call. |
+ // TODO(jbramley): Verify that this call is always made with relocation. |
+ static const int kReturnAddressDistanceFromFunctionStart = |
+ Assembler::kCallSizeWithRelocation + (2 * kInstructionSize); |
+ |
+ // Save all kCallerSaved registers (including lr), since this can be called |
+ // from anywhere. |
+ // TODO(jbramley): What about FP registers? |
+ __ PushCPURegList(kCallerSaved); |
+ ASSERT(kCallerSaved.IncludesAliasOf(lr)); |
+ const int kNumSavedRegs = kCallerSaved.Count(); |
+ |
+ // Compute the function's address as the first argument. |
+ __ Sub(x0, lr, kReturnAddressDistanceFromFunctionStart); |
+ |
+#if V8_HOST_ARCH_A64 |
+ uintptr_t entry_hook = |
+ reinterpret_cast<uintptr_t>(masm->isolate()->function_entry_hook()); |
+ __ Mov(x10, entry_hook); |
+#else |
+ // Under the simulator we need to indirect the entry hook through a trampoline |
+ // function at a known address. |
+ ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); |
+ __ Mov(x10, Operand(ExternalReference(&dispatcher, |
+ ExternalReference::BUILTIN_CALL, |
+ masm->isolate()))); |
+ // It additionally takes an isolate as a third parameter |
+ __ Mov(x2, Operand(ExternalReference::isolate_address(masm->isolate()))); |
+#endif |
+ |
+ // The caller's return address is above the saved temporaries. |
+ // Grab its location for the second argument to the hook. |
+ __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize); |
+ |
+ { |
+ // Create a dummy frame, as CallCFunction requires this. |
+ FrameScope frame(masm, StackFrame::MANUAL); |
+ __ CallCFunction(x10, 2, 0); |
+ } |
+ |
+ __ PopCPURegList(kCallerSaved); |
+ __ Ret(); |
+} |
+ |
+ |
+void DirectCEntryStub::Generate(MacroAssembler* masm) { |
+ // When calling into C++ code the stack pointer must be csp. |
+ // Therefore this code must use csp for peek/poke operations when the |
+ // stub is generated. When the stub is called |
+ // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame |
+ // and configure the stack pointer *before* doing the call. |
+ const Register old_stack_pointer = __ StackPointer(); |
+ __ SetStackPointer(csp); |
+ |
+ // Put return address on the stack (accessible to GC through exit frame pc). |
+ __ Poke(lr, 0); |
+ // Call the C++ function. |
+ __ Blr(x10); |
+ // Return to calling code. |
+ __ Peek(lr, 0); |
+ __ Ret(); |
+ |
+ __ SetStackPointer(old_stack_pointer); |
+} |
+ |
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
+ Register target) { |
+ // Make sure the caller configured the stack pointer (see comment in |
+ // DirectCEntryStub::Generate). |
+ ASSERT(csp.Is(__ StackPointer())); |
+ |
+ intptr_t code = |
+ reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location()); |
+ __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET)); |
+ __ Mov(x10, target); |
+ // Branch to the stub. |
+ __ Blr(lr); |
+} |
+ |
+ |
+// Probe the name dictionary in the 'elements' register. |
+// Jump to the 'done' label if a property with the given name is found. |
+// Jump to the 'miss' label otherwise. |
+// |
+// If lookup was successful 'scratch2' will be equal to elements + 4 * index. |
+// 'elements' and 'name' registers are preserved on miss. |
+void NameDictionaryLookupStub::GeneratePositiveLookup( |
+ MacroAssembler* masm, |
+ Label* miss, |
+ Label* done, |
+ Register elements, |
+ Register name, |
+ Register scratch1, |
+ Register scratch2) { |
+ ASSERT(!AreAliased(elements, name, scratch1, scratch2)); |
+ |
+ // Assert that name contains a string. |
+ __ AssertName(name); |
+ |
+ // Compute the capacity mask. |
+ __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset)); |
+ __ Sub(scratch1, scratch1, 1); |
+ |
+ // Generate an unrolled loop that performs a few probes before giving up. |
+ for (int i = 0; i < kInlinedProbes; i++) { |
+ // Compute the masked index: (hash + i + i * i) & mask. |
+ __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); |
+ if (i > 0) { |
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting |
+ // the hash in a separate instruction. The value hash + i + i * i is right |
+ // shifted in the following and instruction. |
+ ASSERT(NameDictionary::GetProbeOffset(i) < |
+ 1 << (32 - Name::kHashFieldOffset)); |
+ __ Add(scratch2, scratch2, Operand( |
+ NameDictionary::GetProbeOffset(i) << Name::kHashShift)); |
+ } |
+ __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); |
+ |
+ // Scale the index by multiplying by the element size. |
+ ASSERT(NameDictionary::kEntrySize == 3); |
+ __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); |
+ |
+ // Check if the key is identical to the name. |
+ __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); |
+ // TODO(jbramley): We need another scratch here, but some callers can't |
+ // provide a scratch3 so we have to use Tmp1(). We should find a clean way |
+ // to make it unavailable to the MacroAssembler for a short time. |
+ __ Ldr(__ Tmp1(), FieldMemOperand(scratch2, kElementsStartOffset)); |
+ __ Cmp(name, __ Tmp1()); |
+ __ B(eq, done); |
+ } |
+ |
+ // The inlined probes didn't find the entry. |
+ // Call the complete stub to scan the whole dictionary. |
+ |
+ CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6); |
+ spill_list.Combine(lr); |
+ spill_list.Remove(scratch1); |
+ spill_list.Remove(scratch2); |
+ |
+ __ PushCPURegList(spill_list); |
+ |
+ if (name.is(x0)) { |
+ ASSERT(!elements.is(x1)); |
+ __ Mov(x1, name); |
+ __ Mov(x0, elements); |
+ } else { |
+ __ Mov(x0, elements); |
+ __ Mov(x1, name); |
+ } |
+ |
+ Label not_found; |
+ NameDictionaryLookupStub stub(POSITIVE_LOOKUP); |
+ __ CallStub(&stub); |
+ __ Cbz(x0, ¬_found); |
+ __ Mov(scratch2, x2); // Move entry index into scratch2. |
+ __ PopCPURegList(spill_list); |
+ __ B(done); |
+ |
+ __ Bind(¬_found); |
+ __ PopCPURegList(spill_list); |
+ __ B(miss); |
+} |
+ |
+ |
+void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, |
+ Label* miss, |
+ Label* done, |
+ Register receiver, |
+ Register properties, |
+ Handle<Name> name, |
+ Register scratch0) { |
+ ASSERT(!AreAliased(receiver, properties, scratch0)); |
+ ASSERT(name->IsUniqueName()); |
+ // If names of slots in range from 1 to kProbes - 1 for the hash value are |
+ // not equal to the name and kProbes-th slot is not used (its name is the |
+ // undefined value), it guarantees the hash table doesn't contain the |
+ // property. It's true even if some slots represent deleted properties |
+ // (their names are the hole value). |
+ for (int i = 0; i < kInlinedProbes; i++) { |
+ // scratch0 points to properties hash. |
+ // Compute the masked index: (hash + i + i * i) & mask. |
+ Register index = scratch0; |
+ // Capacity is smi 2^n. |
+ __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset)); |
+ __ Sub(index, index, 1); |
+ __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i)); |
+ |
+ // Scale the index by multiplying by the entry size. |
+ ASSERT(NameDictionary::kEntrySize == 3); |
+ __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. |
+ |
+ Register entity_name = scratch0; |
+ // Having undefined at this place means the name is not contained. |
+ Register tmp = index; |
+ __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2)); |
+ __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); |
+ |
+ __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done); |
+ |
+ // Stop if found the property. |
+ __ Cmp(entity_name, Operand(name)); |
+ __ B(eq, miss); |
+ |
+ Label good; |
+ __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good); |
+ |
+ // Check if the entry name is not a unique name. |
+ __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); |
+ __ Ldrb(entity_name, |
+ FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); |
+ __ JumpIfNotUniqueName(entity_name, miss); |
+ __ Bind(&good); |
+ } |
+ |
+ CPURegList spill_list(CPURegister::kRegister, kXRegSize, 0, 6); |
+ spill_list.Combine(lr); |
+ spill_list.Remove(scratch0); // Scratch registers don't need to be preserved. |
+ |
+ __ PushCPURegList(spill_list); |
+ |
+ __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
+ __ Mov(x1, Operand(name)); |
+ NameDictionaryLookupStub stub(NEGATIVE_LOOKUP); |
+ __ CallStub(&stub); |
+ // Move stub return value to scratch0. Note that scratch0 is not included in |
+ // spill_list and won't be clobbered by PopCPURegList. |
+ __ Mov(scratch0, x0); |
+ __ PopCPURegList(spill_list); |
+ |
+ __ Cbz(scratch0, done); |
+ __ B(miss); |
+} |
+ |
+ |
+void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { |
+ // This stub overrides SometimesSetsUpAFrame() to return false. That means |
+ // we cannot call anything that could cause a GC from this stub. |
+ // |
+ // Arguments are in x0 and x1: |
+ // x0: property dictionary. |
+ // x1: the name of the property we are looking for. |
+ // |
+ // Return value is in x0 and is zero if lookup failed, non zero otherwise. |
+ // If the lookup is successful, x2 will contains the index of the entry. |
+ |
+ Register result = x0; |
+ Register dictionary = x0; |
+ Register key = x1; |
+ Register index = x2; |
+ Register mask = x3; |
+ Register hash = x4; |
+ Register undefined = x5; |
+ Register entry_key = x6; |
+ |
+ Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
+ |
+ __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset)); |
+ __ Sub(mask, mask, 1); |
+ |
+ __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); |
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
+ |
+ for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
+ // Compute the masked index: (hash + i + i * i) & mask. |
+ // Capacity is smi 2^n. |
+ if (i > 0) { |
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting |
+ // the hash in a separate instruction. The value hash + i + i * i is right |
+ // shifted in the following and instruction. |
+ ASSERT(NameDictionary::GetProbeOffset(i) < |
+ 1 << (32 - Name::kHashFieldOffset)); |
+ __ Add(index, hash, |
+ NameDictionary::GetProbeOffset(i) << Name::kHashShift); |
+ } else { |
+ __ Mov(index, hash); |
+ } |
+ __ And(index, mask, Operand(index, LSR, Name::kHashShift)); |
+ |
+ // Scale the index by multiplying by the entry size. |
+ ASSERT(NameDictionary::kEntrySize == 3); |
+ __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. |
+ |
+ __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2)); |
+ __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); |
+ |
+ // Having undefined at this place means the name is not contained. |
+ __ Cmp(entry_key, undefined); |
+ __ B(eq, ¬_in_dictionary); |
+ |
+ // Stop if found the property. |
+ __ Cmp(entry_key, key); |
+ __ B(eq, &in_dictionary); |
+ |
+ if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { |
+ // Check if the entry name is not a unique name. |
+ __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); |
+ __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); |
+ __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); |
+ } |
+ } |
+ |
+ __ Bind(&maybe_in_dictionary); |
+ // If we are doing negative lookup then probing failure should be |
+ // treated as a lookup success. For positive lookup, probing failure |
+ // should be treated as lookup failure. |
+ if (mode_ == POSITIVE_LOOKUP) { |
+ __ Mov(result, 0); |
+ __ Ret(); |
+ } |
+ |
+ __ Bind(&in_dictionary); |
+ __ Mov(result, 1); |
+ __ Ret(); |
+ |
+ __ Bind(¬_in_dictionary); |
+ __ Mov(result, 0); |
+ __ Ret(); |
+} |
+ |
+ |
+template<class T> |
+static void CreateArrayDispatch(MacroAssembler* masm, |
+ AllocationSiteOverrideMode mode) { |
+ ASM_LOCATION("CreateArrayDispatch"); |
+ if (mode == DISABLE_ALLOCATION_SITES) { |
+ T stub(GetInitialFastElementsKind(), mode); |
+ __ TailCallStub(&stub); |
+ |
+ } else if (mode == DONT_OVERRIDE) { |
+ Register kind = x3; |
+ int last_index = |
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
+ for (int i = 0; i <= last_index; ++i) { |
+ Label next; |
+ ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
+ // TODO(jbramley): Is this the best way to handle this? Can we make the |
+ // tail calls conditional, rather than hopping over each one? |
+ __ CompareAndBranch(kind, candidate_kind, ne, &next); |
+ T stub(candidate_kind); |
+ __ TailCallStub(&stub); |
+ __ Bind(&next); |
+ } |
+ |
+ // If we reached this point there is a problem. |
+ __ Abort(kUnexpectedElementsKindInArrayConstructor); |
+ |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+// TODO(jbramley): If this needs to be a special case, make it a proper template |
+// specialization, and not a separate function. |
+static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
+ AllocationSiteOverrideMode mode) { |
+ ASM_LOCATION("CreateArrayDispatchOneArgument"); |
+ // x0 - argc |
+ // x1 - constructor? |
+ // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
+ // x3 - kind (if mode != DISABLE_ALLOCATION_SITES) |
+ // sp[0] - last argument |
+ |
+ Register allocation_site = x2; |
+ Register kind = x3; |
+ |
+ Label normal_sequence; |
+ if (mode == DONT_OVERRIDE) { |
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
+ STATIC_ASSERT(FAST_ELEMENTS == 2); |
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
+ STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); |
+ STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); |
+ |
+ // Is the low bit set? If so, the array is holey. |
+ __ Tbnz(kind, 0, &normal_sequence); |
+ } |
+ |
+ // Look at the last argument. |
+ // TODO(jbramley): What does a 0 argument represent? |
+ __ Peek(x10, 0); |
+ __ Cbz(x10, &normal_sequence); |
+ |
+ if (mode == DISABLE_ALLOCATION_SITES) { |
+ ElementsKind initial = GetInitialFastElementsKind(); |
+ ElementsKind holey_initial = GetHoleyElementsKind(initial); |
+ |
+ ArraySingleArgumentConstructorStub stub_holey(holey_initial, |
+ DISABLE_ALLOCATION_SITES); |
+ __ TailCallStub(&stub_holey); |
+ |
+ __ Bind(&normal_sequence); |
+ ArraySingleArgumentConstructorStub stub(initial, |
+ DISABLE_ALLOCATION_SITES); |
+ __ TailCallStub(&stub); |
+ } else if (mode == DONT_OVERRIDE) { |
+ // We are going to create a holey array, but our kind is non-holey. |
+ // Fix kind and retry (only if we have an allocation site in the slot). |
+ __ Orr(kind, kind, 1); |
+ |
+ if (FLAG_debug_code) { |
+ __ Ldr(x10, FieldMemOperand(allocation_site, 0)); |
+ __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, |
+ &normal_sequence); |
+ __ Assert(eq, kExpectedAllocationSite); |
+ } |
+ |
+ // Save the resulting elements kind in type info. We can't just store 'kind' |
+ // in the AllocationSite::transition_info field because elements kind is |
+ // restricted to a portion of the field; upper bits need to be left alone. |
+ STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
+ __ Ldr(x11, FieldMemOperand(allocation_site, |
+ AllocationSite::kTransitionInfoOffset)); |
+ __ Add(x11, x11, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); |
+ __ Str(x11, FieldMemOperand(allocation_site, |
+ AllocationSite::kTransitionInfoOffset)); |
+ |
+ __ Bind(&normal_sequence); |
+ int last_index = |
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
+ for (int i = 0; i <= last_index; ++i) { |
+ Label next; |
+ ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
+ // TODO(jbramley): Is this the best way to handle this? Can we make the |
+ // tail calls conditional, rather than hopping over each one? |
+ __ CompareAndBranch(kind, candidate_kind, ne, &next); |
+ ArraySingleArgumentConstructorStub stub(candidate_kind); |
+ __ TailCallStub(&stub); |
+ __ Bind(&next); |
+ } |
+ |
+ // If we reached this point there is a problem. |
+ __ Abort(kUnexpectedElementsKindInArrayConstructor); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+template<class T> |
+static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
+ int to_index = GetSequenceIndexFromFastElementsKind( |
+ TERMINAL_FAST_ELEMENTS_KIND); |
+ for (int i = 0; i <= to_index; ++i) { |
+ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
+ T stub(kind); |
+ stub.GetCode(isolate); |
+ if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { |
+ T stub1(kind, DISABLE_ALLOCATION_SITES); |
+ stub1.GetCode(isolate); |
+ } |
+ } |
+} |
+ |
+ |
+void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { |
+ ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
+ isolate); |
+ ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
+ isolate); |
+ ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( |
+ isolate); |
+} |
+ |
+ |
+void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( |
+ Isolate* isolate) { |
+ ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; |
+ for (int i = 0; i < 2; i++) { |
+ // For internal arrays we only need a few things |
+ InternalArrayNoArgumentConstructorStub stubh1(kinds[i]); |
+ stubh1.GetCode(isolate); |
+ InternalArraySingleArgumentConstructorStub stubh2(kinds[i]); |
+ stubh2.GetCode(isolate); |
+ InternalArrayNArgumentsConstructorStub stubh3(kinds[i]); |
+ stubh3.GetCode(isolate); |
+ } |
+} |
+ |
+ |
+void ArrayConstructorStub::GenerateDispatchToArrayStub( |
+ MacroAssembler* masm, |
+ AllocationSiteOverrideMode mode) { |
+ Register argc = x0; |
+ if (argument_count_ == ANY) { |
+ Label zero_case, n_case; |
+ __ Cbz(argc, &zero_case); |
+ __ Cmp(argc, 1); |
+ __ B(ne, &n_case); |
+ |
+ // One argument. |
+ CreateArrayDispatchOneArgument(masm, mode); |
+ |
+ __ Bind(&zero_case); |
+ // No arguments. |
+ CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
+ |
+ __ Bind(&n_case); |
+ // N arguments. |
+ CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
+ |
+ } else if (argument_count_ == NONE) { |
+ CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
+ } else if (argument_count_ == ONE) { |
+ CreateArrayDispatchOneArgument(masm, mode); |
+ } else if (argument_count_ == MORE_THAN_ONE) { |
+ CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
+ ASM_LOCATION("ArrayConstructorStub::Generate"); |
+ // ----------- S t a t e ------------- |
+ // -- x0 : argc (only if argument_count_ == ANY) |
+ // -- x1 : constructor |
+ // -- x2 : feedback vector (fixed array or undefined) |
+ // -- x3 : slot index (if x2 is fixed array) |
+ // -- sp[0] : return address |
+ // -- sp[4] : last argument |
+ // ----------------------------------- |
+ Register constructor = x1; |
+ Register feedback_vector = x2; |
+ Register slot_index = x3; |
+ |
+ if (FLAG_debug_code) { |
+ // The array construct code is only set for the global and natives |
+ // builtin Array functions which always have maps. |
+ |
+ Label unexpected_map, map_ok; |
+ // Initial map for the builtin Array function should be a map. |
+ __ Ldr(x10, FieldMemOperand(constructor, |
+ JSFunction::kPrototypeOrInitialMapOffset)); |
+ // Will both indicate a NULL and a Smi. |
+ __ JumpIfSmi(x10, &unexpected_map); |
+ __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
+ __ Bind(&unexpected_map); |
+ __ Abort(kUnexpectedInitialMapForArrayFunction); |
+ __ Bind(&map_ok); |
+ |
+ // In feedback_vector, we expect either undefined or a valid fixed array. |
+ Label okay_here; |
+ Handle<Map> fixed_array_map = masm->isolate()->factory()->fixed_array_map(); |
+ __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &okay_here); |
+ __ Ldr(x10, FieldMemOperand(feedback_vector, FixedArray::kMapOffset)); |
+ __ Cmp(x10, Operand(fixed_array_map)); |
+ __ Assert(eq, kExpectedFixedArrayInFeedbackVector); |
+ |
+ // slot_index should be a smi if we don't have undefined in feedback_vector. |
+ __ AssertSmi(slot_index); |
+ |
+ __ Bind(&okay_here); |
+ } |
+ |
+ Register allocation_site = x2; // Overwrites feedback_vector. |
+ Register kind = x3; |
+ Label no_info; |
+ // Get the elements kind and case on that. |
+ __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &no_info); |
+ __ Add(feedback_vector, feedback_vector, |
+ Operand::UntagSmiAndScale(slot_index, kPointerSizeLog2)); |
+ __ Ldr(allocation_site, FieldMemOperand(feedback_vector, |
+ FixedArray::kHeaderSize)); |
+ |
+ // If the feedback vector is undefined, or contains anything other than an |
+ // AllocationSite, call an array constructor that doesn't use AllocationSites. |
+ __ Ldr(x10, FieldMemOperand(allocation_site, AllocationSite::kMapOffset)); |
+ __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, &no_info); |
+ |
+ __ Ldrsw(kind, |
+ UntagSmiFieldMemOperand(allocation_site, |
+ AllocationSite::kTransitionInfoOffset)); |
+ __ And(kind, kind, AllocationSite::ElementsKindBits::kMask); |
+ GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
+ |
+ __ Bind(&no_info); |
+ GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
+} |
+ |
+ |
+void InternalArrayConstructorStub::GenerateCase( |
+ MacroAssembler* masm, ElementsKind kind) { |
+ Label zero_case, n_case; |
+ Register argc = x0; |
+ |
+ __ Cbz(argc, &zero_case); |
+ __ CompareAndBranch(argc, 1, ne, &n_case); |
+ |
+ // One argument. |
+ if (IsFastPackedElementsKind(kind)) { |
+ Label packed_case; |
+ |
+ // We might need to create a holey array; look at the first argument. |
+ __ Peek(x10, 0); |
+ __ Cbz(x10, &packed_case); |
+ |
+ InternalArraySingleArgumentConstructorStub |
+ stub1_holey(GetHoleyElementsKind(kind)); |
+ __ TailCallStub(&stub1_holey); |
+ |
+ __ Bind(&packed_case); |
+ } |
+ InternalArraySingleArgumentConstructorStub stub1(kind); |
+ __ TailCallStub(&stub1); |
+ |
+ __ Bind(&zero_case); |
+ // No arguments. |
+ InternalArrayNoArgumentConstructorStub stub0(kind); |
+ __ TailCallStub(&stub0); |
+ |
+ __ Bind(&n_case); |
+ // N arguments. |
+ InternalArrayNArgumentsConstructorStub stubN(kind); |
+ __ TailCallStub(&stubN); |
+} |
+ |
+ |
+void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
+ // ----------- S t a t e ------------- |
+ // -- x0 : argc |
+ // -- x1 : constructor |
+ // -- sp[0] : return address |
+ // -- sp[4] : last argument |
+ // ----------------------------------- |
+ Handle<Object> undefined_sentinel( |
+ masm->isolate()->heap()->undefined_value(), masm->isolate()); |
+ |
+ Register constructor = x1; |
+ |
+ if (FLAG_debug_code) { |
+ // The array construct code is only set for the global and natives |
+ // builtin Array functions which always have maps. |
+ |
+ Label unexpected_map, map_ok; |
+ // Initial map for the builtin Array function should be a map. |
+ __ Ldr(x10, FieldMemOperand(constructor, |
+ JSFunction::kPrototypeOrInitialMapOffset)); |
+ // Will both indicate a NULL and a Smi. |
+ __ JumpIfSmi(x10, &unexpected_map); |
+ __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
+ __ Bind(&unexpected_map); |
+ __ Abort(kUnexpectedInitialMapForArrayFunction); |
+ __ Bind(&map_ok); |
+ } |
+ |
+ Register kind = w3; |
+ // Figure out the right elements kind |
+ __ Ldr(x10, FieldMemOperand(constructor, |
+ JSFunction::kPrototypeOrInitialMapOffset)); |
+ |
+ // TODO(jbramley): Add a helper function to read elements kind from an |
+ // existing map. |
+ // Load the map's "bit field 2" into result. |
+ __ Ldr(kind, FieldMemOperand(x10, Map::kBitField2Offset)); |
+ // Retrieve elements_kind from bit field 2. |
+ __ Ubfx(kind, kind, Map::kElementsKindShift, Map::kElementsKindBitCount); |
+ |
+ if (FLAG_debug_code) { |
+ Label done; |
+ __ Cmp(x3, FAST_ELEMENTS); |
+ __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne); |
+ __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
+ } |
+ |
+ Label fast_elements_case; |
+ __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case); |
+ GenerateCase(masm, FAST_HOLEY_ELEMENTS); |
+ |
+ __ Bind(&fast_elements_case); |
+ GenerateCase(masm, FAST_ELEMENTS); |
+} |
+ |
+ |
+void CallApiFunctionStub::Generate(MacroAssembler* masm) { |
+ // ----------- S t a t e ------------- |
+ // -- x0 : callee |
+ // -- x4 : call_data |
+ // -- x2 : holder |
+ // -- x1 : api_function_address |
+ // -- cp : context |
+ // -- |
+ // -- sp[0] : last argument |
+ // -- ... |
+ // -- sp[(argc - 1) * 8] : first argument |
+ // -- sp[argc * 8] : receiver |
+ // ----------------------------------- |
+ |
+ Register callee = x0; |
+ Register call_data = x4; |
+ Register holder = x2; |
+ Register api_function_address = x1; |
+ Register context = cp; |
+ |
+ int argc = ArgumentBits::decode(bit_field_); |
+ bool restore_context = RestoreContextBits::decode(bit_field_); |
+ bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); |
+ |
+ typedef FunctionCallbackArguments FCA; |
+ |
+ STATIC_ASSERT(FCA::kContextSaveIndex == 6); |
+ STATIC_ASSERT(FCA::kCalleeIndex == 5); |
+ STATIC_ASSERT(FCA::kDataIndex == 4); |
+ STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
+ STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
+ STATIC_ASSERT(FCA::kIsolateIndex == 1); |
+ STATIC_ASSERT(FCA::kHolderIndex == 0); |
+ STATIC_ASSERT(FCA::kArgsLength == 7); |
+ |
+ Isolate* isolate = masm->isolate(); |
+ |
+ // FunctionCallbackArguments: context, callee and call data. |
+ __ Push(context, callee, call_data); |
+ |
+ // Load context from callee |
+ __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); |
+ |
+ if (!call_data_undefined) { |
+ __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); |
+ } |
+ Register isolate_reg = x5; |
+ __ Mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate))); |
+ |
+ // FunctionCallbackArguments: |
+ // return value, return value default, isolate, holder. |
+ __ Push(call_data, call_data, isolate_reg, holder); |
+ |
+ // Prepare arguments. |
+ Register args = x6; |
+ __ Mov(args, masm->StackPointer()); |
+ |
+ // Allocate the v8::Arguments structure in the arguments' space, since it's |
+ // not controlled by GC. |
+ const int kApiStackSpace = 4; |
+ |
+ // Allocate space for CallApiFunctionAndReturn can store some scratch |
+ // registeres on the stack. |
+ const int kCallApiFunctionSpillSpace = 4; |
+ |
+ FrameScope frame_scope(masm, StackFrame::MANUAL); |
+ __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
+ |
+ // TODO(all): Optimize this with stp and suchlike. |
+ ASSERT(!AreAliased(x0, api_function_address)); |
+ // x0 = FunctionCallbackInfo& |
+ // Arguments is after the return address. |
+ __ Add(x0, masm->StackPointer(), 1 * kPointerSize); |
+ // FunctionCallbackInfo::implicit_args_ |
+ __ Str(args, MemOperand(x0, 0 * kPointerSize)); |
+ // FunctionCallbackInfo::values_ |
+ __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); |
+ __ Str(x10, MemOperand(x0, 1 * kPointerSize)); |
+ // FunctionCallbackInfo::length_ = argc |
+ __ Mov(x10, argc); |
+ __ Str(x10, MemOperand(x0, 2 * kPointerSize)); |
+ // FunctionCallbackInfo::is_construct_call = 0 |
+ __ Str(xzr, MemOperand(x0, 3 * kPointerSize)); |
+ |
+ const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; |
+ Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); |
+ ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; |
+ ApiFunction thunk_fun(thunk_address); |
+ ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, |
+ masm->isolate()); |
+ |
+ AllowExternalCallThatCantCauseGC scope(masm); |
+ MemOperand context_restore_operand( |
+ fp, (2 + FCA::kContextSaveIndex) * kPointerSize); |
+ MemOperand return_value_operand(fp, |
+ (2 + FCA::kReturnValueOffset) * kPointerSize); |
+ |
+ const int spill_offset = 1 + kApiStackSpace; |
+ __ CallApiFunctionAndReturn(api_function_address, |
+ thunk_ref, |
+ kStackUnwindSpace, |
+ spill_offset, |
+ return_value_operand, |
+ restore_context ? |
+ &context_restore_operand : NULL); |
+} |
+ |
+ |
+void CallApiGetterStub::Generate(MacroAssembler* masm) { |
+ // ----------- S t a t e ------------- |
+ // -- sp[0] : name |
+ // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object |
+ // -- ... |
+ // -- x2 : api_function_address |
+ // ----------------------------------- |
+ |
+ Register api_function_address = x2; |
+ |
+ __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name> |
+ __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA |
+ |
+ const int kApiStackSpace = 1; |
+ |
+ // Allocate space for CallApiFunctionAndReturn can store some scratch |
+ // registeres on the stack. |
+ const int kCallApiFunctionSpillSpace = 4; |
+ |
+ FrameScope frame_scope(masm, StackFrame::MANUAL); |
+ __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
+ |
+ // Create PropertyAccessorInfo instance on the stack above the exit frame with |
+ // x1 (internal::Object** args_) as the data. |
+ __ Poke(x1, 1 * kPointerSize); |
+ __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo& |
+ |
+ const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
+ |
+ Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); |
+ ExternalReference::Type thunk_type = |
+ ExternalReference::PROFILING_GETTER_CALL; |
+ ApiFunction thunk_fun(thunk_address); |
+ ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, |
+ masm->isolate()); |
+ |
+ const int spill_offset = 1 + kApiStackSpace; |
+ __ CallApiFunctionAndReturn(api_function_address, |
+ thunk_ref, |
+ kStackUnwindSpace, |
+ spill_offset, |
+ MemOperand(fp, 6 * kPointerSize), |
+ NULL); |
+} |
+ |
+ |
+#undef __ |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_TARGET_ARCH_A64 |